Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,622)

Search Parameters:
Keywords = NaV1.4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4508 KiB  
Article
Natural Kelp (Laminaria japonica) Hydrogel with Anisotropic Mechanical Properties, Low Friction and Self-Cleaning for Triboelectric Nanogenerator
by Dongnian Chen, Hui Yu, Jiajia Hao, Qiang Chen and Lin Zhu
Gels 2025, 11(8), 597; https://doi.org/10.3390/gels11080597 (registering DOI) - 1 Aug 2025
Abstract
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited [...] Read more.
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited superoleophobicity and a self-clean property. The friction coefficient (COF) of the kelp surface was also low (<0.1). Interestingly, kelp demonstrated anisotropic mechanical properties either with or without metal ions. The tensile strength and toughness of kelp along with the growth direction (H) were better than those at the direction vertical to the growth direction (V). The adsorption of metal ions would significantly enhance the mechanical properties and ionic conductivity. Triboelectric nanogenerator (TENG) was assembled using kelp with NaCl, which showed excellent output performance (open-circuit voltage of 30 V, short-circuit current of 0.73 μA and charge transfer on contact of 10.5 nC). A writing tablet was prepared to use as the kelp-based self-powered tactile sensor. This work provides a new insight into natural kelp, which may be used as a renewable material. Full article
(This article belongs to the Special Issue Applications of Gels in Energy Materials and Devices)
Show Figures

Figure 1

17 pages, 2016 KiB  
Article
DFT-Guided Next-Generation Na-Ion Batteries Powered by Halogen-Tuned C12 Nanorings
by Riaz Muhammad, Anam Gulzar, Naveen Kosar and Tariq Mahmood
Computation 2025, 13(8), 180; https://doi.org/10.3390/computation13080180 (registering DOI) - 1 Aug 2025
Abstract
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then [...] Read more.
Recent research on the design and synthesis of new and upgraded materials for secondary batteries is growing to fulfill future energy demands around the globe. Herein, by using DFT calculations, the thermodynamic and electrochemical properties of Na/Na+@C12 complexes and then halogens (X = Br, Cl, and F) as counter anions are studied for the enhancement of Na-ion battery cell voltage and overall performance. Isolated C12 nanorings showed a lower cell voltage (−1.32 V), which was significantly increased after adsorption with halide anions as counter anions. Adsorption of halides increased the Gibbs free energy, which in turn resulted in higher cell voltage. Cell voltage increased with the increasing electronegativity of the halide anion. The Gibbs free energy of Br@C12 was −52.36 kcal·mol1, corresponding to a desirable cell voltage of 2.27 V, making it suitable for use as an anode in sodium-ion batteries. The estimated cell voltage of these considered complexes ensures the effective use of these complexes in sodium-ion secondary batteries. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

16 pages, 2729 KiB  
Article
Effect of Enterobacter bugandensis R-18 on Maize Growth Promotion Under Salt Stress
by Xingguo Tian, Qianru Liu, Jingjing Song, Xiu Zhang, Guoping Yang, Min Li, Huan Qu, Ahejiang Tastanbek and Yarong Tan
Microorganisms 2025, 13(8), 1796; https://doi.org/10.3390/microorganisms13081796 - 31 Jul 2025
Abstract
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based [...] Read more.
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based on 16S rRNA gene sequencing. The isolate was characterized for its morphological, biochemical, and plant growth-promoting traits and was evaluated for its potential to alleviate NaCl-induced stress in maize (Zea mays L.) under hydroponic conditions. Isolate R-18 exhibited halotolerance, surviving at NaCl concentrations ranging from 2.0% to 10.0%, and alkaliphilic adaptation, growing at pH 8.0–11.0. Biochemical assays confirmed it as a Gram-negative bacterium, displaying positive reactions in the Voges–Proskauer (V–P) tests, catalase activity, citrate utilization, fluorescent pigment production, starch hydrolysis, gelatin liquefaction, and ammonia production, while testing negative for the methyl red and cellulose hydrolysis. Notably, isolate R-18 demonstrated multiple plant growth-promoting attributes, including nitrogen fixation, phosphate and potassium solubilization, ACC deaminase activity, and indole-3-acetic acid (IAA) biosynthesis. Under 100 mM NaCl stress, inoculation with isolate R-18 significantly enhanced maize growth, increasing plant height, stem dry weight, root fresh weight, and root dry weight by 20.64%, 47.06%, 34.52%, and 31.25%, respectively. Furthermore, isolate R-18 improved ion homeostasis by elevating the K+/Na+ ratio in maize tissues. Physiological analyses revealed increased chlorophyll and proline content, alongside reduced malondialdehyde (MDA) levels, indicating mitigated oxidative damage. Antioxidant enzyme activity was modulated, with decreased superoxide dismutase (SOD) and peroxidase (POD) activities but increased catalase (CAT) activity. These findings demonstrated that Enterobacter bugandensis R-18 effectively alleviated NaCl-induced growth inhibition in maize by enhancing osmotic adjustment, reducing oxidative stress, and improving ion balance. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 14026 KiB  
Article
Development of PEO in Low-Temperature Ternary Nitrate Molten Salt on Ti6V4Al
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
Materials 2025, 18(15), 3603; https://doi.org/10.3390/ma18153603 (registering DOI) - 31 Jul 2025
Viewed by 45
Abstract
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to [...] Read more.
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to the substrate. In this study, the PEO process was performed using a low-melting-point ternary eutectic electrolyte composed of Ca(NO3)2–NaNO3–KNO3 (41–17–42 wt.%) with the addition of ammonium dihydrogen phosphate (ADP). The use of this electrolyte system enables a reduction in the operating temperature from 280 to 160 °C. The effects of applied voltage from 200 to 400V, current frequency from 50 to 1000 Hz, and ADP concentrations of 0.1, 0.5, 1, 2, and 5 wt.% on the growth of titanium oxide composite coatings on a Ti-6Al-4V substrate were investigated. The incorporation of Ca and P was confirmed by phase and chemical composition analysis, while scanning electron microscopy (SEM) revealed a porous surface morphology typical of PEO coatings. Corrosion resistance in Hank’s solution, evaluated via Tafel plot fitting of potentiodynamic polarization curves, demonstrated a substantial improvement in electrochemical performance of the PEO-treated samples. The corrosion current decreased from 552 to 219 nA/cm2, and the corrosion potential shifted from −102 to 793 mV vs. the Reference Hydrogen Electrode (RHE) compared to the uncoated alloy. These findings indicate optimal PEO processing parameters for producing composite oxide coatings on Ti-6Al-4V alloy surfaces with enhanced corrosion resistance and potential bioactivity, which are attributed to the incorporation of Ca and P into the coating structure. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

14 pages, 746 KiB  
Brief Report
Risk of SARS-CoV-2 Infection Among Hospital-Based Healthcare Workers in Thailand at Myanmar Border, 2022
by Narumol Sawanpanyalert, Nuttagarn Chuenchom, Meng-Yu Chen, Peangpim Tantilipikara, Suchin Chunwimaleung, Tussanee Nuankum, Yuthana Samanmit, Brett W. Petersen, James D. Heffelfinger, Emily Bloss, Somsak Thamthitiwat and Woradee Lurchachaiwong
COVID 2025, 5(8), 115; https://doi.org/10.3390/covid5080115 - 25 Jul 2025
Viewed by 174
Abstract
Background: This study examined risk factors for syndrome novel coronavirus 2 virus (SARS-CoV-2) infection and self-reported adherence to infection prevention and control (IPC) measures among healthcare workers (HCWs) at a hospital in Thailand near the Myanmar border. Methods: From March to July 2022, [...] Read more.
Background: This study examined risk factors for syndrome novel coronavirus 2 virus (SARS-CoV-2) infection and self-reported adherence to infection prevention and control (IPC) measures among healthcare workers (HCWs) at a hospital in Thailand near the Myanmar border. Methods: From March to July 2022, HCWs aged ≥ 18 with COVID-19 exposure at Mae Sot General Hospital completed a questionnaire on IPC adherence, training, and COVID-19 knowledge. Nasopharyngeal samples were collected bi-weekly for SARS-CoV-2 testing. A mobile application was used for real-time monitoring of daily symptoms and exposure risks. Chi-square, Fisher’s exact tests, and log-binomial regression were performed to investigate association. Results: Out of 289 (96.3%) participants, 27 (9.9%) tested positive for SARS-CoV-2, with cough reported by 85.2% of cases. Nurse assistants (NAs) had a higher risk of infection (adjusted relative risk [aRR] 3.87; 95% CI: 0.96–15.6). Working in inpatient departments (aRR 2.37; 95% CI: 1.09–5.15) and COVID-19 wards (aRR 5.97; 95% CI: 1.32–26.9) was also associated with increased risk. While 81.7% reported consistent hand hygiene, 37% indicated inadequate IPC knowledge. Conclusions: HCWs, especially NAs and those in high-risk departments, should receive enhanced IPC training. Real-time digital monitoring tools can enhance data collection and HCW safety and are likely to be useful tools for supporting surveillance and data collection efforts. Full article
(This article belongs to the Section COVID Clinical Manifestations and Management)
Show Figures

Figure 1

23 pages, 5262 KiB  
Article
Designing Gel-Inspired Food-Grade O/W Pickering Emulsions with Bacterial Nanocellulose–Chitosan Complexes
by Antiopi Vardaxi, Eftychios Apostolidis, Ioanna G. Mandala, Stergios Pispas, Aristeidis Papagiannopoulos and Erminta Tsouko
Gels 2025, 11(8), 577; https://doi.org/10.3390/gels11080577 - 24 Jul 2025
Viewed by 285
Abstract
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH [...] Read more.
This study explored the potential of chitosan (CH)/bacterial cellulose (BC) complexes (0.5% w/v) as novel emulsifiers to stabilize oil-in-water (o/w) Pickering emulsions (20% v/v sunflower oil), with a focus on their gel-like behavior. Emulsions were prepared using CH combined with BNC derived via H2SO4 (BNC1) or H2SO4-HCl (BNC2) hydrolysis. Increasing BNC content improved stability by reducing phase separation and enhancing viscosity, while CH contributed interfacial activity and electrostatic stabilization. CH/BNC125:75 emulsions showed the highest stability, maintaining an emulsion stability index (ESI) of up to 100% after 3 days, with minimal change in droplet size (Rh ~8.5–8.8 μm) and a positive ζ-potential (15.1–29.8 mV), as confirmed by dynamic/electrophoretic light scattering. pH adjustment to 4 and 10 had little effect on their ESI, while ionic strength studies showed that 0.1 M NaCl caused only a slight increase in droplet size combined with the highest ζ-potential (−35.2 mV). Higher salt concentrations led to coalescence and disruption of their gel-like structure. Rheological analysis of CH/BNC125:75 emulsions revealed shear-thinning behavior and dominant elastic properties (G′ > G″), indicating a soft gel network. Incorporating sunflower-seed protein isolates into CH/BNC1 (25:75) emulsions led to coacervate formation (three-layer system), characterized by a decrease in droplet size and an increase in ζ-potential (up to 32.8 mV) over 7 days. These findings highlight CH/BNC complexes as sustainable stabilizers for food-grade Pickering emulsions, supporting the development of biopolymer-based emulsifiers aligned with bioeconomy principles. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

14 pages, 7293 KiB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Viewed by 241
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

24 pages, 6934 KiB  
Article
In Situ High-Resolution Optical Microscopy Survey of the Initial Reactivity of Multiphase ZnAlMgSi Coating on Steel
by Guilherme Adinolfi Colpaert Sartori, Oumayma Gabsi, Tiago Machado Amorim, Viacheslav Shkirskiy and Polina Volovitch
Metals 2025, 15(8), 821; https://doi.org/10.3390/met15080821 - 23 Jul 2025
Viewed by 236
Abstract
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 [...] Read more.
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 aqueous solutions. In both environments, galvanic coupling between different coating phases and the anodic behavior decreased in the order binary ZnAl > binary Zn/Zn2Mg > Zn2Mg > Al(Zn); dendrites were evidenced for the coating exposed alone as well as in galvanic coupling with steel. Contrary to the observations known for Zn-rich ZnAlMg coatings, pure Zn2Mg was less reactive than the pure ZnAl phase, underlining the importance of the microstructure for reactivity. Si-needles were systematically cathodic, and Al(Zn) dendrites have shown cathodic behavior in some couplings. In the configuration of coupling with steel, corrosion started at the interfaces “binary ZnAl/steel substrate” or “binary ZnAl/Si particle”. The distribution and nature of the corrosion products formed during the experiment were assessed using X-ray microanalysis in scanning electron microscopy and confocal Raman microscopy. In the sulfate environment, a homogenous and stable corrosion product layer formed from the first steps of the degradation; this was in contrast to the chloride environment, where no surface film formed on the dendrites. Full article
Show Figures

Figure 1

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 251
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

27 pages, 3299 KiB  
Article
Corrosion Stability and Biological Activity of Anodized cpTi for Dental Application
by Aleksandra S. Popović, Minja Miličić Lazić, Dijana Mitić, Lazar Rakočević, Dragana Jugović, Predrag Živković and Branimir N. Grgur
Metals 2025, 15(7), 817; https://doi.org/10.3390/met15070817 - 21 Jul 2025
Viewed by 360
Abstract
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on [...] Read more.
The anodic oxidation of titanium implants is a practical, cost-effective method to enhance implant success, especially due to rising hypersensitivity concerns. This study investigated the electrochemical behavior, surface characteristics, and biocompatibility of anodized commercially pure titanium (cpTi, grade IV). Anodization is performed on polished, cleaned cpTi sheet samples in 1 M H2SO4 using a constant voltage of 15 V for 15 and 45 min. The color of the oxide layer is evaluated using the CIELab color space, while composition is analyzed by a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). Additionally, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are performed to identify and monitor the phase transformations of the formed titanium oxides. Corrosion measurements are performed in 9 g L−1 NaCl, pH = 7.4, and show the excellent corrosion stability of the anodized samples in comparison with pure titanium. The biological response is assessed by determining mitochondrial activity and gene expression in human fibroblasts. Anodized surfaces, particularly Ti-45, promote higher mitochondrial activity and the upregulation of adhesion-related genes (N-cadherin and Vimentin) in human gingival fibroblasts, indicating improved biocompatibility and the potential for enhanced early soft tissue integration. Full article
Show Figures

Graphical abstract

17 pages, 12649 KiB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Viewed by 257
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 267
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

8 pages, 764 KiB  
Communication
A Strand-Specific Quantitative RT-PCR Method for Detecting vRNA, cRNA, and mRNA of H7N9 Avian Influenza Virus in a Mouse Model
by Bo Wang, Guangwen Wang, Yi-han Wang, Xuwei Liu, Manman Li, Huihui Kong, Hualan Chen, Li Jiang and Chengjun Li
Viruses 2025, 17(7), 1007; https://doi.org/10.3390/v17071007 - 17 Jul 2025
Viewed by 350
Abstract
Avian influenza virus (AIV) remains a persistent threat to both the poultry industry and human health. Among the AIV subtypes posing public health threats, H7N9 AIV is responsible for five epidemic waves of human infection in China. Here, a detection system based on [...] Read more.
Avian influenza virus (AIV) remains a persistent threat to both the poultry industry and human health. Among the AIV subtypes posing public health threats, H7N9 AIV is responsible for five epidemic waves of human infection in China. Here, a detection system based on a mouse model was established, which can simultaneously and quantitatively analyze the dynamic changes in the viral genomic RNA (vRNA), complementary RNA (cRNA), and messenger RNA (mRNA) of H7N9 AIV by using reverse transcription primers with tag sequences to reverse transcribe the three species of RNAs into corresponding cDNA templates, which are then absolutely quantified using the TaqMan quantitative PCR method. This system specifically targets the PB2 and NA genes and, for the first time, enables a spatiotemporal analysis of all three viral RNA species within an animal model. Our results revealed that H7N9 AIV exhibits characteristic replication kinetics, with all three species of viral RNAs showing a rapid increase followed by a certain degree of decline. This system offers a powerful tool for us to further advance our understanding of the replication dynamics of AIV in mice. Full article
Show Figures

Figure 1

19 pages, 3699 KiB  
Article
Development of Poly(diallyldimethylammonium) Chloride-Modified Activated Carbon for Efficient Adsorption of Methyl Red in Aqueous Systems
by Simeng Li and Madjid Mohseni
Clean Technol. 2025, 7(3), 61; https://doi.org/10.3390/cleantechnol7030061 - 15 Jul 2025
Viewed by 316
Abstract
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC [...] Read more.
A modified activated carbon (AC) was developed by modifying with poly(diallyldimethylammonium) chloride (PDADMAC) to enhance its adsorption performance for water treatment applications. Different PDADMAC concentrations were explored and evaluated using methyl red as a model contaminant, with 8 w/v% PDADMAC yielding the best adsorption performance. The kinetics data were well described by the pseudo-first-order equation and homogeneous surface diffusion model. The Freundlich isotherm fit the equilibrium data well, indicating multilayer adsorption and diverse interaction types. The removal efficiency remained similar across a pH range of 5–9 and in the presence of background inorganic (NaCl)/organic compounds (sodium acetate) at different concentrations. Rapid small-scale column tests were performed to simulate continuous flow conditions, and the PDADMAC-modified AC effectively delayed the breakthrough of the contaminant compared to raw AC. Regeneration experiments showed that 0.1 M NaOH with 70% methanol effectively restored the adsorption capacity, retaining 80% of the initial efficiency after five cycles. Quantum chemical analysis revealed that non-covalent interactions, including electrostatic and Van der Waals forces, governed the adsorption mechanism. Overall, the results of this study prove that PDADMAC-AC shows great potential for enhanced organic contaminant removal in water treatment systems. Full article
Show Figures

Graphical abstract

21 pages, 1118 KiB  
Review
Integrating Large Language Models into Robotic Autonomy: A Review of Motion, Voice, and Training Pipelines
by Yutong Liu, Qingquan Sun and Dhruvi Rajeshkumar Kapadia
AI 2025, 6(7), 158; https://doi.org/10.3390/ai6070158 - 15 Jul 2025
Viewed by 1319
Abstract
This survey provides a comprehensive review of the integration of large language models (LLMs) into autonomous robotic systems, organized around four key pillars: locomotion, navigation, manipulation, and voice-based interaction. We examine how LLMs enhance robotic autonomy by translating high-level natural language commands into [...] Read more.
This survey provides a comprehensive review of the integration of large language models (LLMs) into autonomous robotic systems, organized around four key pillars: locomotion, navigation, manipulation, and voice-based interaction. We examine how LLMs enhance robotic autonomy by translating high-level natural language commands into low-level control signals, supporting semantic planning and enabling adaptive execution. Systems like SayTap improve gait stability through LLM-generated contact patterns, while TrustNavGPT achieves a 5.7% word error rate (WER) under noisy voice-guided conditions by modeling user uncertainty. Frameworks such as MapGPT, LLM-Planner, and 3D-LOTUS++ integrate multi-modal data—including vision, speech, and proprioception—for robust planning and real-time recovery. We also highlight the use of physics-informed neural networks (PINNs) to model object deformation and support precision in contact-rich manipulation tasks. To bridge the gap between simulation and real-world deployment, we synthesize best practices from benchmark datasets (e.g., RH20T, Open X-Embodiment) and training pipelines designed for one-shot imitation learning and cross-embodiment generalization. Additionally, we analyze deployment trade-offs across cloud, edge, and hybrid architectures, emphasizing latency, scalability, and privacy. The survey concludes with a multi-dimensional taxonomy and cross-domain synthesis, offering design insights and future directions for building intelligent, human-aligned robotic systems powered by LLMs. Full article
Show Figures

Figure 1

Back to TopTop