Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Nd-YAG laser microstructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7796 KiB  
Article
Influence of Nd:YAG Laser Melting on an Investment-Casting Co-Cr-Mo Alloy
by Francisco Cepeda Rodríguez, Carlos Rodrigo Muñiz Valdez, Juan Carlos Ortiz Cuellar, Jesús Fernando Martínez Villafañe, Jesús Salvador Galindo Valdés and Gladys Yerania Pérez Medina
Metals 2025, 15(4), 385; https://doi.org/10.3390/met15040385 - 29 Mar 2025
Viewed by 475
Abstract
The investment casting process, also known as lost-wax casting, is widely used for producing ferrous and non-ferrous metal parts due to its excellent surface finish and dimensional accuracy. In recent years, the use of Co-Cr-Mo alloy has increased due to its high corrosion [...] Read more.
The investment casting process, also known as lost-wax casting, is widely used for producing ferrous and non-ferrous metal parts due to its excellent surface finish and dimensional accuracy. In recent years, the use of Co-Cr-Mo alloy has increased due to its high corrosion resistance, good biocompatibility, and relatively high wear resistance. Laser melting of materials has been demonstrated to refine the surface grain structure, reduce surface roughness, and improve both wear and corrosion resistance. The ability to fine-tune parameters such as laser power density and scanning speed facilitates the optimization of the treated layers’ thickness and homogeneity, thereby addressing many of the shortcomings inherent in conventional methods. This study investigates the microstructural, mechanical wear and bioactive behavior of investment-cast Co-Cr-Mo parts subjected to a Nd:YAG laser surface treatment. The effects of different processing parameters were analyzed quantitatively and comprehensively. The specimens were characterized using metallographic techniques, bioactivity evaluation, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), wear testing (Pin-on-Disk), and hardness testing. Our results demonstrate that Nd:YAG laser melting significantly enhances the surface properties and maintains the dimensional accuracy of complex Co-Cr-Mo biomedical components, through microstructural refinement, increased hardness, improved wear resistance, and preserved biocompatibility. The specific combination of investment casting with precisely controlled laser surface modification represents a significant advancement for improving the longevity and performance of biomedical implants. Full article
Show Figures

Figure 1

24 pages, 26404 KiB  
Article
Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass
by Changjun Chen, Lei Li, Min Zhang and Wei Zhang
Coatings 2024, 14(10), 1318; https://doi.org/10.3390/coatings14101318 - 15 Oct 2024
Cited by 1 | Viewed by 1854
Abstract
Hermetic glass-to-metal sealing (GMTS) technology combines metal and glass and can be used to construct vacuum tubes; electric discharge tubes; semiconductor diodes; reed switches; and pressure-tight glass-to-metal windows, optical windows, and lenses in electronics or electronic systems. The hermetic and mechanically strong seals [...] Read more.
Hermetic glass-to-metal sealing (GMTS) technology combines metal and glass and can be used to construct vacuum tubes; electric discharge tubes; semiconductor diodes; reed switches; and pressure-tight glass-to-metal windows, optical windows, and lenses in electronics or electronic systems. The hermetic and mechanically strong seals engineered using GTMS are highly reliable, making them suitable for deployment in harsh environments and for applications requiring high performance. However, it has always been challenging to precisely and robustly join glass and metal due to the significant disparities in their properties. In this study, the laser transmission welding of borosilicate glass and aluminum alloy using a pulsed Nd:YAG laser to achieve hermetic glass–metal seals was experimentally investigated. This research focused on various processing parameters and the influence of surface conditions on bonding quality. Three different types of surfaces—a polished surface, a surface subjected to preoxidation, and a laser-modified surface—were compared. To evaluate the weld strength, shear-tensile separation forces were measured. The analysis of fracture and separation encompassed detailed examinations of the weld morphology, microstructure, and elemental composition. The results revealed that increasing the laser welding energy initially enhanced the weld strength until a saturation point was reached. Among the three different surface treatments tested, the laser surface modification of aluminum alloy yielded the highest weld strength. The maximum achieved bond force exceeded 35.38 N, demonstrating the feasibility of using cost-effective pulsed laser welding for glass-to-metal sealing. The results were significantly better than those from previous research in which aluminum alloy surfaces were pretreated using microarc oxidation. Full article
(This article belongs to the Special Issue Laser-Assisted Processes and Thermal Treatments of Materials)
Show Figures

Figure 1

13 pages, 4211 KiB  
Article
Effects of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Automatic Laser-Arc Hybrid Welded AZ31B Magnesium Alloys
by Jin Xiong, Ruochao Wang, Dongqing Zhao, Hongtao Liu and Jixue Zhou
Metals 2024, 14(7), 806; https://doi.org/10.3390/met14070806 - 10 Jul 2024
Cited by 1 | Viewed by 1430
Abstract
The aim of this study was to determine the microstructural evolution, tensile characteristics, and strain-hardening response of AZ31B magnesium alloy welds as influenced by post-weld heat treatment (PWHT). Thus, the AZ31B alloy was welded by using a low-power pulsed Nd:YAG laser-arc hybrid welding [...] Read more.
The aim of this study was to determine the microstructural evolution, tensile characteristics, and strain-hardening response of AZ31B magnesium alloy welds as influenced by post-weld heat treatment (PWHT). Thus, the AZ31B alloy was welded by using a low-power pulsed Nd:YAG laser-arc hybrid welding equipped on the six-axis welding robot in the present study. Microstructure, mechanical properties and strain-hardening behaviors of the AZ31B joints under various post-weld heat treatment (PWHT) temperatures were characterized. As the heat treatment temperature increases, the grain size of the welded joint gradually increases, and the amount of β-Mg17AI12 phase noticeably decreases. The mechanical properties of the welded joint specimens showed a significant enhancement when subjected to heat treatment at 300 °C and 350 °C for 20 min. Especially, after 350 °C heat treatment for 20 min, the ultimate tensile strength (UTS) and elongation (EL) of specimen were 339.6 MPa and 20.1%, respectively, which were up to 99.5% and 98.5% of the AZ31B base material (BM). The strain-hardening capacity of specimens is significantly influenced by the grain size. Due to having the largest grain size, the 400–20 min specimen exhibited the highest hardening capacity and strain hardening exponent. In Kocks-Mecking type curves, both stage III and stage IV were observed in BM and joint specimens. At higher net flow stresses, the strain hardening rate in the 400–20 min joint specimen was higher due to the larger grains, which allowed for more dislocation accommodation and improved the capacity for dislocation storage. Full article
Show Figures

Figure 1

11 pages, 6759 KiB  
Article
Effects of Base Metal Preheating on the Microstructure, Mechanical Properties, and Corrosion Resistance of UNS S32750 SDSS Pulsed Nd:YAG Laser Welding
by Eli J. da Cruz Junior, Francisco M. F. A. Varasquim, Gillian S. Crespo, Vicente. A. Ventrella, Andrea Zambon and Irene Calliari
Coatings 2023, 13(11), 1930; https://doi.org/10.3390/coatings13111930 - 11 Nov 2023
Cited by 3 | Viewed by 1494
Abstract
Super duplex stainless steel has a microstructure consisting of equal proportions of austenite and ferrite. However, welding with Nd:YAG pulsed laser results in an imbalanced microstructure that compromises the steel’s properties. This paper studied the effects of preheating the base metal on pulsed [...] Read more.
Super duplex stainless steel has a microstructure consisting of equal proportions of austenite and ferrite. However, welding with Nd:YAG pulsed laser results in an imbalanced microstructure that compromises the steel’s properties. This paper studied the effects of preheating the base metal on pulsed Nd:YAG laser welding. Four conditions were evaluated (no preheating and heating at 100 °C, 200 °C, and 300 °C). The analysis included studying the microstructure, microhardness, and corrosion resistance. Preheating the base metals was found to be an effective method for increasing the volume fractions of austenite. The preheated samples showed an improvement in corrosion resistance compared to the untreated sample. The microhardness varied, with the ferrite amount being higher in the untreated sample. Full article
Show Figures

Figure 1

13 pages, 4985 KiB  
Article
Microstructure and Mechanical Properties of Laser-Welded Joints between DP590 Dual-Phase Steel and 304 Stainless Steel with Preset Nickel Coating
by Hua Zhang, Jiahui Xu, Desheng Hao and Othman Mohammed Ali Othman Esmail
Materials 2023, 16(7), 2774; https://doi.org/10.3390/ma16072774 - 30 Mar 2023
Cited by 5 | Viewed by 2722
Abstract
Dissimilarities in metal laser welding lead to brittleness in welded joints due to differences in the thermophysical and chemical properties between dissimilar base materials. To overcome such brittleness, the addition of a preset coating onto the base materials as an interlayer is a [...] Read more.
Dissimilarities in metal laser welding lead to brittleness in welded joints due to differences in the thermophysical and chemical properties between dissimilar base materials. To overcome such brittleness, the addition of a preset coating onto the base materials as an interlayer is a method for attaining reliable welded joints. Nd:YAG laser butt welding of DP590 dual-phase steel and 304 stainless, both with a thickness of 1 mm, was performed with a preset nickel coating as an interlayer using an electroplating process. The relationship between the microstructure and the mechanical properties of the welded joints was researched, the microstructure and composition of the weldment were analyzed, and the microhardness, tensile strength and corrosion resistance were tested. The results showed that the preset nickel coating increased the content of Ni element in the welded joints, which is beneficial to the formation of lath martensite. The average hardness of the welded joints increased by 12%, and the tensile strength was higher than 370 MPa. The corrosion rate of the welded joints can be slowed down, and the corrosion resistance can be improved by increasing the nickel coating. Full article
(This article belongs to the Topic Laser Welding of Metallic Materials)
Show Figures

Figure 1

19 pages, 10614 KiB  
Article
Effect of Pulsation in Microstructure and Mechanical Properties of Titanium Alloy-Annealed Welded Joints at Different Temperatures
by Uday Kumar, Somnath Chattopadhyaya, Alok Kumar Das, A. H. Seikh, Shubham Sharma, Shashi Prakash Dwivedi, Kaori Nagai, Abhinav Kumar, Ashish Agrawal and Sunpreet Singh
Photonics 2023, 10(4), 372; https://doi.org/10.3390/photonics10040372 - 27 Mar 2023
Cited by 6 | Viewed by 2056
Abstract
Thin sheets of Ti-6Al-4V alloy of thickness 1 mm were butt welded using a pulsed Nd-YAG low-power laser setup. The goal of this research is to explore the influence of pulsation on the microstructure and mechanical properties. In addition to that, annealing at [...] Read more.
Thin sheets of Ti-6Al-4V alloy of thickness 1 mm were butt welded using a pulsed Nd-YAG low-power laser setup. The goal of this research is to explore the influence of pulsation on the microstructure and mechanical properties. In addition to that, annealing at different temperatures has been performed to compare the results of pulsation and heat treatment. The results indicate that after annealing at 980 °C, the structure completely transformed into an equiaxed structure. When annealed at 1010 °C, almost the total area is composed of an equiaxed α phase, and the grains are coarse as compared to the previous. This suggests that the grain size becomes thicker when the annealing temperature is raised above 980 °C. The volume fraction of the equiaxed structure is maximum. It can be deduced that the volume–fraction is dependent on the annealing temperature. The volume fraction of the equiaxed structure increases as the annealing temperature increases. A higher tensile strength value of the sample annealed at 980 °C was found as compared with the overlapped sample (A-2). The fusion zone overlapped sample (A-2) shows high hardness with a value of 397 HV1. In the FZ sample, annealing at 980 °C has a hardness of 386 HV1. The (A-2) sample indicates higher (3–4%) hardness as compared to the annealed sample at the FZ. The β phase is increased by 16% in the XRD analysis of the overlapped samples. Hence, it is evident that the amount of β phase has increased during heating, and a complete transformation has taken place at a temperature of 958 °C. Full article
Show Figures

Figure 1

22 pages, 11810 KiB  
Article
Effect of Filler Wire Feed Rate on the Formation of Porosity in Laser Welded Joints of Magnesium Alloy AZ31B–H24
by Maroš Vyskoč
Metals 2023, 13(3), 460; https://doi.org/10.3390/met13030460 - 23 Feb 2023
Cited by 4 | Viewed by 2228
Abstract
In this work, the effect of a filler wire feed rate was studied with special attention to the proportion of porosity volume in the weld metal, microstructure, and mechanical properties. Butt laser weld joints were created using the Nd:YAG laser. Weld joints were [...] Read more.
In this work, the effect of a filler wire feed rate was studied with special attention to the proportion of porosity volume in the weld metal, microstructure, and mechanical properties. Butt laser weld joints were created using the Nd:YAG laser. Weld joints were produced with the AZ31 filler wire with a diameter of 1.2 mm. Decreasing the filler wire feed rate of the filler wire led to an increase in the porosity of the weld metal. Therefore, porosity is more likely to occur in laser welding without the use of a filler wire. Clear segregation of aluminium, manganese, and zinc was observed in the EDS maps and the local EDS line profile measurements. The precipitates formed were rich in Al and Mn or Al and Zn, compared to the matrix. They also show a large decrease in Mg content to minimum values ranging from 10 to 60 wt.% in the precipitates. To investigate pores in the weld metal of the weld joint, computed tomography was used. The highest volume of porosity was measured in weld joint no. 3. (0.63 mm3). On the contrary, the lowest porosity volume was detected in weld joint no. 1. (0.06 mm3). The largest width of the weld metal (2.25 mm) was measured if the filler wire feed rate was 130 cm/min. The highest average microhardness (82.5 HV0.1) was recorded in the weld metal of weld joint no. 1. In weld joint no. 3, a fracture occurred in the weld metal and the measured tensile strength was only 154 MPa. Full article
Show Figures

Figure 1

11 pages, 2328 KiB  
Article
Correction of Phase Balance on Nd:YAG Pulsed Laser Welded UNS S32750 Using Cobalt Electroplating Technique
by Eli J. Da Cruz Junior, Bruna B. Seloto, Vicente A. Ventrella, Francisco M. F. A. Varasquim, Andrea Zambon, Irene Calliari, Claudio Gennari and Alessio G. Settimi
Crystals 2023, 13(2), 256; https://doi.org/10.3390/cryst13020256 - 2 Feb 2023
Cited by 5 | Viewed by 2254
Abstract
Super-duplex stainless steel (SDSS) shows high mechanical and corrosion resistance because of the balanced structure of austenite and ferrite. However, maintaining this phase ratio after welding is a challenge. The use of austenite stabilizing components is recommended to balance the microstructure. The addition [...] Read more.
Super-duplex stainless steel (SDSS) shows high mechanical and corrosion resistance because of the balanced structure of austenite and ferrite. However, maintaining this phase ratio after welding is a challenge. The use of austenite stabilizing components is recommended to balance the microstructure. The addition of alloying elements presents a challenge because of the characteristics of Nd:YAG pulsed laser welding. An approach, which has proven to be effective, is to use metal electroplating to prepare the surfaces of the mechanical SDSS components that will be welded, therefore promoting the phase balance in the fusion zone. While the effects of metals such as nickel as an austenite stabilizer are well recognized, cobalt’s effects require more research. The present work investigated the influence of the use of cobalt addition in the joining process by preliminary electroplating on UNS S32750 SDSS Nd: YAG pulsed laser welding, specifically regarding microstructure and microhardness. Three conditions were investigated, changing the thickness of the deposited cobalt layer. The addition of cobalt modified the morphology and increased the volume fraction of austenite. An austenite volume fraction of around 48% was obtained using a 35 μm thick cobalt coating. The microhardness was affected by austenite/ferrite proportions. The microhardness dropped from about 375 HV to 345 HV as the cobalt layer’s thickness rose, being similar to that of the base metal. The effect of cobalt as an austenite stabilizer was observed, and the cobalt electroplating technique was effective to correct the phase balance on UNS S32750 laser welding. Full article
Show Figures

Figure 1

12 pages, 3811 KiB  
Article
The Effect of Infrared Laser Irradiation on the Surface Morphology and Electrical Properties of Zinc Metal
by Muhammad Asif, Anwar Latif, Ahsan Ali, Muhammad Shahid Rafique, Shakeel Ahmad Khan, Abdul Haseeb and Muhammad Kashif Shahid
Physchem 2023, 3(1), 22-33; https://doi.org/10.3390/physchem3010003 - 31 Dec 2022
Cited by 3 | Viewed by 3502
Abstract
This study details the irradiation of pure (99.995%) and immaculate metallic Zinc using Nd: YAG laser (1064 nm, 10 mJ, 9–14 ns). The influence and impact of multiple laser shots on the formation of microstructures and crystal structure orientations is assessed. Arrays of [...] Read more.
This study details the irradiation of pure (99.995%) and immaculate metallic Zinc using Nd: YAG laser (1064 nm, 10 mJ, 9–14 ns). The influence and impact of multiple laser shots on the formation of microstructures and crystal structure orientations is assessed. Arrays of ablated craters are machined on the whole surface of the target to probe the electrical and topographical characteristics of laser-treated surfaces. Irradiated samples are examined by multiple characterizing techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and a four-point probe for electrical conductivity measurements. SEM and AFM analysis exhibited the formation of laser-induced ripple structures with periodicity sheerly dependent on laser shots. A comparison of surface topography of the virgin and treated samples disclosed a pronounced modification in surface texture. The XRD patterns of laser shined targets indicate no momentous structural change in the crystal structure, whereas the measurements on the electrical conductivity of the irradiated surfaces exhibit an exponential descending trend with an augmentation in laser shots. Full article
Show Figures

Figure 1

16 pages, 10532 KiB  
Article
Laser Welding of Ti6Al4V Titanium Alloy in Air and a Water Medium
by Mohamad Alhajhamoud, Sayit Ozbey, Mehmet Alp Ilgaz, Levent Candan, Ibrahim Cinar, Mario Vukotić, Selma Čorović, Damijan Miljavec and Ersin Kayahan
Materials 2022, 15(24), 9088; https://doi.org/10.3390/ma15249088 - 19 Dec 2022
Cited by 6 | Viewed by 3162
Abstract
Ti6Al4V titanium alloys are widely used in a variety of scientific and industrial fields. Laser beam welding is one of the most effective techniques for the joining of titanium plates. The main objective of this study was to investigate the influence of the [...] Read more.
Ti6Al4V titanium alloys are widely used in a variety of scientific and industrial fields. Laser beam welding is one of the most effective techniques for the joining of titanium plates. The main objective of this study was to investigate the influence of the most important laser parameters on welding performance of titanium alloy in two different physical environments such as air and water (i.e., serum) media. Specifically, the laser beam welding of 2 mm thick Ti6Al4V samples was applied using an Nd:YAG laser in open-air welding using argon as a shielding gas, and in wet welding using a serum environment. The deepest penetration was achieved at −3 mm focal position with 11 J of laser energy in both investigated media (i.e., air and serum). The maximum hardness (1130 HV) was achieved for the focal position of −4 mm in serum medium while it was 795 HV for a focal position of −5 mm in air medium. The minimum (1200 μm and 800 μm) and maximum (1960 μm and 1900 μm) weld widths were observed for air and serum medium, respectively. After the welding process, martensite, massif martensite, and transformed martensite were observed in the microstructure of Ti6Al4V. To the best of our knowledge, the underwater wet welding of titanium alloy was carried out and reported for the first time in this study. Full article
Show Figures

Figure 1

12 pages, 7619 KiB  
Article
Low-Energy Pulsed-Laser Welding as a Root Pass in a GMAW Joint: An Investigation on the Microstructure and Mechanical Properties
by Mariane Chludzinski, Rafael Eugenio dos Santos, Marta Ortega-Iguña, Cristina Churiaque, Manuel Porrúa-Lara and José María Sánchez-Amaya
Materials 2022, 15(21), 7741; https://doi.org/10.3390/ma15217741 - 3 Nov 2022
Cited by 2 | Viewed by 2444
Abstract
Root pass is a fundamental step in multi-pass welding. In gas metal arc welding (GMAW), the weld bead qualities depend on the process parameters, filler materials, and welder abilities. This work investigates the effect of a Nd: YAG pulsed laser as a first [...] Read more.
Root pass is a fundamental step in multi-pass welding. In gas metal arc welding (GMAW), the weld bead qualities depend on the process parameters, filler materials, and welder abilities. This work investigates the effect of a Nd: YAG pulsed laser as a first pass to reduce the welders’ reliance on the AH36 low-alloy steel with 5.5 mm thickness. This autogenous automatable process delivers reduced thermal impact due to the concentrated high-energy source, pulse overlap, and higher penetration depth-to-power ratio than continuous lasers. The outcomes indicate that the PL as a root welding generated a small HAZ compared to the GMAW condition. In addition, the subsequent arc passes positively affected the microstructure, reducing the hardness from around 500 to 230 HV. The PL + GMAW achieved similar strength results to the GMAW, although its Charpy impact values at −50 °C were around 15% lower than the arc condition. Full article
(This article belongs to the Special Issue Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

17 pages, 7581 KiB  
Article
Influence of Filler Metal on Electrochemical Characteristics of a Laser-Welded CoCrMoW Alloy Used in Prosthodontics
by Lukasz Reimann, Zbigniew Brytan and Grzegorz Jania
Materials 2022, 15(16), 5721; https://doi.org/10.3390/ma15165721 - 19 Aug 2022
Cited by 5 | Viewed by 2154
Abstract
This paper sought to determine corrosion resistance changes in the artificial saliva of a CoCrMoW-based alloy used for dental prostheses under Nd:YAG laser welding with CoCr alloy and stainless steel wire filler metals. The paper presents the corrosion characteristics of such joints, including [...] Read more.
This paper sought to determine corrosion resistance changes in the artificial saliva of a CoCrMoW-based alloy used for dental prostheses under Nd:YAG laser welding with CoCr alloy and stainless steel wire filler metals. The paper presents the corrosion characteristics of such joints, including the next stage of porcelain-fused-to-metal (PFM) firing. Corrosion tests were performed by electrochemical methods registering anodic polarization curves and electrochemical impedance spectroscopy (EIS). The microstructures were assessed by scanning microscopy (SEM) and chemical composition analysis (EDS) at the connection and heat-affected zones. Welding CoCrMoW alloy with and without a filler material increased the open circuit potential of the samples by 40–100 mV compared to unwelded base alloy. At the same time, a potentiodynamic test showed a polarization resistance Rpol reduction in welded samples, both for CoCr and stainless steel wires, as compared to the base CoCrMoW material. On the other hand, when comparing the current density and polarization resistance between materials welded with two different filler metals, better results were obtained for samples welded with stainless steel wire. The polarization resistance Rpol for the base alloy was 402 kΩ·cm2, for the CoCr wire weld it was 436 kΩ·cm2, and the value was 452 kΩ·cm2 for stainless steel wire welds. Comparing polarization resistance Rpol from the Tafel analysis and the total charge transfer resistance from Rp(EIS) from EIS, the CoCrMoW alloy welded with a stainless steel wire after heat treatment equaled or even slightly exceeded the corrosion resistance of the base alloy and alloy welded with dedicated CoCr wire after heat treatment. These results indicated the possibility of using stainless steel wire for the laser welding of CoCrMoW alloys dental prostheses, including the next stage of PFM, without sacrificing the corrosion resistance of such connections, and this was confirmed by most electrochemical parameters. Full article
(This article belongs to the Special Issue Corrosion Resistance of Alloy and Coating Materials)
Show Figures

Figure 1

17 pages, 16129 KiB  
Article
Surface Damage and Microstructure Evolution of Yttria Particle-Reinforced Tungsten Plate during Transient Laser Thermal Shock
by Daya Ren, Ya Xi, Jie Yan, Xiang Zan, Laima Luo and Yucheng Wu
Metals 2022, 12(4), 686; https://doi.org/10.3390/met12040686 - 16 Apr 2022
Cited by 4 | Viewed by 2519
Abstract
Tungsten and its alloys are considered to be the most nominated plasma-facing materials in fusion reactors, which will be exposed to enormously rigorous conditions such as thermal load, plasma exposure, and neutron radiation. At present, the research on the behavior of oxide particle-reinforced [...] Read more.
Tungsten and its alloys are considered to be the most nominated plasma-facing materials in fusion reactors, which will be exposed to enormously rigorous conditions such as thermal load, plasma exposure, and neutron radiation. At present, the research on the behavior of oxide particle-reinforced tungsten-based materials under long-term steady-state heat load and transient thermal shock is insufficient. The purpose of this study is to investigate the performance of yttria particle-reinforced tungsten plates prepared by the wet chemical method under heat loads by means of indirect coupling experiments. An Nd:YAG laser device is used to perform thermal shock events. The surface damage and microstructure evolution of rolled and fully recrystallized samples exposed to laser thermal shock are observed and analyzed. The cracking threshold of the rolled and fully recrystallized samples is about 0.40~0.48 GW/m2; the degree of surface damage of them aggravates with the increased laser power density. What is more, cracks or even melting damage could be observed on the surface and be accelerated by the process of recrystallization, resulting in the degradation of the ability to withstand the thermal shock of the material. Full article
Show Figures

Figure 1

16 pages, 5915 KiB  
Article
Laser Welding of 316L Austenitic Stainless Steel in an Air and a Water Environment
by Mohamad Alhajhamoud, Levent Candan, Mehmet Alp Ilgaz, Ibrahim Cinar, Sayit Ozbey, Selma Čorović, Damijan Miljavec and Ersin Kayahan
Materials 2022, 15(6), 2248; https://doi.org/10.3390/ma15062248 - 18 Mar 2022
Cited by 9 | Viewed by 4208
Abstract
Laser welding is an innovative method that is frequently used and required by different disciplines and represents a technique of choice in a wide range of applications due to important advantages such as precision, speed, and flexibility. However, the welding method must be [...] Read more.
Laser welding is an innovative method that is frequently used and required by different disciplines and represents a technique of choice in a wide range of applications due to important advantages such as precision, speed, and flexibility. However, the welding method must be used properly otherwise it may deteriorate the mechanical properties of the welded metal and its environment. Therefore, the laser parameters should be precisely determined and carefully applied to the sample. The primary objective of this study was to investigate and propose optimal welding parameters that should be adjusted during the neodymium-doped yttrium aluminum garnet (Nd: YAG)-pulsed laser welding of austenitic stainless steel 316L in an air welding environment by using Argon shielding gas and in wet welding settings in serum medium. The investigation of the welding process in serum medium was conducted in order to propose the most suitable welding parameters being important for future possible medical applications of laser welding in in-vivo settings and thus to investigate the possibilities of the welding process inside the human body. In order to evaluate the quality of welding in air and of wet welding (in serum), a detailed parameter study has been conducted by variation of the laser energy, the welding speed and the focal position. The relationship between the depth of penetration and specific point energy (SPE) was also evaluated. The microstructure of the welded metal was examined by an optical microscope and scanning electron microscope (SEM). Based on the microscopy results, it was found that the largest depth of penetration (1380 µm) was achieved with 19 J laser energy in air medium, while the depth reached the largest value (1240 µm) in serum medium at 28 J laser energy. The increasing energy level showed opposite behavior for air and serum. The results of our study imply that when welding of 316L stainless steel is implemented properly in the body fluid, it would be a promising start for future in-vivo studies. Full article
Show Figures

Figure 1

20 pages, 5961 KiB  
Article
Tribological Properties of Solid Solution Strengthened Laser Cladded NiCrBSi/WC-12Co Metal Matrix Composite Coatings
by Zoran Bergant, Barbara Šetina Batič, Imre Felde, Roman Šturm and Marko Sedlaček
Materials 2022, 15(1), 342; https://doi.org/10.3390/ma15010342 - 4 Jan 2022
Cited by 27 | Viewed by 4139
Abstract
NiCrBSi, WC-12Co and NiCrBSi with 30, 40 and 50 wt.% WC-12Co coatings were produced on low carbon steel by laser cladding with an Nd:YAG laser with a multi-jet coaxial cladding-nozzle. The microstructure properties after WC-12Co alloying were investigated by scanning electron microscopy (SEM), [...] Read more.
NiCrBSi, WC-12Co and NiCrBSi with 30, 40 and 50 wt.% WC-12Co coatings were produced on low carbon steel by laser cladding with an Nd:YAG laser with a multi-jet coaxial cladding-nozzle. The microstructure properties after WC-12Co alloying were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and Vickers hardness tests. The resulting microstructures consisted of a γ-Ni and Ni3B matrix, strengthened with Co and W, Ni3Si, CrB, Cr7C3, Cr23C6, WC/W2C phases. In coatings with 30, 40 and 50 wt.% WC-12Co, a solid solution, strengthened multi-matrix NiCrWCo phase formed, which yielded a higher matrix hardness. Wear tests that monitored the friction coefficients were performed with a tribometer that contained a ball-on-disc configuration, Al2O3 counter-body and reciprocal sliding mode at room temperature. The major wear mode on the NiCrBSi coatings without the WC-12Co was adhesive with a high wear rate and visible material loss by flaking, delamination and micro-ploughing. The addition of WC-12Co to the NiCrBSi coating significantly increased the wear resistance and changed the major wear mechanism from adhesion to three-body abrasion and fatigue wear. Full article
(This article belongs to the Topic Metallurgical and Materials Engineering)
Show Figures

Figure 1

Back to TopTop