Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Nd-Fe-C alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3062 KiB  
Article
Nanosized Anisotropic Sm–Fe–N Particles with Metastable TbCu7-Type Structures Prepared by an Induction Thermal Plasma Process
by Yusuke Hirayama, Jian Wang, Masaya Shigeta, Shunsuke Tsurumi, Makoto Sugimoto, Zheng Liu, Kenta Takagi and Kimihiro Ozaki
Nanomaterials 2025, 15(13), 1045; https://doi.org/10.3390/nano15131045 - 5 Jul 2025
Viewed by 378
Abstract
TbCu7-type Sm-based compounds can be produced in bulk and potentially surpass Nd2Fe14B as permanent magnets. However, as the processes to prepare anisotropic magnetic particles are limited, the full potential of TbCu7-type Sm-based compounds cannot be [...] Read more.
TbCu7-type Sm-based compounds can be produced in bulk and potentially surpass Nd2Fe14B as permanent magnets. However, as the processes to prepare anisotropic magnetic particles are limited, the full potential of TbCu7-type Sm-based compounds cannot be exploited. In this study, metastable TbCu7-type phases of anisotropic Sm–Fe–N ultrafine particles were prepared using the low-oxygen induction thermal plasma (LO-ITP) process. X-ray diffraction analysis revealed that the obtained TbCu7-type Sm–Fe alloy nanoparticles exhibited a c/a value of 0.8419, with an Fe/Sm atomic ratio of ~8.5. After nitrogenation, the obtained Sm–Fe–N nanoparticles were aligned under an external magnetic field, indicating that each alloy particle exhibited anisotropic magnetic properties. A substantially high degree of alignment of 91 ± 2% was achieved, quantitatively estimated via pole figure measurements. Numerical analysis following Sm–Fe nanoparticle formation showed that, compared with Fe condensation, Sm condensation persisted even at low temperatures, because of a significant difference in vapor pressure between Sm and Fe. Though this led to a relatively large compositional distribution of Sm within particles with a Sm concentration of 9–12 at%, the preparation of single-phase TbCu7-type Sm–Fe–N particles could be facilitated by optimizing several parameters during the LO-ITP process. Full article
(This article belongs to the Special Issue New Insights into Plasma-Induced Synthesis of Nanomaterials)
Show Figures

Graphical abstract

19 pages, 2403 KiB  
Article
Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
by Ivo Yotov, Georgi Todorov, Todor Gavrilov and Todor Todorov
Energies 2025, 18(13), 3341; https://doi.org/10.3390/en18133341 - 25 Jun 2025
Viewed by 259
Abstract
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. [...] Read more.
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. The oscillation frequency is modified by two magnetic weights that are positioned symmetrically on the SMA thread and interact with stationary NdFeB permanent magnets. The SMA thread shifts laterally due to longitudinal thermal contraction and expansion induced by a constant-temperature heater. Temperature gradients above the heater trigger cyclical variations in the length of the SMA thread, leading to autonomous vibrations of the masses in both the vertical and horizontal planes. An experimental apparatus was constructed to analyze the harvester by tracking the motions of the masses and the voltages produced by the piezoelectric beams. Information was gathered regarding the correlation between output voltage and power with the consumer’s load resistance. These outcomes were confirmed using a multiphysics dynamic simulation that incorporated the interconnections among mechanical, thermal, magnetic, and electrical systems. The findings indicate that the use of permanent magnets increases the bending vibration frequency from 8.3 Hz to 9.2 Hz. For a heater maintained at 70 °C, this boosts the output power from 1.9 µW to 8.18 µW. A notable property of the considered energy harvester configuration is its ability to operate at cryogenic temperatures. Full article
Show Figures

Figure 1

25 pages, 11591 KiB  
Article
Production of Nd and Nd–Fe Alloys from NdCl3 by Calciothermic Reduction
by Joo-Won Yu, Yeon-Jun Chung and Jei-Pil Wang
Materials 2025, 18(5), 971; https://doi.org/10.3390/ma18050971 - 21 Feb 2025
Viewed by 642
Abstract
This study presents a metallothermic reduction mechanism for fabricating Nd and Nd–Fe alloys at 850–1050 °C using anhydrous NdCl3 and Ca, which have relatively low melting points. Our method decreased the process temperature while improving the recovery rate of Nd using the [...] Read more.
This study presents a metallothermic reduction mechanism for fabricating Nd and Nd–Fe alloys at 850–1050 °C using anhydrous NdCl3 and Ca, which have relatively low melting points. Our method decreased the process temperature while improving the recovery rate of Nd using the thermodynamic parameters of the CaCl2–KCl–NaCl and Nd–Fe liquid solutions. To reduce the activity of the product (CaCl2), the optimal composition of the CaCl2–KCl–NaCl molten salt was XCaCl2=0.4 (XKCl:XNaCl=6:4). The molten metal bath (Nd or Nd–Fe) that formed at the bottom of the reaction zone during Nd and Nd–Fe alloy production absorbed metal particles generated in the molten salt during the reaction, thereby facilitating ingot formation. In Nd produced at 1050 °C using 1.2× the stoichiometric amount (by mass) of Ca, the Nd recovery rate was 97.0%. Moreover, in the Nd–Fe alloys produced at 1050 °C targeting eutectic compositions, the Nd recovery rate was 96.3%. Increased Fe contents in the Nd–Fe liquid solution reduced the Nd recovery rates, and the Nd–Fe alloy (Nd recovery rate: 89.8%) was produced at 850 °C, suggesting the possibility of increasing the energy efficiency of the Nd production process. The Nd–Fe alloy produced through this proposed process could be used as a raw material in the NdFeB strip casting process. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 26169 KiB  
Article
Effect on Microstructure and Magnetic Properties of Nd-Fe-B Magnets Through Grain Boundary Diffusion of Tb and Multi-Component Alloys
by Fei Wang, Mei Wang, Wei-Ming Liu, Peng-Fei Wang, Qian Wang, Yu-Meng Zhang, Zhao-Pu Xu, Wei Li and Xin-De Zhu
Materials 2025, 18(4), 736; https://doi.org/10.3390/ma18040736 - 7 Feb 2025
Viewed by 1098
Abstract
In this study, commercial Nd-Fe-B magnets were utilized as starting materials to investigate the impact of various Tb-containing diffusion sources on the magnetic properties. Tb, Tb60Nd5Al30Ga5, and Tb65Pr10Nd5Al5 [...] Read more.
In this study, commercial Nd-Fe-B magnets were utilized as starting materials to investigate the impact of various Tb-containing diffusion sources on the magnetic properties. Tb, Tb60Nd5Al30Ga5, and Tb65Pr10Nd5Al5Cu10Ga5 were developed as diffusion sources. After grain boundary diffusion treatment, the magnetic parameters of the magnets were evaluated at 20 °C, 90 °C, and 140 °C. The composition, microstructure, and elemental distributions of the magnets before and after diffusion were examined. It was found that the inherent coercivity of the magnets showed a dramatic increment of 49.4% at 20 °C after diffusion with Tb-containing alloys. The benefits and drawbacks of the designed diffusion sources were thoroughly discussed. Magnets diffused with the Tb65Pr10Nd5Al5Cu10Ga5 source displayed the highest overall performance, generating a thin layer with a grid-like structure at the grain boundaries and a consistent shell structure of Tb around the main phase grains. This work offers a promising alternative in the optimization of Nd-Fe-B magnets. Full article
(This article belongs to the Special Issue Liquid Structures and Solidification Processes of Metals)
Show Figures

Figure 1

11 pages, 4274 KiB  
Article
Revisiting Rare Earth Permanent Magnetic Alloys of Nd-Fe-C
by Jianing Fan, Bang Zhou, Hongya Yu and Zhongwu Liu
Metals 2024, 14(10), 1115; https://doi.org/10.3390/met14101115 - 30 Sep 2024
Viewed by 1023
Abstract
Nd-Fe-C alloys have been reported as hard magnetic materials with a potential higher coercivity than Nd-Fe-B alloys. However, it has been seldom studied since its intrinsic properties were investigated in the last century. Here, we revisited the structure, phase precipitation and magnetic properties [...] Read more.
Nd-Fe-C alloys have been reported as hard magnetic materials with a potential higher coercivity than Nd-Fe-B alloys. However, it has been seldom studied since its intrinsic properties were investigated in the last century. Here, we revisited the structure, phase precipitation and magnetic properties of rapidly quenched ternary Nd-Fe-C alloys for further understanding their composition-microstructure-property relationships. The Nd10+xFe84−xC6 (x = −2, 0, 2, 3, 4, 5) alloys with various compositions were prepared by melt spinning. The results show that the hard magnetic Nd2Fe14C phase can be hardly formed in the as-spun alloys. Instead, the alloys are composed of soft magnetic α-Fe phase and planar anisotropic Nd2Fe17Cx phase. After annealing above 650 °C, the Nd2Fe14C phase is precipitated by the peritectoid reaction. All optimally annealed alloys contain Nd2Fe14C and Nd2Fe17Cx phases, while the presence and content of α-Fe phase are determined by the alloy composition. The crystallization degree of the as-spun alloys has an effect on their magnetic properties after annealing. After the annealing treatment, partly crystallized as-spun alloys exhibit better magnetic properties than the amorphous alloys. The intrinsic coercivity Hcj = 847 kA/m, remanence Jr = 0.69 T, and maximum energy product (BH)max = 64.3 kJ/m3 were obtained in the Nd14Fe80C6 alloy annealed at 725 °C. The formation of the Nd2Fe14C and Nd2Fe17Cx phases with the Nd2O3 phase precipitated at the triangular grain boundaries is responsible for its relatively good properties. Although the magnetic properties of Nd-Fe-C alloys obtained in this work are inferior to those of Nd-Fe-B, the present results help us to further understand the magnetic behavior of Nd-Fe-C alloys. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Graphical abstract

10 pages, 2368 KiB  
Article
Effect of Intermediate Annealing on Microstructure and Cold Rolling Hardness of AlFeMn Alloy
by Yanfeng Pan, Yifu Shen and Lingyong Cao
Metals 2024, 14(7), 785; https://doi.org/10.3390/met14070785 - 4 Jul 2024
Viewed by 1188
Abstract
The microstructure and texture of an AlFeMn alloy were studied under different intermediate annealing processes, and the changes in microhardness during cold rolling were analyzed. After annealing at 420 °C with a slow heating rate, the alloy showed a high number of small [...] Read more.
The microstructure and texture of an AlFeMn alloy were studied under different intermediate annealing processes, and the changes in microhardness during cold rolling were analyzed. After annealing at 420 °C with a slow heating rate, the alloy showed a high number of small dispersed particles and recrystallization textures dominated by R texture, with deformation textures of 23.5%. Annealing at 610 °C with a rapid heating rate resulted in a significant decrease in the number of small-sized particles and an increase in recrystallization texture contents, with CubeND being the majority. The deformation texture contents decreased to 14.9%. The electrical conductivity of the 420 °C annealed sheet was higher than before annealing, whereas the sheet annealed at 610 °C showed a decrease in electrical conductivity after annealing. This indicated that annealing at 610 °C led to a higher degree of recrystallization and the development of Cube/CubeND due to the dissolution of dispersed particles. During the subsequent cold rolling process, the microhardness of both annealed sheets initially increased and then decreased. However, the microhardness of the 420 °C annealed sheet with varying cold rolling reductions consistently remained lower than that of the 610 °C annealed sheet, as was the cold rolling reduction corresponding to the peak microhardness. The results showed that the precipitation at 420 °C facilitated work softening, while the dissolution at 610 °C promoted work hardening. Full article
Show Figures

Figure 1

15 pages, 8013 KiB  
Article
Efficient Design of Broadband and Low-Profile Multilayer Absorbing Materials on Cobalt–Iron Magnetic Alloy Doped with Rare Earth Element
by Sixing Liu, Yilin Zhang, Hao Wang, Fan Wu, Shifei Tao and Yujing Zhang
Nanomaterials 2024, 14(13), 1107; https://doi.org/10.3390/nano14131107 - 27 Jun 2024
Cited by 2 | Viewed by 1665
Abstract
Magnetic metal absorbing materials have exhibited excellent absorptance performance. However, their applications are still limited in terms of light weight, low thickness and wide absorption bandwidth. To address this challenge, we design a broadband and low-profile multilayer absorber using cobalt–iron (CoFe) alloys doped [...] Read more.
Magnetic metal absorbing materials have exhibited excellent absorptance performance. However, their applications are still limited in terms of light weight, low thickness and wide absorption bandwidth. To address this challenge, we design a broadband and low-profile multilayer absorber using cobalt–iron (CoFe) alloys doped with rare earth elements (REEs) lanthanum (La) and Neodymium (Nd). An improved estimation of distribution algorithm (IEDA) is employed in conjunction with a mathematical model of multilayer absorbing materials (MAMs) to optimize both the relative bandwidth with reflection loss (RL) below −10 dB and the thickness. Firstly, the absorption performance of CoFe alloys doped with La/Nd with different contents is analysed. Subsequently, IEDA is introduced based on a mathematical model to achieve an optimal MAM design that obtains a balance between absorption bandwidth and thickness. To validate the feasibility of our proposed method, a triple-layer MAM is designed and optimized to exhibit wide absorption bandwidth covering C, X, and Ku bands (6.16–12.82 GHz) and a total thickness of 2.39 mm. Then, the electromagnetic (EM) absorption mechanisms of the triple-layer MAMs are systematically investigated. Finally, the triple-layer sample is further fabricated and measured. The experimental result is in good agreement with the simulated result. This paper presents a rapid and efficient optimization method for designing MAMs, offering promising prospects in microwave applications, such as radar-stealth technology, EM shielding, and reduced EM pollution for electronic devices. Full article
(This article belongs to the Special Issue Recent Progress in Rare-Earth Functional Nanomaterials)
Show Figures

Figure 1

13 pages, 7039 KiB  
Article
Structure and Properties of WC-Fe-Ni-Co Nanopowder Composites for Use in Additive Manufacturing Technologies
by Maksim Krinitcyn, Natalia V. Svarovskaya, Nikolay Rodkevich, Egor Ryumin and Marat Lerner
Metals 2024, 14(2), 167; https://doi.org/10.3390/met14020167 - 29 Jan 2024
Cited by 2 | Viewed by 1788
Abstract
In this work, the samples of the WC-Fe-Ni-Co composition were obtained and studied. Alloy NiCo 29-18 is used as a binder (Fe-Ni-Co). In this paper, a comparative analysis of the samples obtained using commercial micron-sized WC powder and the samples obtained is carried [...] Read more.
In this work, the samples of the WC-Fe-Ni-Co composition were obtained and studied. Alloy NiCo 29-18 is used as a binder (Fe-Ni-Co). In this paper, a comparative analysis of the samples obtained using commercial micron-sized WC powder and the samples obtained is carried out using nano-WC synthesized via the electric explosion of wire (EEW) method. The samples were subjected to vacuum sintering, then their structure, density, and porosity, as well as microhardness and oxidation resistance, were studied. Five different additives were used to stabilize sintering: VC, Cr3C2, NbC, Y2O3, and Nd2O3. All these additives are described in the literature as additives that are used in the sintering of materials of the WC-Co system. Also, the samples from the WC-Fe-Ni-Co material were obtained using additive manufacturing technology with material extrusion. Bending strength and hardness of the additively fabricated samples were determined. Full article
(This article belongs to the Special Issue Intermetallic-Based Materials and Composites)
Show Figures

Figure 1

22 pages, 9321 KiB  
Article
New Minerals from Inclusions in Corundum Xenocrysts from Mt. Carmel, Israel: Magnéliite, Ziroite, Sassite, Mizraite-(Ce) and Yeite
by Chi Ma, Fernando Cámara, Luca Bindi, Vered Toledo and William L. Griffin
Materials 2023, 16(24), 7578; https://doi.org/10.3390/ma16247578 - 9 Dec 2023
Cited by 7 | Viewed by 1917
Abstract
Our nanomineralogical investigation of melt inclusions in corundum xenocrysts from the Mt. Carmel area, Israel has revealed seven IMA-approved new minerals since 2021. We report here four new oxide minerals and one new alloy mineral. Magnéliite (Ti3+2Ti4+2O [...] Read more.
Our nanomineralogical investigation of melt inclusions in corundum xenocrysts from the Mt. Carmel area, Israel has revealed seven IMA-approved new minerals since 2021. We report here four new oxide minerals and one new alloy mineral. Magnéliite (Ti3+2Ti4+2O7; IMA 2021-111) occurs as subhedral crystals, ~4 μm in size, with alabandite, zirconolite, Ti,Al,Zr-oxide, and hibonite in corundum Grain 767-1. Magnéliite has an empirical formula (Ti3+1.66Al0.13Ti4+0.15Mg0.10Ca0.01Sc0.01)Σ2.06 (Ti4+1.93Zr0.08)Σ2.01O7 and the triclinic P1¯ Ti4O7-type structure with the cell parameters: a = 5.60(1) Å, b = 7.13(1) Å, c = 12.47(1) Å, α = 95.1(1)°, β = 95.2(1)°, γ = 108.7(1)°, V = 466(2) Å3, Z = 4. Ziroite (ZrO2; IMA 2022-013) occurs as irregular crystals, ~1–4 μm in size, with baddeleyite, hibonite, and Ti,Al,Zr-oxide in corundum Grain 479-1a. Ziroite has an empirical formula (Zr0.72Ti4+0.26Mg0.02Al0.02Hf0.01)Σ1.03O2 and the tetragonal P42/nmc zirconia(HT)-type structure with the cell parameters: a = 3.60(1) Å, c = 5.18(1) Å, V = 67.1(3) Å3, Z = 2. Sassite (Ti3+2Ti4+O5; IMA 2022-014) occurs as subhedral-euhedral crystals, ~4–16 μm in size, with Ti,Al,Zr-oxide, mullite, osbornite, baddeleyite, alabandite, and glass in corundum Grain 1125C1. Sassite has an empirical formula (Ti3+1.35Al0.49Ti4+0.08Mg0.07)Σ1.99(Ti4+0.93Zr0.06Si0.01)Σ1.00O5 and the orthorhombic Cmcm pseudobrookite-type structure with the cell parameters: a = 3.80(1) Å, b = 9.85(1) Å, c = 9.99(1) Å, V = 374(1) Å3, Z = 4. Mizraite-(Ce) (Ce(Al11Mg)O19; IMA 2022-027) occurs as euhedral crystals, <1–14 μm in size, with Ce-silicate, Ti-sulfide, Ti,Al,Zr-oxide, ziroite, and thorianite in corundum Grain 198-8. Mizraite-(Ce) has an empirical formula (Ce0.76Ca0.10La0.07Nd0.01)Σ0.94(Al10.43Mg0.84Ti3+0.60Si0.09Zr0.04)Σ12.00O19 and the hexagonal P63/mmc magnetoplumbite-type structure with the cell parameters: a = 5.61(1) Å, c = 22.29(1) Å, V = 608(2) Å3, Z = 2. Yeite (TiSi; IMA 2022-079) occurs as irregular-subhedral crystals, 1.2–3.5 μm in size, along with wenjiite (Ti5Si3) and zhiqinite (TiSi2) in Ti-Si alloy inclusions in corundum Grain 198c. Yeite has an empirical formula (Ti0.995Mn0.003V0.001Cr0.001)(Si0.996P0.004) and the orthorhombic Pnma FeB-type structure with the cell parameters: a = 6.55(1) Å, b = 3.64(1) Å, c = 4.99(1) Å, V = 119.0(4) Å3, Z = 4. The five minerals are high-temperature oxide or alloy phases, formed in melt pockets in corundum xenocrysts derived from the upper mantle beneath Mt. Carmel. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

12 pages, 4351 KiB  
Article
Production and Characterization of Nanostructured Powders of Nd2Fe14B and Fe90Al10 by Mechanical Alloying
by Alvaro Javier Gómez Rodríguez, Dagoberto Oyola Lozano, Humberto Bustos Rodríguez, Yebrail Rojas Martínez, German Antonio Pérez Alcázar, Ligia Edith Zamora Alfonso and Juan Sebastian Trujillo Hernandez
Molecules 2022, 27(21), 7190; https://doi.org/10.3390/molecules27217190 - 24 Oct 2022
Cited by 1 | Viewed by 1895
Abstract
The objective of this work is to evaluate the applicability of exchange coupling between nanoparticles of Nd2Fe14B (hard magnetic material) and Fe90Al10 (soft magnetic material), as permanent magnets produced by surfactant-assisted mechanical alloying. The obtained powders [...] Read more.
The objective of this work is to evaluate the applicability of exchange coupling between nanoparticles of Nd2Fe14B (hard magnetic material) and Fe90Al10 (soft magnetic material), as permanent magnets produced by surfactant-assisted mechanical alloying. The obtained powders were then mixed with 85% of the Nd2Fe14B system and 15% of the Fe90Al10 system and subsequently sintered at 300 °C, 400 °C and 500 °C for one hour. The results obtained by Mössbauer spectrometry (MS) show a ferromagnetic behavior with six magnetic sites represented by sextets (16k1, 16k2, 8j1, 8j2, 4c and 4e), characteristic of the Nd2Fe14B system. X-ray diffraction (XRD) results show a tetragonal and BCC structure for the Nd2Fe14B and FeAl systems, respectively. The results obtained by vibrating sample magnetometry (VSM), for mixtures of the Nd2Fe14B and Fe90Al10 sy stems sintered at 300 °C, 400 °C and 500 °C, allow for the conclusion that the coercive field (Hc) decreases drastically with temperature and the percentage of soft phase at values of Hc = 132 Oe compared to the coercive field values reported for Nd2Fe14B Hc = 6883 Oe, respectively. Images obtained by transmission electron microscopy (TEM), for the Fe90Al10 system, show a tendency for the nanoparticles to agglomerate. Full article
Show Figures

Figure 1

18 pages, 24231 KiB  
Article
Microstructure and Properties of Microwave-Sintered Nd2Fe14Bp/2024 Aluminum-Alloy–Co Composites
by Tao Qin, Guirong Li, Hongming Wang, Wenxue Su, Chao Dong and Jincheng Yu
Crystals 2022, 12(10), 1493; https://doi.org/10.3390/cryst12101493 - 20 Oct 2022
Cited by 1 | Viewed by 1791
Abstract
This study aimed at the preparation of a 2024 aluminum alloy (2024Al) matrix composite with high strength, high toughness and high magnetic properties that can be used in practical applications. Therefore, Nd2Fe14Bp/2024Al–Co composites with different Co contents [...] Read more.
This study aimed at the preparation of a 2024 aluminum alloy (2024Al) matrix composite with high strength, high toughness and high magnetic properties that can be used in practical applications. Therefore, Nd2Fe14Bp/2024Al–Co composites with different Co contents (wt.%) were prepared by ball milling, cold isostatic pressing and microwave sintering. The effects of the Co content on the microstructure, mechanical properties and magnetic properties of the prepared composites were studied. Under the conditions of the sintering temperature of 490 °C, heating rate of 20 min/°C and soaking time of 30 min, it was found that with the increase in Co content (0→2.5%→5%→7.5%→10%), the grain size first decreased and then increased, and reached the optimal value of about 3–5 μm when the Co content was 7.5%, with the microstructure being relatively uniform. At the same time, the compactness of the composite arrived at a maximum of 95.4%. The main particle phases in the composite were Nd2Fe14B, Nd2 (Fe, Co)14B and Co particles. In the nanoindentation test, the interface strength of the 7.5% Co sample was significantly higher than that of the Co-free sample. In addition, the microhardness, yield strength and compressive strength of the 7.5% Co sample were 152 HV, 210 MPa and 269 MPa, respectively, which increased by 67%, 78% and 75%, respectively, compared with the Co-free sample. With the increase in Co content, the remanence (Br), coercivity (Hcj) and maximum magnetic energy product ((BH) max) of the composites first increased and then decreased. When the Co content was 7.5%, the three performance indicators reached their optimum values, which were Br: 0.20 (T), Hcj: 4.6 (kOe) and (BH)max: 28.36 (kJ/m3). The expected goal of the lightweight magnetic materials was achieved, and the action mechanism of Co addition in the composites was also analyzed in detail. Full article
(This article belongs to the Special Issue Progress in Light Alloys)
Show Figures

Figure 1

27 pages, 5259 KiB  
Review
Improved In Vitro and In Vivo Corrosion Resistance of Mg and Mg Alloys by Plasma Ion Implantation and Deposition Techniques—A Mini-Review
by MOHAMMED-IBRAHIM Jamesh
Lubricants 2022, 10(10), 255; https://doi.org/10.3390/lubricants10100255 - 13 Oct 2022
Cited by 8 | Viewed by 2410
Abstract
Enhanced in vitro corrosion resistance, cytocompatibility, in vitro antibacterial activities, in vivo antibacterial activities, in vivo corrosion resistance and in vivo stimulation of bone formation on plasma-modified biodegradable Mg and its alloys are reviewed, where the plasma modification includes plasma ion implantation (PII), [...] Read more.
Enhanced in vitro corrosion resistance, cytocompatibility, in vitro antibacterial activities, in vivo antibacterial activities, in vivo corrosion resistance and in vivo stimulation of bone formation on plasma-modified biodegradable Mg and its alloys are reviewed, where the plasma modification includes plasma ion implantation (PII), plasma immersion ion implantation (PIII), or plasma immersion ion implantation and deposition (PIII&D) techniques. PII, PIII, and PIII&D are useful surface modification techniques, which can alter the surface properties of the biomaterials while preventing the bulk properties, which is much desirable factor especially for Mg based biomaterials. At first, this paper reviews the improved corrosion resistance by the formation of protective passive surface layer containing Zr-O, Zr-N, N, Si, Al-O, Zn-Al, Cr-O, Ti-O, Ti-N, Fe, Y, Sr, P, Pr, Ce, Nd, Hf, Ta, or C on Mg or its alloys using PII, PIII, or PIII&D techniques. Then, this paper reviews the improved biological properties such as cytocompatibility, in vitro antibacterial activities, and in vivo antibacterial activities on plasma-modified Mg or its alloys. Finally, this paper reviews the improved in vivo corrosion resistance and in vivo stimulation of bone formation on plasma modified Mg alloys. This review suggests that PII, PIII, and PIII&D techniques are effective techniques to improve the in vitro and in vivo corrosion resistance of Mg and its alloys for the development of degradable bio-implants. Full article
(This article belongs to the Special Issue Corrosion and Tribocorrosion Behavior of Metals and Alloys)
Show Figures

Figure 1

13 pages, 4482 KiB  
Article
Microstructural Transformation and High-Temperature Aluminum Corrosion Properties of Co-Based Alloy Coating Prepared by Laser Cladding
by Rui Liu, Mengyu Zhang, Jiacheng Yu, Qifan Yang and Shiyou Gao
Coatings 2022, 12(5), 603; https://doi.org/10.3390/coatings12050603 - 28 Apr 2022
Cited by 12 | Viewed by 2664
Abstract
A Co-based alloy coating was deposited on H13 steel substrate via pulsed Nd:YAG laser and the corrosion resistance to and mechanism of corrosion in molten aluminum were explored. The results showed that the coating was mainly composed of γ-Co dendrite and M23 [...] Read more.
A Co-based alloy coating was deposited on H13 steel substrate via pulsed Nd:YAG laser and the corrosion resistance to and mechanism of corrosion in molten aluminum were explored. The results showed that the coating was mainly composed of γ-Co dendrite and M23C6 precipitation. The average hardness in the cladding layer was 732.6 HV0.5, which was 3.55 times greater than that of the H13 substrate. During the molten aluminum corrosion test, the surface of the Co-based alloy coating was immersed for 4, 8, 16 and 24 h at 700 °C. The corrosion rate decreased with increases in aluminum erosion time. It was observed that there were two intermediate layers between the coating and the liquid Al, with (Co, Fe, Cr)2Al9 intermetallic compounds (IMCs) layer near the coating side and the (Fe, Cr)4Al13 and (Co, Fe, Cr)2Al5 intermetallic compounds (IMCs) layer near the Al solidification side. After 24 h of static corrosion, the Co-based alloy coating could still maintain its integrity to protect the substrate. Full article
Show Figures

Figure 1

5 pages, 1196 KiB  
Proceeding Paper
Sulphuric Acid Leaching of Spent Nickel Metal Hydride Car Batteries
by Elli Polychronopoulou, Paschalis Oustadakis, Petros Tsakiridis, Konstantinos Betsis and Anthimos Xenidis
Mater. Proc. 2021, 5(1), 126; https://doi.org/10.3390/materproc2021005126 - 12 Apr 2022
Viewed by 1901
Abstract
The treatment of spent nickel metal hydride batteries (NiMHs) of Lexus vehicles to recover nickel (Ni) and cobalt (Co) as well as rare earth elements (REEs) including La, Ce, Nd and Y was investigated. Co-extraction of Al, Fe, Cr and Cu has also [...] Read more.
The treatment of spent nickel metal hydride batteries (NiMHs) of Lexus vehicles to recover nickel (Ni) and cobalt (Co) as well as rare earth elements (REEs) including La, Ce, Nd and Y was investigated. Co-extraction of Al, Fe, Cr and Cu has also been examined. Following batteries’ manual dismantling to remove metallic cases, outer plastics and current collectors, the remaining parts including cathodes of black coloured nickel (oxy)hydroxides, anodes consisting of a nickel-containing alloy (AB5 mischmetal type), and separators were simultaneously ground down to −5 mm using a hammer mill equipped with sieves. The fine (−1 mm) fraction of this product was further subjected to sulphuric acid leaching to recover the high-value elements contained. Acid consumption of 14 mol H2SO4 per kg of this fraction was found to be sufficient to decrease pH to less than 1. Leaching experiments were performed using 0.5, 1 and 2 M sulphuric acid solution at 5% pulp density and temperature 50, 75 or 95 °C. The optimum conditions for the extraction of all elements were 2M H2SO4 concentration and temperature of 75 °C with the exception of Ni extraction, which reached its highest value at 95 °C and 2M H2SO4 concentration. Extractions of 93.34% of Ni, 99.03% of Co and 100% of REEs were achieved at these conditions. Full article
(This article belongs to the Proceedings of International Conference on Raw Materials and Circular Economy)
Show Figures

Figure 1

12 pages, 2403 KiB  
Article
Structural, Magnetic and Mechanical Properties of Nd16 (Fe76−xCox)B8 0 ≤ x ≤ 25 Alloys
by Juan Sebastián Trujillo Hernández, Ahmed Talaat, Jesús Tabares, Dagoberto Oyola Lozano, Humberto Bustos Rodríguez, Hugo Martínez Sánchez and German Antonio Pérez Alcázar
Appl. Sci. 2020, 10(16), 5656; https://doi.org/10.3390/app10165656 - 14 Aug 2020
Cited by 1 | Viewed by 2518
Abstract
In this work, the structural, magnetic and mechanical properties of Nd16Fe76−xCoxB8 alloys with a varying Co content of x = 0, 10, 20 and 25 were experimentally investigated by X-ray diffraction (XRD), Mössbauer spectrometry (MS) and [...] Read more.
In this work, the structural, magnetic and mechanical properties of Nd16Fe76−xCoxB8 alloys with a varying Co content of x = 0, 10, 20 and 25 were experimentally investigated by X-ray diffraction (XRD), Mössbauer spectrometry (MS) and vibrating sample magnetometry (VSM) at room temperature (RT), and microhardness tests were performed. The system presented hard Nd2Fe14B and the Nd1.1Fe4B4 phases for samples with x = 0; when the concentration increased to x = 20 and 25, the CoO phase appeared. All MS data showed ferromagnetic behavior (eight sextets: sites 16k1, 16k2, 8j1, 8j2, 4c, 4e, sb) associated with the hard and soft magnetic phases, and one paramagnetic component (doublet: site d) associated with the minority Nd1.1Fe4B4 phase, which was not identified by XRD. All samples were magnetically hard and presented hard magnetic behavior. The increase of Co content in these samples did not improve the hard magnetic properties but increased the critical temperature of the system and decreased the crystallite size of the hard phase. There was a general tendency towards increased microhardness with cobalt content that was attributable to cobalt doping, which reduces the lattice parameters and porosities within the sample, improving its hardness. Full article
Show Figures

Figure 1

Back to TopTop