Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = NURBS interpolator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3000 KiB  
Article
Multi-Objective Trajectory Planning for Robotic Arms Based on MOPO Algorithm
by Mingqi Zhang, Jinyue Liu, Yi Wu, Tianyu Hou and Tiejun Li
Electronics 2025, 14(12), 2371; https://doi.org/10.3390/electronics14122371 - 10 Jun 2025
Viewed by 460
Abstract
This research describes a multi-objective trajectory planning method for robotic arms based on time, energy, and impact. The quintic Non-Uniform Rational B-Spline (NURBS) curve was employed to interpolate the trajectory in joint space. The quintic NURBS interpolation curve can make the trajectory become [...] Read more.
This research describes a multi-objective trajectory planning method for robotic arms based on time, energy, and impact. The quintic Non-Uniform Rational B-Spline (NURBS) curve was employed to interpolate the trajectory in joint space. The quintic NURBS interpolation curve can make the trajectory become constrained within the kinematic limits of velocity, acceleration, and jerk while also satisfying the continuity of jerk. Then, based on the Parrot Optimization (PO) algorithm, through improvements to reduce algorithmic randomness and the introduction of appropriate multi-objective strategies, the algorithm was extended to the Multi-Objective Parrot Optimization (MOPO) algorithm, which better balances global search and local convergence, thereby more effectively solving multi-objective optimization problems and reducing the impact on optimization results. Subsequently, by integrating interpolation curves, the multi-objective optimization of joint trajectories could be performed under robotic kinematic constraints based on time–energy-jerk criteria. The obtained Pareto optimal front can provide decision-makers in industrial robotic arm applications with flexible options among non-dominated solutions. Full article
Show Figures

Figure 1

24 pages, 5804 KiB  
Article
Feedrate Fluctuation Minimization for NURBS Tool Path Interpolation Based on Arc Length Compensation and Iteration
by Xing Liu, Pengxin Yu, Haiduo Chen, Bihui Peng, Zhao Wang and Fusheng Liang
Micromachines 2025, 16(4), 402; https://doi.org/10.3390/mi16040402 - 29 Mar 2025
Viewed by 474
Abstract
Real-time parametric interpolation plays a crucial role in achieving high-speed and high-precision multi-axis CNC machining. In the interpolation cycle, the position of the next interpolation point is required to be calculated in real-time to guide the action of the machining process. Due to [...] Read more.
Real-time parametric interpolation plays a crucial role in achieving high-speed and high-precision multi-axis CNC machining. In the interpolation cycle, the position of the next interpolation point is required to be calculated in real-time to guide the action of the machining process. Due to the existence of the positioning error of the interpolation point, it is extremely difficult to eliminate the feedrate fluctuation, which may lead to dramatic decreases in machining quality and the driving capabilities’ saturation of each axis. A computationally efficient and precise feedrate fluctuation minimization method is proposed for the NURBS tool path interpolation in the CNC milling process. The model for the arc length and curvature, with respect to the parameter of the NURBS tool path, is established to reduce the calculation amount required by interpolation points determination. The deviation between the theoretical and actual interpolation step length is decreased by the proposed arc length compensation method to minimize the feedrate fluctuation. In addition, the interpolation points derived from the arc length compensation process are further corrected by performing the Newton iteration to restrict the feedrate fluctuation within the preset accuracy threshold. The effectiveness and superiorities of the proposed feedrate fluctuation minimization method are verified by simulation and milling experiments. Full article
(This article belongs to the Special Issue Micro/Nano-Machining Technology and Applications)
Show Figures

Figure 1

23 pages, 8962 KiB  
Article
A Parametric Design Method for Unstepped Planing Hulls Using Longitudinal Functions and Shape Coefficients
by Junjie Chen, Yongpeng Ou, Guo Xiang, Qing Ye and Wei Wang
Appl. Sci. 2025, 15(5), 2667; https://doi.org/10.3390/app15052667 - 1 Mar 2025
Viewed by 886
Abstract
This paper proposes a specifically parametric design method for planing hulls using longitudinal functions and shape coefficients in order to meet the requirements for optimizing the hydrodynamic performance of planing hulls. To fully define the geometry of the planing hull, a series of [...] Read more.
This paper proposes a specifically parametric design method for planing hulls using longitudinal functions and shape coefficients in order to meet the requirements for optimizing the hydrodynamic performance of planing hulls. To fully define the geometry of the planing hull, a series of design parameters and a set of longitudinal functions and shape coefficients are introduced to define key geometric features. The main frame curves of the hull are designed from bottom to top to ensure the priority and independence of parameters related to the planing surface. The mathematical equations of the control points of the keel curve, chine curve, sheer curve, and surface station curve of the hull framework are established and solved based on B-spline theory. This configures the basis for generating a continuous smooth surface of the hull. Finally, based on the frame curves, the hull surface was generated by using NURBS surface interpolation. The design parameters, especially the longitudinal functions and shape coefficients, can intuitively and independently control the key features of the hull form, which allow control over key geometric features that are highly relevant to the hydrodynamics of the planing hull. By utilizing this approach, rapid production of deep-V and radial planing hulls is achievable, resulting in closed and smooth hull surfaces. Case studies have provided evidence that the modeling of monohull unstepped planing hulls with diverse characteristics can be effectively accomplished through the definition of these parameters. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

16 pages, 8761 KiB  
Article
Study on A-Star Algorithm-Based 3D Path Optimization Method Considering Density of Obstacles
by Yong-Deok Yoo and Jung-Ho Moon
Aerospace 2025, 12(2), 85; https://doi.org/10.3390/aerospace12020085 - 24 Jan 2025
Cited by 3 | Viewed by 1374
Abstract
Collision avoidance and path planning are essential for ensuring safe and efficient UAV operations, particularly in applications like drone delivery and Advanced Air Mobility (AAM). This study introduces an improved algorithm for three-dimensional path planning in obstacle-rich environments, such as urban and industrial [...] Read more.
Collision avoidance and path planning are essential for ensuring safe and efficient UAV operations, particularly in applications like drone delivery and Advanced Air Mobility (AAM). This study introduces an improved algorithm for three-dimensional path planning in obstacle-rich environments, such as urban and industrial areas. The proposed approach integrates the A* search algorithm with a customized heuristic function which incorporates local obstacle density. This modification not only guides the search towards more efficient paths but also minimizes altitude variations and steers the UAV away from high-density obstacle regions. To achieve this, the A* algorithm was adapted to output obstacle density information at each path node, enabling a subsequent refinement process. The path refinement applies a truncation algorithm that considers both path angles and obstacle density, and the refined waypoints serve as control points for Non-Uniform Rational B-Splines (NURBS) interpolation. This process ensures smooth and dynamically feasible trajectories. Numerical simulations were performed using a quadrotor model with integrated PID controllers in environments with varying obstacle densities. The results demonstrate the algorithm’s ability to effectively balance path efficiency and feasibility. Compared to traditional methods, the proposed approach exhibits superior performance in high-obstacle-density environments, validating its effectiveness and practical applicability. Full article
(This article belongs to the Special Issue Challenges and Innovations in Aircraft Flight Control)
Show Figures

Figure 1

38 pages, 9211 KiB  
Article
Transfinite Patches for Isogeometric Analysis
by Christopher Provatidis
Mathematics 2025, 13(3), 335; https://doi.org/10.3390/math13030335 - 21 Jan 2025
Cited by 4 | Viewed by 764
Abstract
This paper extends the well-known transfinite interpolation formula, which was developed in the late 1960s by the applied mathematician William Gordon at the premises of General Motors as an extension of the pre-existing Coons interpolation formula. Here, a conjecture is formulated, which claims [...] Read more.
This paper extends the well-known transfinite interpolation formula, which was developed in the late 1960s by the applied mathematician William Gordon at the premises of General Motors as an extension of the pre-existing Coons interpolation formula. Here, a conjecture is formulated, which claims that the meaning of the involved blending functions can be enhanced, such that it includes any linear independent and complete set of functions, including piecewise-linear, trigonometric functions, Bernstein polynomials, B-splines, and NURBS, among others. In this sense, NURBS-based isogeometric analysis and aspects of T-splines may be considered as special cases. Applications are provided to illustrate the accuracy in the interpolation through the L2 error norm of closed-formed functions prescribed at the nodal points of the transfinite patch, which represent the solution of partial differential equations under boundary conditions of the Dirichlet type. Full article
Show Figures

Figure 1

23 pages, 6144 KiB  
Article
Intelligent Perception and Seam Tracking System for Thick Plate Weldments Based on Constant-Focus Optical Path
by Lei Zhai, Wenze Ren, Fei Li, Rong Wu, Jinsong Lin, Jiahui Feng, Jun Zheng and Yang Liu
Appl. Sci. 2024, 14(23), 10846; https://doi.org/10.3390/app142310846 - 23 Nov 2024
Cited by 2 | Viewed by 879
Abstract
To achieve efficient and accurate thick plate welding, as well as to precisely extract and plan the paths of complex three-dimensional weld seams in large steel structures, this study introduces a novel vision-guided approach for robotic welding systems utilizing a constant-focus laser sensor. [...] Read more.
To achieve efficient and accurate thick plate welding, as well as to precisely extract and plan the paths of complex three-dimensional weld seams in large steel structures, this study introduces a novel vision-guided approach for robotic welding systems utilizing a constant-focus laser sensor. This methodology specifically targets and mitigates several critical shortcomings inherent in conventional vision-guided welding techniques, including limited detection ranges, diminished precision in both detection and tracking, and suboptimal real-time performance. For preprocessed weld images, an improved grayscale extreme centroid method was developed to extract the center of the light stripe. Furthermore, a sophisticated feature point extraction algorithm, which integrates a maximum distance search strategy with a least-squares fitting procedure, was developed to facilitate the precise and timely identification of weld seam characteristic points. To further optimize the outcomes, a cylindrical filtering mechanism was employed to eliminate substantial discrepancies, whereas local Non-Uniform Rational B-Spline (NURBS) curve interpolation was utilized for the generation of smooth and accurate trajectory plans. A spatial vector-based pose adjustment strategy was then implemented to provide robust guidance for the welding robot, ensuring the successful execution of the welding operations. The experimental results indicated that the proposed algorithm achieved a tracking error of 0.3197 mm for welding workpieces with a thickness of 60 mm, demonstrating the method’s substantial potential in the manufacturing sector, especially in the domain of automated welding. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

18 pages, 5097 KiB  
Article
An Interpolator for a Non-Uniform Rational B-Spline Curve with a High Efficiency and Accuracy Using Polynomial Representations
by Zhuiliang Huang and Jianxiong Chen
Actuators 2024, 13(11), 456; https://doi.org/10.3390/act13110456 - 13 Nov 2024
Cited by 1 | Viewed by 896
Abstract
This paper introduces an efficient and accurate interpolator for NURBS (non-uniform rational B-spline) curves, addressing the challenge of regulating feedrate under machining accuracy and dynamic constraints, particularly at sensitive corners. A recursive matrix representation and polynomial conversion are utilized to enhance the computation [...] Read more.
This paper introduces an efficient and accurate interpolator for NURBS (non-uniform rational B-spline) curves, addressing the challenge of regulating feedrate under machining accuracy and dynamic constraints, particularly at sensitive corners. A recursive matrix representation and polynomial conversion are utilized to enhance the computation of NURBS curve intermediate points and derivatives. An improved adaptive planning method is presented to adjust the feedrate at sensitive corners, ensuring that chord error and dynamic constraints are met. The method integrates linear acceleration and deceleration stages to mitigate abrupt changes in acceleration and jerk. Additionally, a prediction–correction scheme-based interpolator is developed, employing an asynchronous mechanism to improve computational efficiency. The proposed method’s effectiveness and correctness are validated through simulation tests and machining experiments. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

33 pages, 13465 KiB  
Article
An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling
by Xiaoyang Zhou
Machines 2024, 12(3), 186; https://doi.org/10.3390/machines12030186 - 13 Mar 2024
Cited by 1 | Viewed by 1579
Abstract
With the increasing demand for processing precision in the manufacturing industry, feed-rate scheduling is a crucial component in achieving the processing quality of complex surfaces. A smooth feed-rate profile not only guarantees machining quality but also improves machining efficiency. Although the typical offline [...] Read more.
With the increasing demand for processing precision in the manufacturing industry, feed-rate scheduling is a crucial component in achieving the processing quality of complex surfaces. A smooth feed-rate profile not only guarantees machining quality but also improves machining efficiency. Although the typical offline feed-rate scheduling method possesses good processing efficiency, it may not provide an optimal solution due to the NP-hard problem caused by the feed-rate scheduling of continuous curve segments, which easily results in excess kinetic limitations and feed-rate fluctuations in a real-time interpolation. Instead, the FIR (Finite Impulse Response) method is widely used to realize interpolation in real-time processing. However, the FIR method will filter out a large number of high-frequency signals, leading to a low-processing efficiency. Further, greater acceleration or deceleration is required to ensure the interpolation passes through the segment end at a predefined feed rate and the deceleration in the feed rate profile appears earlier, which allows the interpolation to easily exceed the kinetic limitation. At present, a simple offline or online method cannot realize the global optimization of the feed-rate profile and guarantee the machining efficiency. Moreover, the current feed-rate scheduling that considers both offline and online methods does not consider the situation that the call of offline data and online prediction data will lead to a decrease in the real-time performance of the CNC system. Further, real-time feed-rate scheduling data tend to dominate the whole interpolation process, thus reducing the effect of the offline feed-rate scheduling data. Hence, based on the tool path with C3 continuity (Cubic Continuously Differentiable), this paper first presents a basic interpolation unit relevant to the S-type interpolation feed-rate profile. Then, an offline local smooth strategy is proposed to smooth the feed-rate profile and reduce the exceeding of kinetic limitations and feed-rate fluctuations caused by frequent acceleration and deceleration. Further, a global online smoothing strategy based on the data generated by offline pre-interpolation is presented. What is more, FIR login and logout conditions are proposed to further smooth the feed-rate profile and improve the real-time performance and machining efficiency. The case study validates that the proposed method performs better in kinetic results compared with the typical offline and FIR methods in both the simulation experiment and actual machining experiments. Especially, in actual processing experiments, the proposed method obtains a 28% reduction in contour errors. Further, the proposed method compared with the FIR method obtains a 15% increase in machining efficiency but only a 4% decrease compared with the typical offline method. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

20 pages, 6769 KiB  
Article
A High-Precision Planar NURBS Interpolation System Based on Segmentation Method for Industrial Robot
by Xun Liu, Yan Xu, Jiabin Cao, Jinyu Liu and Yanzheng Zhao
Appl. Sci. 2023, 13(24), 13210; https://doi.org/10.3390/app132413210 - 13 Dec 2023
Cited by 4 | Viewed by 2044
Abstract
NURBS curve parameter interpolation is extensively employed in precision trajectory tasks for industrial robots due to its smoother performance compared to traditional linear or circular interpolation methods. The trajectory planning systems for industrial robots necessitate four essential functional modules: first, the spline curve [...] Read more.
NURBS curve parameter interpolation is extensively employed in precision trajectory tasks for industrial robots due to its smoother performance compared to traditional linear or circular interpolation methods. The trajectory planning systems for industrial robots necessitate four essential functional modules: first, the spline curve discretization technique ensuring chord error compliance; second, the contour scanning technique for determining the maximum feasible feed rate for multi-constraint and multi-segment paths; third, the technique for achieving a smooth feed rate profile; and fourth, the continuous curve parameter interpolation technique. Therefore, this paper proposes a high-precision planar NURBS interpolation system for industrial robots. Firstly, a segmentation method for NURBS curves based on a closed-loop chord error constraint is proposed, which segments the original global NURBS curve into a collection of Bezier curves that strictly meet the chord error constraint. Secondly, a bidirectional scanning technique is presented to meet the joint space constraint, establishing an analytical mapping between the tool tip kinematic constraint and the joint kinematic constraint. Then, based on the traditional S-shaped feed rate profile, an adaptive algorithm with a displacement constraint is introduced, considering the real-time speed adjustment requirements of robots. Finally, a compensation interpolation strategy based on arc length parameterization is adopted to solve the accumulated error problem in parameter interpolation. The effectiveness of and potential for enhancing the quality of planar machining of the proposed planar NURBS interpolation system for industrial robots are validated through simulations and experiments. The results demonstrate the system’s applicability and accuracy, and its ability to improve planar machining quality. Full article
(This article belongs to the Topic Robotic Intelligent Machining System)
Show Figures

Figure 1

30 pages, 15742 KiB  
Article
Fast Reconstruction Model of the Ship Hull NURBS Surface with Uniform Continuity for Calculating the Hydrostatic Elements
by Kaige Zhu, Guoyou Shi, Jiao Liu and Jiahui Shi
J. Mar. Sci. Eng. 2023, 11(9), 1816; https://doi.org/10.3390/jmse11091816 - 18 Sep 2023
Cited by 2 | Viewed by 2378
Abstract
The fast reconstruction of the ship hull nonuniform rational B-spline (NURBS) surface with uniform continuity is essential for calculating hydrostatic elements such as waterplane area and molded volume in real time. Thus, this study proposes a fast reconstruction model with uniform continuity to [...] Read more.
The fast reconstruction of the ship hull nonuniform rational B-spline (NURBS) surface with uniform continuity is essential for calculating hydrostatic elements such as waterplane area and molded volume in real time. Thus, this study proposes a fast reconstruction model with uniform continuity to solve the problem of uniform continuity and splicing in the separate model of hull bow and stern surfaces. The proposed model includes the NURBS curve generation (UCG) algorithm with uniform continuity and the hybrid NURBS surface generation (HSG) algorithm. The UCG algorithm initially fits the feature points using the global interpolation algorithm and then precisely constructs straight-line segments in the curve using the improved flattening algorithm. In comparison, the HSG algorithm adaptively selects the surface knot vectors according to the parameters of the section curves. In this study, the profile of discontinuous compartments is uniformly expressed, effectively avoiding various articulation problems in separation modeling. The results of comparative experiments show that the NURBS surface generated using the HSG algorithm can accurately express the characteristics of various parts of the hull with uniform continuity, and the calculation speed of the proposed model can be increased by up to 8.314% compared with the existing best-performing algorithms. Thus, the proposed model is effective and can improve computational efficiency to a certain extent. The NURBS surfaces generated by the proposed model can be further applied to calculating the hydrostatic elements of hulls and compartments. Full article
(This article belongs to the Topic Ship Dynamics, Stability and Safety)
Show Figures

Figure 1

17 pages, 1571 KiB  
Article
A Feedrate Planning Method in CNC System Based on Servo Response Error Model
by Baoquan Liu, Haoming Zhang, Yi Liu and Maomao Lu
Electronics 2023, 12(14), 3150; https://doi.org/10.3390/electronics12143150 - 20 Jul 2023
Cited by 4 | Viewed by 1917
Abstract
Reducing servo response error and further making reduction on contour error is crucial for high-precision computer numerical control (CNC) machine tools. For a permanent magnet synchronous motor (PMSM) servo system, there is always a response lag in feedrate tracking, which would introduce response [...] Read more.
Reducing servo response error and further making reduction on contour error is crucial for high-precision computer numerical control (CNC) machine tools. For a permanent magnet synchronous motor (PMSM) servo system, there is always a response lag in feedrate tracking, which would introduce response error into the machining trajectory. Therefore, it is necessary to improve the performance of feedrate planning and interpolation for trajectory path. In this paper, a novel contour error compensation strategy is proposed. Compared with the mainstream methods, the proposed method offers a simplified alternative to existing contour error estimation techniques. Through a three-closed-loop control structure of a PMSM servo system, a response error model is founded. Afterwards, an improved S-model feedrate planning method is introduced according to the servo response error compensation. This predicted error is subsequently compensated in each interpolation cycle, resulting in a reduction of contour error. Finally, simulations and experiments are performed to demonstrate that the contour error can be reduced in both the ‘∞’-shaped Non-Uniform Rational B-Spline (NURBS) curve path and the butterfly-shaped NURBS curve path using the proposed method. Full article
Show Figures

Figure 1

21 pages, 3526 KiB  
Article
NURBS Interpolator with Minimum Feedrate Fluctuation Based on Two-Level Parameter Compensation
by Mingxing Nie, Tao Zhu and Yue Li
Sensors 2023, 23(8), 3789; https://doi.org/10.3390/s23083789 - 7 Apr 2023
Cited by 4 | Viewed by 1919
Abstract
Feedrate plays a crucial role in determining the machining quality, tool life, and machining time. Thus, this research aimed to improve the accuracy of NURBS interpolator systems by minimizing feedrate fluctuations during CNC machining. Previous studies have proposed various methods to minimize these [...] Read more.
Feedrate plays a crucial role in determining the machining quality, tool life, and machining time. Thus, this research aimed to improve the accuracy of NURBS interpolator systems by minimizing feedrate fluctuations during CNC machining. Previous studies have proposed various methods to minimize these fluctuations. However, these methods often require complex calculations and are not suitable for real-time and high-precision machining applications. Given the sensitivity of the curvature-sensitive region to feedrate variations, this paper proposed a two-level parameter compensation method to eliminate the feedrate fluctuation. First, in order to address federate fluctuations in non-curvature sensitive areas with low computational costs, we employed the first-level parameter compensation (FLPC) using the Taylor series expansion method. This compensation allows us to achieve a chord trajectory for the new interpolation point that matches the original arc trajectory. Second, even in curvature-sensitive areas, feedrate fluctuations can still occur because of truncation errors in the first-level parameter compensation. To address this, we employed the Secant-based method for second-level parameter compensation (SLPC), which does not require derivative calculations and can regulate feedrate fluctuation within the fluctuation tolerance. Finally, we applied the proposed method to the simulation of butterfly-shaped NURBS curves. These simulations demonstrated that our method achieved maximum feedrate fluctuation rates below 0.01% with an average computational time of 360 us, which is sufficient for high-precision and real-time machining. Additionally, our method outperformed four other feedrate fluctuation elimination methods, highlighting its feasibility and effectiveness. Full article
(This article belongs to the Special Issue Digital Signal Processing for Modern Technology)
Show Figures

Figure 1

17 pages, 4638 KiB  
Article
Rotation-Angle Solution and Singularity Handling of Five-Axis Machine Tools for Dual NURBS Interpolation
by Pengpeng Sun, Qiang Liu, Jian Wang, Zhenshuo Yin and Liuquan Wang
Machines 2023, 11(2), 281; https://doi.org/10.3390/machines11020281 - 13 Feb 2023
Cited by 3 | Viewed by 3294
Abstract
Dual NURBS interpolation has been proven an essential technique for high-speed precision machining of complex surfaces. The solution of rotation angles and their derivatives is the basis of kinematic transformation and feedrate optimization in dual NURBS interpolation. The characteristics of the rotation motion [...] Read more.
Dual NURBS interpolation has been proven an essential technique for high-speed precision machining of complex surfaces. The solution of rotation angles and their derivatives is the basis of kinematic transformation and feedrate optimization in dual NURBS interpolation. The characteristics of the rotation motion of five-axis machine tools with different structures are analyzed. A generic model of dual heads of the vertical five-axis machine tool is established to unify the solution of rotation angles. Then, a generic method for solving the rotation angles and derivatives based on the vector inner product is proposed, and the solution space is analyzed. A singularity handling is given to avoid abrupt rotation angles based on the higher derivatives of the tool orientation vector. The proposed method obtained smooth rotation angles at the singularity points in the cardioid dual NURBS interpolation experiment. It reduced the machining time by 43.3% compared with the simple inverse trigonometric method based on kinematic transformation. Experiment results demonstrate that the proposed method is feasible and effective, and has significant theoretical and practical value for optimizing five-axis CNC machining. Full article
(This article belongs to the Special Issue Design and Application of Advanced Manufacturing Systems)
Show Figures

Figure 1

20 pages, 1867 KiB  
Article
Experimental Study of Robotic Polishing Process for Complex Violin Surface
by Hosham Wahballa, Jinjun Duan, Wenlong Wang and Zhendong Dai
Machines 2023, 11(2), 147; https://doi.org/10.3390/machines11020147 - 21 Jan 2023
Cited by 7 | Viewed by 3506
Abstract
This paper presents a robotic polishing process for complex violin surfaces to increase efficiency and minimize the cost and consumed time caused by using labor and traditional polishing machines. The polishing process is implemented based on modeling a smooth path, controlled contact force [...] Read more.
This paper presents a robotic polishing process for complex violin surfaces to increase efficiency and minimize the cost and consumed time caused by using labor and traditional polishing machines. The polishing process is implemented based on modeling a smooth path, controlled contact force embedded with gravity compensation and material removal depth. A cubic Non-Uniform Rational Bases-Spline (NURBS) interpolation curve combined with an S-curve trajectory model is used to generate a smooth polishing path on a complex violin surface to achieve stable motion during the polishing process. An online admittance controller added to the fast gravity compensation algorithm maintains an accurate polishing force for equal removal depth on all polished surface areas. Then, based on Pythagorean theory, the removal depth model is calculated for the violin’s complex surface before and after polishing to estimate the accuracy of the polishing process. Experimental studies were conducted by polishing a wooden surface using the 6DOF robot manipulator to validate this methodology. The experimental results demonstrated that the robot had accurate polishing force based on the online admittance controller with gravity compensation. It also showed a precise proportional uniformity of removal depths at the different normal forces of 10, 15, and 20 N. The final results indicated that the proposed experimental polishing approach is accurate and polishes complex surfaces effectively. Full article
(This article belongs to the Topic Robotics and Automation in Smart Manufacturing Systems)
Show Figures

Figure 1

17 pages, 6437 KiB  
Article
Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping
by Jongkwan Kim, Jintae Han, Kahyun Park and Sangmuk Seok
Appl. Sci. 2022, 12(22), 11652; https://doi.org/10.3390/app122211652 - 16 Nov 2022
Cited by 10 | Viewed by 3815
Abstract
Traditional inverse distance weighting (IDW) interpolation is a process employed to estimate unknown values based on neighborhoods in 2D space. Proposed in this study is an improved IDW interpolation method that uses 3D search neighborhoods for effective interpolation on vertically connected observation data, [...] Read more.
Traditional inverse distance weighting (IDW) interpolation is a process employed to estimate unknown values based on neighborhoods in 2D space. Proposed in this study is an improved IDW interpolation method that uses 3D search neighborhoods for effective interpolation on vertically connected observation data, such as water level, depth, and altitude. Borehole data are the data collected by subsurface boring activities and exhibit heterogeneous spatial distribution as they are densely populated near civil engineering or construction sites. In addition, they are 3D spatial data that show different subsurface characteristics by depth. The subsurface characteristics observed as such are used as core data in spatial modeling in fields, such as geology modeling, estimation of groundwater table distribution, global warming assessment, and seismic liquefaction assessment, among others. Therefore, this study proposed a seismic liquefaction assessment and mapping workflow using an improved IDW application by combining geographic information system (GIS) (ArcGIS (Esri, Redlands, CA, USA)), NURBS-based 3D CAD system (Rhino/Grasshopper (Robert McNeel & Associates, Seattle, WA, USA)), and numerical analysis system (MATLAB (MathWorks, Natick, MA, USA)). The 3D neighborhood search was conducted by the B-rep-based 3D topology analysis, and the mapping was done under the 2.5D environment by combining the voxel layer, DEM, and aerial images. The experiment was performed by collecting data in Songpa-gu, Seoul, which has the highest population density among the OECD countries. The results of the experiment showed between 7 and 105 areas with liquefaction potentials according to the search distance and the method of the approach. Finally, this study improved users’ accessibility to interpolation results by producing a 3D web app that used REST API based on OGC I3S Standards. Such an approach can be applied effectively in spatial modeling that uses 3D observation data, and in the future, it can contribute to the expansion of 3D GIS application. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop