CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy
Abstract
1. Introduction
1.1. Vitamin B12 Metabolism
1.2. CD320 Gene and Receptor
1.3. CD320 Expression Is Cell-Cycle Associated
1.4. Cells Rely on the Expression of New CD320 Receptors
2. Potential Cancer Treatment Strategies Based on CD320 Targeting
2.1. VB12 Conjugates-Based Drug Delivery
2.1.1. VB12–Platinum Conjugates
2.1.2. VB12–Nitric Oxide Conjugates
2.1.3. VB12–Colchicine Conjugate
2.2. VB12 Conjugated Nanoparticles as a Drug Delivery System
2.2.1. VB12–Sericin Nanoparticle
2.2.2. PLGA-PEG-VB12 Nanoparticle
2.2.3. VB12 Conjugated with Stealth Liposome
2.3. CD320 Receptor Targeting Antibody and Nanobody Conjugates
2.3.1. Saporin-Conjugated Antibodies Against CD320
2.3.2. Saporin-Conjugated Nanobodies Against TC
2.4. Porphyrins as Potential Therapeutics Against Cancers with CD320 Overexpression
2.5. Knockdown of CD320 Using siRNA
3. Discussion
3.1. Biological Importance of CD320 and Future Directions
3.2. Limitations of Using CD320 as the Target for Cancer Treatment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VB12 | vitamin B12 |
Cbl | cobalamin |
MS | methionine synthase |
MCM | methylmalonylCoA mutase |
TCA cycle | tricarboxylic acid |
ATP | adenosine triphosphate |
MRP1 | multidrug resistance-associated protein 1 |
TCblR | transcobalamin II receptor |
LDLR | low-density lipoprotein receptor |
TC-VB12 | transcobalamin–vitamin B12 complex |
TC | transcobalamin |
MZF1 | Myeloid Zinc Finger 1 |
RREB1 | Ras-responsive element-binding protein 1 |
C/EBP | CCAAT-enhancer-binding proteins |
HNF-3beta | hepatocyte nuclear factor 3-beta |
AP-1 | activating protein-1 |
GFP | green fluorescent protein |
dsRed | red fluorescent protein |
NO | nitric oxide |
DR4 | death receptor |
PTX | paclitaxel |
SL | stealth liposome |
TCPP | 4-carboxyphenyl porphyrin |
PLGA | polylactic-co-glycolic acid |
PEG | polyethylene glycol |
HPMA | hydroxypropyl methacrylic acid |
ACC | adrenocortical carcinoma |
References
- Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 2004, 98, 1625–1633. [Google Scholar] [CrossRef]
- Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood 2009, 113, 186–192. [Google Scholar] [CrossRef]
- Alam, A.; Woo, J.S.; Schmitz, J.; Prinz, B.; Root, K.; Chen, F.; Bloch, J.S.; Zenobi, R.; Locher, K. Structural basis of transcobalamin recognition by human CD320 receptor. Nat. Commun. 2016, 7, 12100. [Google Scholar] [CrossRef]
- Bauer, J.A. Synthesis, characterization and nitric oxide release profile of nitrosylcobalamin. Anti-Cancer Drugs 1998, 9, 239–244. [Google Scholar] [CrossRef]
- Gupta, Y.; Ganesh, N.; Kohli, D.V.; Jain, S.K. Development and characterization of doxorubicin bearing vitamin B12 coupled sterically stabilized liposomes for tumor targeting. Curr. Nanosci. 2011, 7, 427–435. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, P.; König, C.; Ferrari, S.; Alberto, R. Vitamin B12 as a carrier for targeted platinum delivery: In vitro cytotoxicity and mechanistic studies. J. Biol. Inorg. Chem. 2011, 16, 33–44. [Google Scholar] [CrossRef]
- Lin, X.H.; Li, D.P.; Liu, Z.Y.; Zhang, S.; Tang, W.Q.; Chen, R.X.; Weng, S.Q.; Tseng, Y.J.; Xue, R.Y.; Dong, L. Six immune-related promising biomarkers may promote hepatocellular carcinoma prognosis: A bioinformatics analysis and experimental validation. Cancer Cell Int. 2023, 23, 52. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Wang, P.; Jiang, W.; Ding, W.; Zhong, L. TCBIR/CD320: A potential therapeutic target upregulated in endothelial cells and associated with immune cell infiltration in liver hepatocellular carcinoma. Discov. Oncol. 2024, 15, 255. [Google Scholar] [CrossRef]
- Quadros, E.V. Advances in the understanding of cobalamin assimilation and metabolism. Br. J. Haematol. 2010, 148, 195–204. [Google Scholar] [CrossRef]
- Smith, A.D.; Warren, M.J.; Refsum, H. Vitamin B12. Adv. Food Nutr. Res. 2018, 83, 215–279. [Google Scholar] [CrossRef]
- Nielsen, M.J.; Rasmussen, M.R.; Andersen, C.B.F.; Nexø, E.; Moestrup, S.K. Vitamin B12 transport from food to the body’s cells—A sophisticated, multistep pathway. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 345–354. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, X.; Zhang, Y.; Zhang, X.; Zhang, C.; Liu, M.; Sun, S.; Dong, N. CD320 expression and apical membrane targeting in renal and intestinal epithelial cells. Int. J. Biol. Macromol. 2022, 201, 85–92. [Google Scholar] [CrossRef]
- Quadros, E.V.; Sequeira, J.M. Cellular uptake of cobalamin: Transcobalamin and the TCblR/CD320 receptor. Biochimie 2013, 95, 1008–1018. [Google Scholar] [CrossRef]
- Stabler, S.P.; Allen, R.H. Vitamin B12 deficiency as a worldwide problem. Annu. Rev. Nutr. 2004, 24, 299–326. [Google Scholar] [CrossRef]
- Haghighat, G.; Khajeh-Mehrizi, A.; Ranjbar, H. Evaluation of serum vitamin B12 levels in patients with colon and breast cancer: A case-control study. Int. J. Hematol. Oncol. Stem Cell Res. 2023, 17, 240–244. [Google Scholar] [CrossRef]
- Sottotetti, F.; Malovini, A.; Maccarone, S.; Riva, G.; Tibollo, V.; Palumbo, R.; Tagliaferri, B.; Bellazzi, R.; Cena, H.; Di Sabatino, A.; et al. Vitamin B12 status in hospitalised cancer patients: Prevalence and clinical implications of depletion and hypervitaminosis. Clin. Nutr. ESPEN 2024, 63, 585–594. [Google Scholar] [CrossRef]
- Hall, C.A. Transcobalamins I and II as natural transport proteins of vitamin B12. J. Clin. Investig. 1975, 56, 1125–1131. [Google Scholar] [CrossRef]
- Burger, R.L.; Schneider, R.J.; Mehlman, C.S.; Allen, R.H. Human plasma R type vitamin B12 binding proteins. II. The role of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12 binding protein in the plasma transport of vitamin B12. J. Biol. Chem. 1975, 250, 7707–7713. [Google Scholar] [CrossRef]
- Rothenberg, S.P.; Weiss, J.P.; Cotter, R. Formation of transcobalamin II-vitamin B12 complex by guinea-pig ileal mucosa in organ culture after in vivo incubation with intrinsic factor- vitamin B12. Br. J. Haematol. 1978, 40, 401–414. [Google Scholar] [CrossRef]
- Jiang, W.; Nakayama, Y.; Sequeira, J.M.; Quadros, E.V. Mapping the functional domains of TCblR/CD320, the receptor for cellular uptake of transcobalamin-bound cobalamin. FASEB J. 2013, 27, 2988–2994. [Google Scholar] [CrossRef]
- Quadros, E.V.; Regec, A.L.; Khan, K.M.F.; Quadros, E.; Rothenberg, S.P. Transcobalamin II synthesized in the intestinal villi facilitates transfer of cobalamin to the portal blood. Am. J. Physiol. Gastrointest. Liver Physiol. 1999, 277, G161–G166. [Google Scholar] [CrossRef]
- Moestrup, S.K.; Birn, H.; Fischer, P.B.; Petersen, C.M.; Verroust, P.J.; Sim, R.B.; Christensen, E.I.; Nexø, E. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc. Natl. Acad. Sci. USA 1996, 93, 8612–8617. [Google Scholar] [CrossRef] [PubMed]
- Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. The binding properties of the human receptor for the cellular uptake of vitamin B12. Biochem. Biophys. Res. Commun. 2005, 327, 1006–1010. [Google Scholar] [CrossRef]
- Gick, G.G.; Arora, K.; Sequeira, J.M.; Nakayama, Y.; Lai, S.C.; Quadros, E.V. Cellular uptake of vitamin B12: Role and fate of TCblR/CD320, the transcobalamin receptor. Exp. Cell Res. 2020, 396, 112256. [Google Scholar] [CrossRef]
- Hall, C.A. The uptake of vitamin B12 by human lymphocytes and the relationships to the cell cycle. J. Lab. Clin. Med. 1984, 103, 70–81. [Google Scholar]
- Hall, C.A.; Colligan, P.D.; Begley, J.A. Cyclic activity of the receptors of cobalamin bound to transcobalamin II. J. Cell. Physiol. 1987, 133, 187–191. [Google Scholar] [CrossRef]
- Lindemans, J.; Kroes, A.C.M.; Geel, J.V.; Van Kapel, J.; Schoester, M.; Abels, J. Uptake of transcobalamin II-bound cobalamin by HL-60 cells: Effects of differentiation induction. Exp. Cell Res. 1989, 184, 449–460. [Google Scholar] [CrossRef]
- Amagasaki, T.; Green, R.; Jacobsen, D.W. Expression of transcobalamin II receptors by human leukemia K562 and HL-60 cells. Blood 1990, 76, 1380–1386. [Google Scholar] [CrossRef]
- Jiang, W.; Sequeira, J.M.; Nakayama, Y.; Lai, S.C.; Quadros, E.V. Characterization of the promoter region of TCblR/CD320 gene, the receptor for cellular uptake of transcobalamin-bound cobalamin. Gene 2010, 466, 49–55. [Google Scholar] [CrossRef]
- Takahashi, K.; Tavassoli, M.; Jacobsen, D.W. Receptor binding and internalization of immobilized transcobalamin II by mouse leukaemia cells. Nature 1980, 288, 713–715. [Google Scholar] [CrossRef]
- Pettenuzzo, A.; Pigot, R.; Ronconi, L. Vitamin B12–metal conjugates for targeted chemotherapy and diagnosis: Current status and future prospects. Eur. J. Inorg. Chem. 2016, 2017, 1625–1638. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, Z.; Mi, Z.; Tao, W.; Liu, D.; Fu, J.; Fan, H. Deciphering the heterogeneity and immunosuppressive function of regulatory T cells in osteosarcoma using single-cell RNA transcriptome. Comput. Biol. Med. 2023, 165, 107417. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef] [PubMed]
- Patriquin, L.; Merrick, D.T.; Hill, D.; Holcomb, R.G.; Lemieux, M.E.; Bennett, G.; Karia, B.; Rebel, V.I.; Bauer, T. Early detection of lung cancer with meso tetra (4-carboxyphenyl) porphyrin-labeled sputum. J. Thorac. Oncol. 2015, 10, 1311–1318. [Google Scholar] [CrossRef]
- Lemieux, M.E.; Reveles, X.T.; Rebeles, J.; Bederka, L.H.; Araujo, P.R.; Sanchez, J.R.; Grayson, M.; Lai, S.C.; DePalo, L.R.; Habib, S.A.; et al. Detection of early-stage lung cancer in sputum using automated flow cytometry and machine learning. Respir. Res. 2023, 24, 23. [Google Scholar] [CrossRef]
- Sah, B.R.; Schibli, R.; Waibel, R.; von Boehmer, L.; Bläuenstein, P.; Nexo, E.; Johayem, A.; Fischer, E.; Müller, E.; Soyka, J.D.; et al. Tumor imaging in patients with advanced tumors using a new (99m) Tc-radiolabeled vitamin B12 derivative. J. Nucl. Med. Off. Publ. 2014, 55, 43–49. [Google Scholar] [CrossRef]
- Tran, M.T.Q.; Furger, E.; Alberto, R. Two-step activation prodrugs: Transplatin mediated binding of chemotherapeutic agents to vitamin B12. Org. Biomol. Chem. 2013, 11, 3247–3254. [Google Scholar] [CrossRef]
- Mehder, R.; de la Torre-Rubio, E.; de la Cueva-Alique, I.; O’Malley, C.; Pérez-Redondo, A.; Gude, L.; Royo, E.; Ronconi, L. Fluorescent Vitamin B12–Platinum(II) Derivatives as Potential Metallotheranostic Agents for the Treatment and Imaging of Tumors. Inorganics 2024, 12, 91. [Google Scholar] [CrossRef]
- Bauer, J.A.; Frye, G.; Bahr, A.; Gieg, J.; Brofman, P. Anti-tumor effects of nitrosylcobalamin against spontaneous tumors in dogs. Investig. New Drugs 2010, 28, 694–702. [Google Scholar] [CrossRef]
- Bauer, J.A.; Lupica, J.A.; Schmidt, H.; Morrison, B.H.; Haney, R.M.; Masci, R.K.; Lee, R.M.; DiDonato, J.A.; Lindner, D.J. Nitrosylcobalamin potentiates the anti-neoplastic effects of chemotherapeutic agents via suppression of survival signaling. PLoS ONE 2007, 2, e1313. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, J.D.; Eilers, A.L.; Horton, R.A.; Grissom, C.B. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J. Org. Chem. 2004, 69, 8987–8996. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Deng, L.; Yu, J.; Chen, Z.; Woo, Y.; Liu, H.; Li, T.; Lin, T.; Chen, H.; Zhao, M.; et al. Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug Deliv. 2018, 25, 1103–1116. [Google Scholar] [CrossRef]
- Guo, W.; Deng, L.; Chen, Z.; Chen, Z.; Yu, J.; Liu, H.; Li, T.; Lin, T.; Chen, H.; Zhao, M.; et al. Vitamin B12-conjugated sericin micelles for targeting CD320-overexpressed gastric cancer and reversing drug resistance. Nanomedicine 2019, 14, 353–370. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, Y.; Feng, X.; Liang, Y.; Shen, G.; Huang, H.; Chen, Z.; Yu, J.; Liu, H.; Lin, T.; et al. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. Mater. Sci. Eng. C 2021, 120, 111722. [Google Scholar] [CrossRef]
- Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol. Cancer Ther. 2010, 9, 3033–3040. [Google Scholar] [CrossRef]
- Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. Saporin conjugated monoclonal antibody to the transcobalamin receptor TCblR/CD320 is effective in targeting and destroying cancer cells. J. Cancer Ther. 2013, 4, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Bloch, J.S.; Sequeira, J.M.; Ramírez, A.S.; Quadros, E.V.; Locher, K.P. Generation of nanobodies targeting the human, transcobalamin-mediated vitamin B12 uptake route. FASEB J. 2022, 36, e22222. [Google Scholar] [CrossRef]
- Elzi, D.J.; Bauta, W.E.; Sanchez, J.R.; Das, T.; Mogare, S.; Zannes Fatland, P.; Iza, M.; Pertsemlidis, A.; Rebel, V.I. Identification of a novel mechanism for meso-tetra (4-carboxyphenyl) porphyrin (TCPP) uptake in cancer cells. FASEB J. 2021, 35, e21427. [Google Scholar] [CrossRef]
- Lai, S.C.; Nakayama, Y.; Sequeira, J.M.; Quadros, E.V. Down-regulation of transcobalamin receptor TCblR/CD320 by siRNA inhibits cobalamin uptake and proliferation of cells in culture. Exp. Cell Res. 2011, 317, 1603–1607. [Google Scholar] [CrossRef]
- Elzi, D.J.; Bauta, W.; Lai, S.; Das, T.; Mogare, S.; Rebel, V.I. Simultaneous knockdown of CD320 and LRP2 receptors is selectively toxic to cancer cells but not normal cells [Poster abstract]. In Proceedings of the American Association of Cancer Research (AACR) Annual Meeting 2021, Virtual, 10–15 April and 17–21 May 2021; Available online: https://bioaffinitytech.com/simultaneous-knockdown-of-cd320-and-lrp2-receptors-is-selectively-toxic-to-cancer-cells-but-not-normal-cells/ (accessed on 21 October 2023).
- Waibel, R.; Treichler, H.; Schaefer, N.G.; Van Staveren, D.R.; Mundwiler, S.; Kunze, S.; Küenzi, M.; Alberto, R.; Nüesch, J.; Knuth, A.; et al. New derivatives of vitamin B12 show preferential targeting of tumors. Cancer Res. 2008, 68, 2904–2911. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.T.; Stürup, S.; Lambert, I.H.; Gammelgaard, B.; Furger, E.; Alberto, R. Cellular uptake of metallated cobalamins. Met. Integr. Biometal Sci. 2016, 8, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther. 2009, 8, 10–16. [Google Scholar] [CrossRef]
- Mundwiler, S.; Spingler, B.; Kurz, P.; Kunze, S.; Alberto, R. Cyanide-bridged vitamin B12-cisplatin conjugates. Chemistry 2005, 11, 4089–4095. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, P.; Mundwiler, S.; Spingler, B.; Buan, N.R.; Escalante-Semerena, J.C.; Alberto, R. Syntheses and characterization of vitamin B12-Pt(II) conjugates and their adenosylation in an enzymatic assay. J. Biol. Inorg. Chem. 2008, 13, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Willard, H.F.; Youngdahl-Turner, P.; Rosenberg, L.E. Cobalamin coenzyme synthesis in normal and mutant human fibroblasts. Evidence for a processing enzyme activity deficient in cblC cells. J. Biol. Chem. 1979, 254, 11847–11853. [Google Scholar] [CrossRef]
- Alpers, D.; Russell-Jones, G. Intrinsic factor, haptocorrin and their receptors. In Chemistry and Biochemistry of B12; Banerjee, R., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 1999; pp. 411–440. [Google Scholar]
- Burney, S.; Caulfield, J.L.; Niles, J.C.; Wishnok, J.S.; Tannenbaum, S.R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat. Res. 1999, 424, 37–49. [Google Scholar] [CrossRef]
- Ramírez-Patiño, R.; Avalos-Navarro, G.; Figuera, L.E.; Varela-Hernández, J.J.; Bautista-Herrera, L.A.; Muñoz-Valle, J.F.; Gallegos-Arreola, M.P. Influence of nitric oxide signaling mechanisms in cancer. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221135454. [Google Scholar] [CrossRef]
- Änggård, E. Nitric oxide: Mediator, murderer, and medicine. Lancet 1994, 343, 1199–1206. [Google Scholar] [CrossRef]
- Gross, S.S.; Wolin, M.S. Nitric oxide: Pathophysiological mechanisms. Annu. Rev. Physiol. 1995, 57, 737–769. [Google Scholar] [CrossRef]
- Alimoradi, H.; Greish, K.; Gamble, A.B.; Giles, G.I. Controlled delivery of nitric oxide for cancer therapy. Pharm. Nanotechnol. 2019, 7, 279–303. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, M.J.; Sysel, A.M.; Lupica, J.A.; Griffith, K.; Sherrod, T.; Bauer, J.A. A stability-indicating HPLC method for the determination of nitrosylcobalamin (NO-Cbl), A novel vitamin B12 analog. Chromatographia 2014, 77, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Bauer, J.A.; Morrison, B.; Lindner, D.J. Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol. Cell. Biol. 2006, 26, 5588–5594. [Google Scholar] [CrossRef]
- Mannick, J.B.; Schonhoff, C.M. NO means no and yes: Regulation of cell signaling by protein nitrosylation. Free Radic. Res. 2004, 38, 1–7. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Pai, R.C.; Fong, S.; Leung, S.; Lawrence, D.A.; Marsters, S.A.; Blackie, C.; Chang, L.; McMurtrey, A.E.; Hebert, A.; et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Investig. 1999, 104, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Investig. 2001, 107, 241–246. [Google Scholar] [CrossRef]
- Kim, D.; Chung, J. Akt: Versatile mediator of cell survival and beyond. J. Biochem. Mol. Biol. 2002, 35, 106–115. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cusack, J.C.; Liu, R.; Baldwin, A.S. Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nat. Med. 1999, 5, 412–417. [Google Scholar] [CrossRef]
- Khwaja, A. Apoptosis: Akt is more than just a bad kinase. Nature 1999, 401, 33–34. [Google Scholar] [CrossRef]
- Matthews, J.R.; Botting, C.H.; Panico, M.; Morris, H.R.; Hay, R.T. Inhibition of NF-κB DNA binding by nitric oxide. Nucleic Acids Res. 1996, 24, 2236–2242. [Google Scholar] [CrossRef]
- Størling, J.; Binzer, J.; Andersson, A.K.; Züllig, R.A.; Tonnesen, M.; Lehmann, R.; Spinas, G.A.; Sandler, S.; Billestrup, N.; Mandrup-Poulsen, T. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt. Diabetologia 2005, 48, 2039–2050. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, B.; Panda, D.; Gupta, S.; Banerjee, M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med. Res. Rev. 2008, 28, 155–183. [Google Scholar] [CrossRef]
- Iacobuzio-Donahue, C.A.; Lee, E.L.; Abraham, S.C.; Yardley, J.H.; Wu, T.T. Colchicine toxicity: Distinct morphologic findings in gastrointestinal biopsies. Am. J. Surg. Pathol. 2001, 25, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019, 24, 40. [Google Scholar] [CrossRef]
- Dan, V.M.; Raveendran, R.S.; Baby, S. Resistance to intervention: Paclitaxel in breast cancer. Mini-Rev. Med. Chem. 2020, 21, 1237–1268. [Google Scholar] [CrossRef]
- Smith, E.R.; Wang, J.Q.; Yang, D.H.; Xu, X.X. Paclitaxel resistance related to nuclear envelope structural sturdiness. Drug Resist. Updates 2022, 65, 100881. [Google Scholar] [CrossRef]
- Huang, L.; Tao, K.; Liu, J.; Qi, C.; Xu, L.; Chang, P.; Gao, J.; Shuai, X.; Wang, G.; Wang, Z.; et al. Design and fabrication of multifunctional sericin nanoparticles for tumor targeting and pH-responsive subcellular delivery of cancer chemotherapy drugs. ACS Appl. Mater. Interfaces 2016, 8, 6577–6585. [Google Scholar] [CrossRef]
- Mandal, B.B.; Kundu, S.C. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology 2009, 20, 355101. [Google Scholar] [CrossRef] [PubMed]
- Crivelli, B.; Perteghella, S.; Bari, E.; Sorrenti, M.; Tripodo, G.; Chlapanidas, T.; Torre, M.L. Silk nanoparticles: From inert supports to bioactive natural carriers for drug delivery. Soft Matter 2018, 14, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dean, A.E.; Horikoshi, N.; Heer, C.; Spitz, D.R.; Gius, D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J. Clin. Investig. 2018, 128, 3682–3691. [Google Scholar] [CrossRef]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Guo, W.; Chen, Z.; Chen, Z.; Yu, J.; Liu, H.; Li, T.; Lin, T.; Chen, H.; Zhao, M.; Li, G.; et al. Promotion of Cell Proliferation through Inhibition of Cell Autophagy Signalling Pathway by Rab3IP is Restrained by MicroRNA-532-3p in Gastric Cancer. J. Cancer 2018, 9, 4363–4373. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, J.; Li, B.; Yang, X.; Zeng, R.; Liu, Y.; Li, T.; Ho, R.J.Y.; Shao, J. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment. J. Colloid Interface Sci. 2017, 490, 542–552. [Google Scholar] [CrossRef]
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef]
- Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007, 4, 297–305. [Google Scholar] [CrossRef]
- Čeh, B.; Winterhalter, M.; Frederik, P.M.; Vallner, J.J.; Lasic, D.D. Stealth® liposomes: From theory to product. Adv. Drug Deliv. Rev. 1997, 24, 165–177. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- English, J.C.; Toney, R.; Patterson, J.W. Intertriginous epidermal dysmaturation from pegylated liposomal doxorubicin. J. Cutan. Pathol. 2003, 30, 591–595. [Google Scholar] [CrossRef]
- Polito, L.; Bolognesi, A.; Tazzari, P.L.; Farini, V.; Lubelli, C.; Zinzani, P.L.; Ricci, F.; Stirpe, F. The conjugate rituximab/saporin-S6 completely inhibits clonogenic growth of CD20-expressing cells and produces a synergistic toxic effect with fludarabine. Leukemia 2004, 18, 1215–1222. [Google Scholar] [CrossRef]
- Baah, S.; Laws, M.; Rahman, K.M. Antibody–drug conjugates—A tutorial review. Molecules 2021, 26, 2943. [Google Scholar] [CrossRef]
- Quadros, E.V.; McLoughlin, P.; Rothenberg, S.P. Characterization of monoclonal antibodies to epitopes of human transcobalamin II. Biochem. Biophys. Res. Commun. 1996, 222, 149–154. [Google Scholar] [CrossRef]
- McLean, G.R.; Quadros, E.V.; Rothenberg, S.P.; Morgan, A.C.; Schrader, J.W.; Ziltener, H.J. Antibodies to transcobalamin II block in vitro proliferation of leukemic cells. Blood 1997, 89, 235–242. [Google Scholar] [CrossRef]
- Bolshakov, A.P.; Stepanichev, M.Y.; Dobryakova, Y.V.; Spivak, Y.S.; Markevich, V.A. Saporin from Saponaria officinalis as a tool for experimental research, modeling, and therapy in neuroscience. Toxins 2020, 12, 546. [Google Scholar] [CrossRef]
- Polito, L.; Bortolotti, M.; Mercatelli, D.; Battelli, M.G.; Bolognesi, A. Saporin-S6: A useful tool in cancer therapy. Toxins 2013, 5, 1698–1722. [Google Scholar] [CrossRef]
- Yadav, S.; Batra, J. Mechanism of anti-HIV activity of ribosome inactivating protein, saporin. Protein Pept. Lett. 2015, 22, 497–503. [Google Scholar] [CrossRef]
- Muyldermans, S. Applications of nanobodies. Annu. Rev. Anim. Biosci. 2021, 9, 401–421. [Google Scholar] [CrossRef]
- De Meyer, T.; Muyldermans, S.; Depicker, A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014, 32, 263–270. [Google Scholar] [CrossRef]
- Lange, N.; Jichlinski, P.; Zellweger, M.; Forrer, M.; Marti, A.; Guillou, L.; Kucera, P.; Wagnières, G.; Van Den Bergh, H. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: A pilot study. Br. J. Cancer 1999, 80, 185–193. [Google Scholar] [CrossRef]
- Anand, S.; Ortel, B.J.; Pereira, S.P.; Hasan, T.; Maytin, E.V. Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Lett. 2012, 326, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; He, J.; Yu, W.; Li, Y.; Liu, Z.; Zhou, B.; Liu, Y. A promising anticancer drug: A photosensitizer based on the porphyrin skeleton. RSC Med. Chem. 2020, 4, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Lindstrom, A.; Li, Y. Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjugate Chem. 2019, 30, 1585–1603. [Google Scholar] [CrossRef] [PubMed]
- Battaglia-Hsu, S.-F.; Akchiche, N.; Noel, N.; Alberto, J.-M.; Jeannesson, E.; Orozco-Barrios, C.E.; Martinez-Fong, D.; Daval, J.-L.; Guéant, J.-L. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE. Proc. Natl. Acad. Sci. USA 2009, 106, 21930–21935. [Google Scholar] [CrossRef]
- Ashihara, E.; Kawata, E.; Maekawa, T. Future prospect of RNA interference for cancer therapies. Curr. Drug Targets 2010, 11, 345–360. [Google Scholar] [CrossRef]
- Renard, E.; Chéry, C.; Oussalah, A.; Josse, T.; Perrin, P.; Tramoy, D.; Voirin, J.; Klein, O.; Leheup, B.; Feillet, F.; et al. Exome sequencing of cases with neural tube defects identifies candidate genes involved in one-carbon/vitamin B12 metabolisms and sonic hedgehog pathway. Hum. Genet. 2019, 138, 703–713. [Google Scholar] [CrossRef]
- Lai, S.C.; Nakayama, Y.; Sequeira, J.M.; Wlodarczyk, B.J.; Cabrera, R.M.; Finnell, R.H.; Bottiglieri, T.; Quadros, E.V. The transcobalamin receptor knockout mouse: A model for vitamin B12 deficiency in the central nervous system. FASEB J. 2013, 27, 2468–2475. [Google Scholar] [CrossRef]
- Arora, K.; Sequeira, J.M.; Hernández, A.I.; Alarcon, J.M.; Quadros, E.V. Behavioral alterations are associated with vitamin B12 deficiency in the transcobalamin receptor/CD320 KO mouse. PLoS ONE 2017, 12, e0177156. [Google Scholar] [CrossRef]
- Pluvinage, J.V.; Ngo, T.; Fouassier, C.; McDonagh, M.; Holmes, B.B.; Bartley, C.M.; Kondapavulur, S.; Hurabielle, C.; Bodansky, A.; Pai, V.; et al. Transcobalamin receptor antibodies in autoimmune vitamin B12 central deficiency. Sci. Transl. Med. 2024, 16, eadl3758. [Google Scholar] [CrossRef] [PubMed]
- Gimsing, P.; Hippe, E. Increased concentration of transcobalamin I in a patient with metastatic carcinoma of the breast. Scand. J. Haematol. 1978, 21, 243–249. [Google Scholar] [CrossRef] [PubMed]
CD320 Targeting Methods | Models | Outcomes | References |
---|---|---|---|
VB12–Platinum conjugates | In vitro—MCF and A2780 cells |
| [6] |
In vitro—K562 cells |
| [38] | |
In vitro—PC3, HeLa, MCF7 cells |
| [39] | |
VB12-nitric oxide conjugates | In vivo—canine models |
| [40] |
In vitro—13 malignant cancer cells In vivo—nude mice |
| [41] | |
VB12–colchicine conjugate | In vitro—SK-N-MC, SK-BR-3 cells |
| [42] |
VB12–sericin–PBLG nanoparticle loaded with paclitaxel |
In vitro—red blood cells, MCF10A, LO2), RAW264.7, MCF7, HepG2 cells In vivo—Sprague-Dawley rats, nude mice |
| [43,44] |
PLGA-PEG-VB12 nanoparticles |
In vitro—BGC-823, GES-1 cells In vivo—nude mice |
| [45] |
VB12–stealth liposome loaded with doxorubicin |
In vitro—B16F10 In vivo—C57BL/6 mice |
| [5] |
Saporin-conjugated antibodies against CD320 | In vitro—K562, U266, SW48, KB and HEK293 cells, normal human fibroblasts, bone marrow cells |
| [46] |
In vitro—K562, SW48, HL60, U266, RKO, HeLa, LoVo, HepG2, Hep3B, MDA-MB-231, PaCa-2U373, PC3, MCH064, MCH065, RF, bone marrow mononuclear cells, human chorionic trophoblasts, ED, HEK293 cells |
| [47] | |
Saporin-conjugates nanobodies against TC | In vitro—HEK293T cells |
| [48] |
meso-tetra (4-carboxyphenyl) porphyrin (TCPP) | In vitro—HCC15, H157, LNCaP, DU145, MDA-MB-231, PC3, H358, MCF7 cells |
| [49] |
siRNA knockdown of CD320 | In vitro—HEK293, SW48 cells |
| [50] |
In vitro—normal fibroblasts, lung, brain, breast, prostate, skin cancer cells |
| [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolymbekova, A.; Lezina, L. CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy. Int. J. Mol. Sci. 2025, 26, 5652. https://doi.org/10.3390/ijms26125652
Tolymbekova A, Lezina L. CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy. International Journal of Molecular Sciences. 2025; 26(12):5652. https://doi.org/10.3390/ijms26125652
Chicago/Turabian StyleTolymbekova, Ainur, and Larissa Lezina. 2025. "CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy" International Journal of Molecular Sciences 26, no. 12: 5652. https://doi.org/10.3390/ijms26125652
APA StyleTolymbekova, A., & Lezina, L. (2025). CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy. International Journal of Molecular Sciences, 26(12), 5652. https://doi.org/10.3390/ijms26125652