Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = Nanobody®

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6852 KiB  
Article
A Novel Anti-BoNT/A Neutralizing Antibody Possessed Overlapped Epitope with SV2 and Had Prolonged Half-Life In Vivo
by Shangde Peng, Naijing Hu, Fenghao Peng, Huirong Mu, Zihan Yi, Cong Xing, Liang Zhang, Wen Hu, Xinyi Zhou, Yan Wen, Jiannan Feng and Chunxia Qiao
Toxins 2025, 17(8), 376; https://doi.org/10.3390/toxins17080376 - 29 Jul 2025
Viewed by 313
Abstract
The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM. To extend its in vivo half-life, we designed [...] Read more.
The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM. To extend its in vivo half-life, we designed and prepared two Fc-optimized nanoparticles, HM-Fc5 and HM-Fc6. Structural modeling (homology/docking) of the HM Fv-AHC complex predicted that HM engages key AHC residues (Tyr1155, Phe1160, Ile1161, Val1184, Asn1188, Lys1189, Glu1190), which overlap with the SV2 binding site. This suggests HM’s protective mechanism involves blocking toxin-receptor binding and cellular entry. HM-Fc5 and HM-Fc6 retained the stability and function of the parental HM antibody while exhibiting prolonged in vivo half-life. These optimized nanobodies offer economical candidates potentially enabling longer dosing intervals, beneficial for prophylaxis or chronic disease treatment. Significance Statement: The purpose of the study is to design and prepare two Fc optimized nanoparticles, HM-Fc5 and HM-Fc6, and predict the key residues involved in the interaction between HMs and AHC. The experimental results showed that HM-Fc5 and HM-Fc6 have the same stability as the parent HM antibody but have a longer half-life in vivo. The key residues Tyr1155, Phe1160, Ile1161, Val1184, Asn1188, Lys1189, and Glu1190 overlap with the SV2 binding site. Our experimental results indicate that these nanobody candidates are not only more economical and convenient, but may also have longer dosing intervals, providing strong evidence and reference for prolonging the in vivo half-life of nanomaterials. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

21 pages, 471 KiB  
Review
Role and Contribution of Serological Surveillance in Animals and Exposed Humans to the Study of Zoonotic Influenza Disease Epidemiology: A Scoping Review
by Rebecca Badra, Wenqing Zhang, John S. L. Tam, Richard Webby, Sylvie van der Werf, Sergejs Nikisins, Ann Cullinane, Saad Gharaibeh, Richard Njouom, Malik Peiris, Ghazi Kayali and Jean-Michel Heraud
Pathogens 2025, 14(8), 739; https://doi.org/10.3390/pathogens14080739 - 27 Jul 2025
Viewed by 477
Abstract
Background: Zoonotic influenza viruses pose a significant and evolving public health threat. In response to the recent rise in H5N1 cross-species transmission, the World Health Organization (WHO) R&D Blueprint for Epidemics consultations have prioritized strengthening surveillance, candidate vaccines, diagnostics, and pandemic preparedness. Serological [...] Read more.
Background: Zoonotic influenza viruses pose a significant and evolving public health threat. In response to the recent rise in H5N1 cross-species transmission, the World Health Organization (WHO) R&D Blueprint for Epidemics consultations have prioritized strengthening surveillance, candidate vaccines, diagnostics, and pandemic preparedness. Serological surveillance plays a pivotal role by providing insights into the prevalence and transmission dynamics of influenza viruses. Objective: This scoping review aimed to map the global research landscape on serological surveillance of zoonotic influenza in animals and exposed humans between 2017, the date of the last WHO public health research agenda for influenza review, and 2024, as well as to identify methodological advancements. Methods: Following PRISMA-ScR guidelines, we searched PubMed for English-language peer-reviewed articles published between January 2017 and March 2024. Studies were included if they reported serological surveillance in wild or domestic animals or occupationally exposed human populations, or novel methodologies and their technical limitations and implementation challenges. Results: Out of 7490 screened records, 90 studies from 33 countries, covering 25 animal species, were included. Seroprevalence studies were in domestic poultry and swine. Surveillance in companion animals, wild mammals, and at the human–animal interface was limited. Emerging serological methods included multiplex and nanobody-based assays, though implementation barriers remain. Conclusions: The review is limited by its restriction to one database and English-language articles, lack of quality appraisal, and significant heterogeneity among the included studies. Serological surveillance is a critical but underutilized tool in zoonotic influenza monitoring. Greater integration of serological surveillance into One Health frameworks, especially in high-risk regions and populations, is needed to support early detection and pandemic preparedness. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

19 pages, 3401 KiB  
Article
Interleukin 21-Armed EGFR-VHH-CAR-T Cell Therapy for the Treatment of Esophageal Squamous Cell Carcinoma
by Chenglin Zhang, Yanyan Liu, Haoran Guo, Ying Peng, Lei Huang, Shuangshuang Lu and Zhimin Wang
Biomedicines 2025, 13(7), 1598; https://doi.org/10.3390/biomedicines13071598 - 30 Jun 2025
Viewed by 474
Abstract
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. [...] Read more.
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. There is an extremely urgent need to develop immunotherapy tools targeting EGFR for the treatment of ESCC. Methods: In this study, we developed human Interleukin-21 (hIL-21)-armed, chimeric-antigen-receptor-modified T (CAR-T) cells targeting EGFR as a new therapeutic approach. The CAR contains a variable domain of the llama heavy chain of heavy-chain antibodies (VHHs), also known as nanobodies (Nbs), as a promising substitute for the commonly used single-chain variable fragment (ScFv) for CAR-T development. Results: We show that nanobody-derived, EGFR-targeting CAR-T cells specifically kill EGFR-positive esophageal cancer cells in vitro and in animal models. Human IL-21 expression in CAR-T cells further improved their expansion and antitumor ability and were observed to secrete more interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and Interleukin-2 (IL-2) when co-cultured with ESCC cell lines in vitro. More CD8+ CAR-T cells and CD3+CD8+CD45RO+CD62L+ central memory T cells were detected in CAR-T cells expressing hIL-21 cells. Notably, hIL-21-expressing CAR-T cells showed superior antitumor activity in vivo in a KYSE-150 xenograft mouse model. Conclusions: Our results show that hIL-21-armed, nanobody-derived, EGFR-specific CAR-T cell therapy is a highly promising option for treating ESCC patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

12 pages, 1213 KiB  
Article
Synthesis and In Vitro Evaluation of a Scandium-44 Radiolabeled Nanobody as a PD-L1 PET Imaging Probe
by Viktoria E. Krol, Aditya Bansal, Manasa Kethamreddy, Jason R. Ellinghuysen, Daniel J. Vail, Fabrice Lucien-Matteoni, Haidong Dong, Sean S. Park and Mukesh K. Pandey
Pharmaceutics 2025, 17(6), 796; https://doi.org/10.3390/pharmaceutics17060796 - 19 Jun 2025
Viewed by 505
Abstract
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an [...] Read more.
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an attractive alternative for imaging than their full-length IgG counterpart. This work investigated the radiosynthesis and in vitro cell uptake of anti-PD-L1-B11-nanobody radiolabeled with 44Sc (t1/2 = 4.04 h) as an alternative to anti-PD-L1-B11-IgG, better suited for longer half-life radioisotopes such as 89Zr (t1/2 = 78.41 h). Methods: The proteins were conjugated with p-SCN-Bn-DTPA and radiolabeled at room temperature with 44Sc, achieving a radiochemical yield of a RCY of 94.8 ± 3.1% (n = 3) for [44Sc]Sc-B11-IgG and 73.6 ± 12.1% (n = 3) for [44Sc]Sc-B11-nanobody, before purification. Results: Significantly higher uptake in the PD-L1+ cells than PD-L1KO cells was observed for both probes. However, high non-specific uptake, particularly of the radiolabeled B11-nanobody, was also observed which may negatively impact its potential as a molecular imaging probe. Conclusions: Due to the high non-specific uptake in vitro, the 44Sc radiolabeled nanobody was not progressed to further in vivo evaluation. These results should, however, not discourage future evaluations of other nanobody based probes radiolabeled with 44Sc, due to their well-matched biological and physical half-life. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

14 pages, 832 KiB  
Review
Biological Mechanisms of Enterotoxigenic Bacteroides fragilis Toxin: Linking Inflammation, Colorectal Cancer, and Clinical Implications
by Seyedesomaye Jasemi, Paola Molicotti, Milena Fais, Ilaria Cossu, Elena Rita Simula and Leonardo A. Sechi
Toxins 2025, 17(6), 305; https://doi.org/10.3390/toxins17060305 - 16 Jun 2025
Viewed by 871
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) has emerged as a gut microbiome pathogen that can promote intestinal inflammation and contribute to colorectal cancer (CRC). Its principal virulence factor, the Bacteroides fragilis toxin (BFT), is a zinc-dependent metalloprotease that disrupts epithelial barrier integrity, initiates inflammatory signaling [...] Read more.
Enterotoxigenic Bacteroides fragilis (ETBF) has emerged as a gut microbiome pathogen that can promote intestinal inflammation and contribute to colorectal cancer (CRC). Its principal virulence factor, the Bacteroides fragilis toxin (BFT), is a zinc-dependent metalloprotease that disrupts epithelial barrier integrity, initiates inflammatory signaling pathways, and enhances epithelial proliferation. Although growing evidence supports a link between ETBF and CRC, some inconsistencies across studies highlight the need for further investigation into the molecular mechanisms underpinning BFT-mediated pathogenesis. This review examines the biological structure and activity of BFT, with a focus on its role in epithelial injury, inflammatory responses, and tumorigenesis. In addition, we discuss current challenges in the detection and characterization of ETBF and BFT, including technical limitations in clinical diagnostics and methodological variability across studies. Recent advances in multi-omics technologies, molecular diagnostics, nanobody-based detection platforms, and probiotic intervention are also highlighted as promising avenues for improving ETBF identification and therapeutic targeting. Future research integrating systematic molecular profiling with clinical data is essential to enhance diagnostic accuracy, elucidate pathophysiological mechanisms, and develop effective interventions against ETBF-associated diseases. Full article
Show Figures

Figure 1

22 pages, 2075 KiB  
Review
CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy
by Ainur Tolymbekova and Larissa Lezina
Int. J. Mol. Sci. 2025, 26(12), 5652; https://doi.org/10.3390/ijms26125652 - 12 Jun 2025
Viewed by 1491
Abstract
Despite the development of a wide plethora of different anticancer agents, most of them are not used for patient treatment due to adverse effects caused by untargeted cytotoxicity. To prevent this unwanted toxicity, it is necessary to develop therapies discriminating between healthy and [...] Read more.
Despite the development of a wide plethora of different anticancer agents, most of them are not used for patient treatment due to adverse effects caused by untargeted cytotoxicity. To prevent this unwanted toxicity, it is necessary to develop therapies discriminating between healthy and cancerous cells. One possible method is to target proteins overexpressed in cancer but not in normal cells. CD320 is a receptor responsible for the uptake of the transcobalamin-bound fraction of vitamin B12 (cobalamin), which is necessary for DNA synthesis, and thus, cell proliferation. CD320 was shown to be overexpressed in many cancers and its potential role as an early cancer biomarker was confirmed in several studies. Consequently, CD320 may represent a promising anti-cancer therapy target. This review summarizes the current advances and perspectives of anti-cancer CD320 targeting therapy, including therapeutic conjugates of vitamin B12, CD320-specific antibodies and nanobodies, nanoparticles loaded with cytotoxic drugs, porphyrin, and the potential of targeted CD320 therapy in attenuation of tumor tissues. Given the growing interest in CD320 as a novel target for anti-cancer therapy, further in vivo studies are required for the investigation of CD320 targeting effects on systemic cytotoxicity. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

26 pages, 1297 KiB  
Review
Research Progress on the Application of Neutralizing Nanobodies in the Prevention and Treatment of Viral Infections
by Qingling Duan, Tong Ai, Yingying Ma, Ruoyu Li, Hanlin Jin, Xingyi Chen, Rui Zhang, Kunlu Bao and Qi Chen
Microorganisms 2025, 13(6), 1352; https://doi.org/10.3390/microorganisms13061352 - 11 Jun 2025
Viewed by 728
Abstract
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and [...] Read more.
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and treatment strategies has become a strategic priority in the field of biomedicine. Neutralizing antibodies, as biological agents, are increasingly recognized for their potential in infectious disease control. Among these, nanobodies (Nbs) derived from camelid heavy-chain antibodies exhibit remarkable technical advantages due to their unique structural features. Compared to traditional neutralizing antibodies, nanobodies offer significant cost-effectiveness in production and enable versatile administration routes (e.g., subcutaneous injection, oral delivery, or aerosol inhalation), making them particularly suitable for respiratory infection control and resource-limited settings. Furthermore, engineered modification strategies—including multivalent constructs, multi-epitope recognition designs, and fragment crystallizable (Fc) domain fusion—effectively enhance their neutralizing activity and suppress viral immune escape mechanisms. Breakthroughs have been achieved in combating pathogens such as the Ebola virus and SARS-CoV-2, with mechanisms involving the blockade of virus–host interactions, induction of viral particle disintegration, and enhancement of immune responses. This review comprehensively discusses the structural characteristics, high-throughput screening technologies, and engineering strategies of nanobodies, providing theoretical foundations for the development of novel antiviral therapeutics. These advances hold strategic significance for addressing emerging and re-emerging infectious diseases. Full article
Show Figures

Figure 1

16 pages, 2991 KiB  
Article
Anti-Tumor Activities of Anti-Siglec-15 Chimeric Heavy-Chain Antibodies
by Kexuan Cheng, Jiazheng Guo, Yating Li, Qinglin Kang, Rong Wang, Longlong Luo, Wei Wang and Jiansheng Lu
Int. J. Mol. Sci. 2025, 26(11), 5068; https://doi.org/10.3390/ijms26115068 - 24 May 2025
Viewed by 722
Abstract
Immune checkpoint inhibitors like programmed cell death 1 (PD-1) antibodies have revolutionized cancer treatment, but patient response rates remain limited. Sialic acid-binding Ig-like lectin 15 (Siglec-15) has emerged as a promising new immune checkpoint target. Through phage display technology using a Bactrian camel [...] Read more.
Immune checkpoint inhibitors like programmed cell death 1 (PD-1) antibodies have revolutionized cancer treatment, but patient response rates remain limited. Sialic acid-binding Ig-like lectin 15 (Siglec-15) has emerged as a promising new immune checkpoint target. Through phage display technology using a Bactrian camel immunized with recombinant human Siglec-15, we generated six anti-Siglec-15 camelid nanobodies and constructed chimeric heavy-chain antibodies by fusing the VHH domains with human IgG-Fc. Following expression in HEK293-F cells and purification, three antibodies (S1, S5, S6) demonstrated specific binding to both human and murine Siglec-15 in ELISA and biolayer interferometry assays. In a xenograft model established by subcutaneous inoculation of NCI-H157-S15 cells into BALB/c nude mice, these antibodies showed distinct tumor targeting and significant blockade of Siglec-15 interactions with CD44, MAG, sialyl-Tn, and LRR4C ligands. All three antibodies exhibited anti-tumor effects, with S1 showing the most potent activity. S1-treated mice had significantly smaller tumor volumes and weights compared to controls. The S1, S5, and S6 treatment groups showed enhanced anti-tumor immunity, with reduced TGF-β, IL-6, and IL-10 levels. Notably, S1 treatment significantly increased tumor-associated macrophages in tumor tissues (p < 0.05). In conclusion, S1 exhibits remarkable anti-tumor activity and has the potential to be developed as a cancer immunotherapy targeting Siglec-15. Full article
(This article belongs to the Special Issue Immunomodulatory Molecules in Cancer)
Show Figures

Figure 1

16 pages, 1990 KiB  
Article
Neutralization of the Pandemic Influenza A/H1N1 Virus with Lama glama Humanized Nanobodies (VHH)
by Zeila Yazmín Páez-Hernández, Jose Luis Stephano-Hornedo, Jose Alberto Bolaños-Prats, Iván Córdova-Guerrero, Mariana Macías-Alonso, Joaquín G. Marrero, Angel Pulido Capiz and Victor García González
Antibodies 2025, 14(2), 42; https://doi.org/10.3390/antib14020042 - 16 May 2025
Viewed by 1087
Abstract
Background/Objetives: Nanobodies (VHH) have become an excellent tool for diagnosis, therapy, and research since VHH shows a high capability of recognizing and neutralizing antigens. VHHs are highly soluble and stable at high temperatures, and in the presence of chaotropic agents, they offer significant [...] Read more.
Background/Objetives: Nanobodies (VHH) have become an excellent tool for diagnosis, therapy, and research since VHH shows a high capability of recognizing and neutralizing antigens. VHHs are highly soluble and stable at high temperatures, and in the presence of chaotropic agents, they offer significant advantages over other biological therapeutic agents. This study aimed to identify and humanize VHH fragments with neutralizing potential against the influenza A/H1N1 virus. Methods: A library of VHH antibody fragments was produced by phage display technique against an inactivated influenza A/H1N1 vaccine. Three VHH sequences were selected and humanized. Specifically, the recognition capacity of the antibodies denominated 2-C10 and 2-C10H was confirmed by ELISA and western blot (WB), as well as their microneutralization capacity in a cellular model, suggesting their potential therapeutic use in patients infected with the influenza A/H1N1 virus. Molecular docking assays were used to support the mechanism of viral inhibition. Results: The VHHs 2-C10 and 2-C10H showed specific recognition of influenza A/H1N1 antigens by ELISA and Western Blot and demonstrated neutralizing activity in vitro. The optimal VHH, 2-C10H, showed 75% neutralization capacity at a concentration of 1.56 μg/mL against the A/H1N1 viral strain, potentially through the inactivation of hemagglutinin protein, a phenomenon supported by molecular docking assays. Conclusions: This study presents a strategic approach to identify VHH candidates that may be useful for diagnosing and potentially treating patients already infected by the A/H1N1 virus, as it may reduce the severity of their symptoms. Full article
Show Figures

Figure 1

40 pages, 3437 KiB  
Review
Nanobodies: From Discovery to AI-Driven Design
by Haoran Zhu and Yu Ding
Biology 2025, 14(5), 547; https://doi.org/10.3390/biology14050547 - 14 May 2025
Cited by 1 | Viewed by 2229
Abstract
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces [...] Read more.
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces the historical discovery of nanobodies, highlighting key milestones in their isolation, characterization, and therapeutic development. We then explore their structure–function relationship, emphasizing features like their single-domain architecture and long CDR3 loop that contribute to their binding versatility. Additionally, we examine the growing interest in multiepitope nanobodies, in which binding to different epitopes on the same antigen not only enhances neutralization and specificity but also allows these nanobodies to be used as controllable modules for precise antigen manipulation. This review also discusses the integration of AI in nanobody design and optimization, showcasing how machine learning and deep learning approaches are revolutionizing rational design, humanization, and affinity maturation processes. With continued advancements in structural biology and computational design, nanobodies are poised to play an increasingly vital role in addressing both existing and emerging biomedical challenges. Full article
Show Figures

Figure 1

13 pages, 1960 KiB  
Article
Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus
by Jinny L. Liu, Gabrielle C. Bayacal, Jerome Anthony E. Alvarez, Lisa C. Shriver-Lake, Ellen R. Goldman and Scott N. Dean
Antibodies 2025, 14(2), 41; https://doi.org/10.3390/antib14020041 - 14 May 2025
Viewed by 908
Abstract
Background/Objectives: Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic [...] Read more.
Background/Objectives: Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic epitopes. Methods: This research describes the development and preliminary evaluation of VEEV-binding sdAbs generated using a generative artificial intelligence (AI) platform. Using a dataset of known alphavirus-binding sdAbs, the AI model produced sequences with predicted affinity for the E2 glycoprotein of VEEV. These candidate sdAbs were expressed in a bacterial periplasmic system and purified for initial assessment. Results: Enzyme-linked immunosorbent assays (ELISAs) indicated binding activity of the sdAbs to VEEV antigens. In vitro neutralization tests suggested inhibition of VEEV infection in cultured cells for some of the candidates. Conclusions: This study demonstrates how generative AI can expedite antiviral therapeutic development and establishes a framework for quick responses to emerging viral threats when extensive example databases are unavailable. Additional refinement and validation of AI-generated sdAbs could establish effective VEEV therapeutics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Graphical abstract

21 pages, 5290 KiB  
Article
Development of SNAP-Tag Based Nanobodies as Secondary Antibody Mimics for Indirect Immunofluorescence Assays
by Wenjie Sheng, Chaoyu Zhang, T. M. Mohiuddin, Marwah Al-Rawe, Roland Schmitz, Marcus Niebert, Lutz Konrad, Steffen Wagner, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Cells 2025, 14(10), 691; https://doi.org/10.3390/cells14100691 - 10 May 2025
Viewed by 2920
Abstract
The immunofluorescence assay is widely used for cellular biology and diagnosis applications. Such an antigen–antibody detection system enables the assessment and visualization of the expression and localization of target proteins. In the classical indirect immunofluorescence assay, secondary antibodies are conjugated to fluorophores. However, [...] Read more.
The immunofluorescence assay is widely used for cellular biology and diagnosis applications. Such an antigen–antibody detection system enables the assessment and visualization of the expression and localization of target proteins. In the classical indirect immunofluorescence assay, secondary antibodies are conjugated to fluorophores. However, conventional secondary antibodies have limited applications due to their large size (150 kDa). Moreover, as animal-derived products, secondary antibodies are associated with ethical concerns and batch-to-batch variability. In this study, we developed fluorescence-labeled recombinant nanobodies as secondary antibodies by utilizing previously established anti–mouse and anti–rabbit IgG secondary nanobodies in combination with the self-labeling SNAP-tag. Nanobodies, which are significantly smaller (15 kDa), are capable to detect primary antibodies produced in mice and rabbits. The SNAP-tag (20 kDa) enables site-specific binding of various O6-benzylguanine (BG)-modified fluorophores to the recombinant nanobodies. These recombinant nanobodies were produced using mammalian cell expression system, and their specific binding to mouse or rabbit antibodies was validated using flow cytometry and multi-color fluorescence microscopy. The low cost, easy of expression, purification and site-specific conjugation procedures for these anti–mouse and anti–rabbit IgG secondary nanobodies make them an attractive alternative to traditional secondary antibodies for indirect immunofluorescence assays. Full article
Show Figures

Figure 1

26 pages, 7008 KiB  
Article
Single-Domain Antibodies That Specifically Recognize Intact Capsids of Multiple Foot-and-Mouth Disease Serotype O Strains
by Michiel M. Harmsen, Nishi Gupta, Quillan Dijkstra, Sandra van de Water, Marga van Setten and Aldo Dekker
Vaccines 2025, 13(5), 500; https://doi.org/10.3390/vaccines13050500 - 8 May 2025
Viewed by 626
Abstract
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific [...] Read more.
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific VHHs that recognize all serotype O strains. Methods: Biopanning was performed with the FMDV strain O/SKR/7/2010 146S, using a secondary library of mutagenized M170F VHH that did not recognize O/SKR/7/2010 or using phage-display libraries from llamas immunized with other serotype O strains. Novel VHHs were yeast-produced and their strain-, particle-, and antigenic-site specificities were determined by ELISA. Results: M170F mutagenesis did not improve the cross-reaction with O/SKR/7/2010. However, selection from immune libraries resulted in four VHHs that exhibited high 146S specificity for all five serotype O strains analyzed. These VHHs presumably recognize all serotype O strains since the five strains analyzed represent different phylogenetic clades. They bind the same antigenic site as M170F, which was previously shown to be a conserved site in serotypes A and O, and which has an altered 3D structure when 146S dissociates into 12S particles. M916F had the lowest limit of detection, which varied from 0.7 to 5.9 ng/mL 146S particles for three serotype O strains. Conclusions: We identified four VHHs (M907F, M910F, M912F, and M916F) that specifically bind 146S particles of probably all serotype O strains. They enable further improved FMDV vaccine quality control. Full article
(This article belongs to the Special Issue Vaccine and Vaccination in Veterinary Medicine)
Show Figures

Figure 1

18 pages, 4678 KiB  
Article
Validation and Optimization of PURE Ribosome Display for Screening Synthetic Nanobody Libraries
by Bingying Liu and Daiwen Yang
Antibodies 2025, 14(2), 39; https://doi.org/10.3390/antib14020039 - 2 May 2025
Viewed by 1382
Abstract
Background/Objectives: PURE (Protein synthesis Using Recombinant Elements), an ideal system for ribosome display, has been successfully used for nanobody selection. However, its limitations in nanobody selection, especially for synthetic nanobody libraries, have not been clearly elucidated, thereby restricting its utilization. Methods: The PURE [...] Read more.
Background/Objectives: PURE (Protein synthesis Using Recombinant Elements), an ideal system for ribosome display, has been successfully used for nanobody selection. However, its limitations in nanobody selection, especially for synthetic nanobody libraries, have not been clearly elucidated, thereby restricting its utilization. Methods: The PURE ribosome display selection process was closely monitored using RNA agarose gel electrophoresis to assess the presence of mRNA molecules in each fraction, including the flow-through, washing, and elution fractions. Additionally, a real-time validation method for monitoring each biopanning round was implemented, ensuring the successful enrichment of target protein-specific binders. The selection process was further optimized by introducing a target protein elution step prior to the EDTA-mediated disassembly, as well as by altering the immobilization surfaces. Finally, the efficiency of PURE ribosome display was enhanced by replacing the spacer gene. Results: The efficiency of PURE ribosome display was merely 4% with an unfavourable spacer gene. Using this spacer gene, EGFP- and human fatty acid-binding protein 4-specific nanobodies from a synthetic nanobody library were we successfully identified through optimizing the selection process. Choosing a spacer gene less prone to secondary structure formation increased significantly its efficiency in displaying synthetic nanobody libraries. Conclusions: Implementing a target protein elution step prior to EDTA-mediated disassembly and modifying the immobilization surfaces effectively increase selection efficiency. For PURE ribosome display, efficiency was further improved using a suitable spacer gene, enabling the display of large libraries. Full article
Show Figures

Graphical abstract

23 pages, 714 KiB  
Review
Bispecific Antibodies, Nanobodies and Extracellular Vesicles: Present and Future to Cancer Target Therapy
by Asier Lizama-Muñoz and Julio Plaza-Diaz
Biomolecules 2025, 15(5), 639; https://doi.org/10.3390/biom15050639 - 29 Apr 2025
Viewed by 1429
Abstract
Cancer remains one of the leading causes of mortality worldwide, with a growing need for precise and effective treatments. Traditional therapies such as chemotherapy and radiotherapy have limitations, including off-target effects and drug resistance. In recent years, targeted therapies have emerged as promising [...] Read more.
Cancer remains one of the leading causes of mortality worldwide, with a growing need for precise and effective treatments. Traditional therapies such as chemotherapy and radiotherapy have limitations, including off-target effects and drug resistance. In recent years, targeted therapies have emerged as promising alternatives, aiming to improve treatment specificity and reduce systemic toxicity. Among the most innovative approaches, bispecific antibodies, nanobodies, and extracellular vesicles offer distinct and complementary mechanisms for cancer therapy. Bispecific antibodies enhance immune responses and enable dual-targeting of cancer cells, nanobodies provide superior tumor penetration due to their small size, and extracellular vesicles present a novel platform for drug and RNA delivery. This work aims to review and analyze these three approaches, assessing their current applications, advantages, challenges, and future perspectives. Full article
Show Figures

Figure 1

Back to TopTop