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Abstract: With the increasing demand for processing precision in the manufacturing industry, feed-
rate scheduling is a crucial component in achieving the processing quality of complex surfaces.
A smooth feed-rate profile not only guarantees machining quality but also improves machining
efficiency. Although the typical offline feed-rate scheduling method possesses good processing
efficiency, it may not provide an optimal solution due to the NP-hard problem caused by the feed-rate
scheduling of continuous curve segments, which easily results in excess kinetic limitations and
feed-rate fluctuations in a real-time interpolation. Instead, the FIR (Finite Impulse Response) method
is widely used to realize interpolation in real-time processing. However, the FIR method will filter
out a large number of high-frequency signals, leading to a low-processing efficiency. Further, greater
acceleration or deceleration is required to ensure the interpolation passes through the segment end at
a predefined feed rate and the deceleration in the feed rate profile appears earlier, which allows the
interpolation to easily exceed the kinetic limitation. At present, a simple offline or online method
cannot realize the global optimization of the feed-rate profile and guarantee the machining efficiency.
Moreover, the current feed-rate scheduling that considers both offline and online methods does not
consider the situation that the call of offline data and online prediction data will lead to a decrease in
the real-time performance of the CNC system. Further, real-time feed-rate scheduling data tend to
dominate the whole interpolation process, thus reducing the effect of the offline feed-rate scheduling
data. Hence, based on the tool path with C3 continuity (Cubic Continuously Differentiable), this paper
first presents a basic interpolation unit relevant to the S-type interpolation feed-rate profile. Then, an
offline local smooth strategy is proposed to smooth the feed-rate profile and reduce the exceeding
of kinetic limitations and feed-rate fluctuations caused by frequent acceleration and deceleration.
Further, a global online smoothing strategy based on the data generated by offline pre-interpolation is
presented. What is more, FIR login and logout conditions are proposed to further smooth the feed-rate
profile and improve the real-time performance and machining efficiency. The case study validates
that the proposed method performs better in kinetic results compared with the typical offline and FIR
methods in both the simulation experiment and actual machining experiments. Especially, in actual
processing experiments, the proposed method obtains a 28% reduction in contour errors. Further, the
proposed method compared with the FIR method obtains a 15% increase in machining efficiency but
only a 4% decrease compared with the typical offline method.

Keywords: interpolation; feed-rate scheduling; FIR; smoothing method; NURBS

1. Introduction

With the continuous development of the manufacturing industry, the processing
efficiency and quality of complex surface parts are increasingly required by end users.
Traditional linear or circular interpolation is not smooth enough, which easily leads to
frequent acceleration and deceleration and further affects the processing quality. Therefore,
the parameter interpolation technology of the nonuniform rational B-spline (NURBS)
interpolation [1,2] has become the main method to obtain a smoother tool path and feed-
rate profile. As feed-rate scheduling is one of the key parts of parameter interpolation [3], a
smoother feed-rate profile cannot only improve processing efficiency and ensure processing
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accuracy but also extend the life of the machine tool. Therefore, a large number of studies
have focused on this issue to obtain a smoother feed-rate profile. At present, there are
two methods of feed-rate scheduling to obtain a smoother feed-rate profile: offline feed-rate
scheduling and online feed-rate scheduling.

Offline feed-rate scheduling. ZHANG [4] establishes a generalized representation for
the nonlinear feed-rate scheduling model, with static and dynamic feed-rate constraints,
through a numerical convex transformation. Beudaert [5] presented a VPO (Velocity Profile
Optimization) method to obtain an optimized feed-rate profile that makes the best use of
the kinematical characteristics of the machine tool. ZHANG [6] proposed an analytical
one-step corner-smoothing method based on feed-rate blending to tackle the bottlenecks
of linear interpolation and two-step geometry-based corner-smoothing methods in five-
axis machining. HUANG [7] presents an analytical continuous-smoothing method for
the five-axis toolpath by simultaneously scheduling the tool position and tool-orientation
trajectories. Then, a time-synchronization strategy is proposed to realize the feed-rate
scheduling. LIU [8] proposed a feed-rate planning module to obtain the restricted feed
rate at the sharp corners of the NURBS curve, as well as an acc–jerk continuous module to
achieve continuous acceleration and jerk. Mizoue [9] proposed a strategy for error com-
pensation to optimize the feed-profile schedule for a single-step input. XU [10] adopted an
S-shape acceleration/deceleration control to adjust the jerk, which can avoid the problem of
feeding-speed overrun. At the same time, an interpolation parameter-calculation method
is proposed to solve the problem of velocity error in the interpolation point-parameter cal-
culation. HAN [11] introduced a feed-rate scheduling method for smooth time-dependent
processing beams, which optimizes the feed rate within the dynamic constraints of the
machine tool by establishing acceptable path spacing and feed ranges. Erkorkmaz [12]
introduces a new optimization algorithm that combines linear programming and a window-
ing algorithm for optimizing the feed rates of spline tool paths. The algorithm has linear
computational complexity and can process long tool paths in parallel. The offline feed-rate
method is usually used to optimize kinetic profiles before real-time interpolation, which
can obtain a reasonable machining efficiency. Especially for high-curvature segments, it
can solve the singular points in the feed-rate profile that cause abnormal kinetic parameters
and feed-rate fluctuations. However, when it comes to the transition of continuous high-
curvature segments, the offline method relies too much on specific feed-rate scheduling
models. If the model is not sufficient to complete the feed-rate scheduling tasks or there
is no optimal solution in the multi-objective optimization problems [13] caused by the
transition of continuous high-curvature segments, it may lead to large errors as the kinetic
parameters do not comply with the kinetic constraints. Moreover, offline methods require
significant effort in model accuracy and solving multi-objective optimization problems.
Although there are many solutions for multi-objective optimization problems [14,15], it is
still difficult to apply them to the actual processing due to the complexity of interpolation
conditions and the high consumption of system resources. Therefore, it remains a challenge
to increase the universality of the offline feed-rate scheduling models and eliminate the
influence caused by the absence of optimal solutions in multi-objective optimization, which
is one of the focuses of this work.

Online feed-rate scheduling. FAN [16] introduced a jerk-smooth feed-rate model to
perform time-optimal feed-rate scheduling and then applied it to a real-time tool-path pro-
cessing strategy to reduce the vibration and guarantee high-machining efficiency. DU [17]
proposed a real-time interpolation algorithm from the perspective of kinematics to achieve
uninterrupted feed motion throughout the global tool path. At the same time, the accel-
eration profile achieves G continuous to avoid unnecessary feed frustration and inertial
impact, reaching the balance between time-optimal and motion performance. LI [18] pro-
posed a real-time look-ahead method to plan the global feed-rate profile and adjust the
transition schemes without intersections constantly. This method can utilize the maximal
acceleration and/or jerk capabilities of the drive axis to achieve smooth axial-kinematic
profiles while satisfying the user-specified chord error. ZHAO [19] developed a real-time
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look-ahead scheme, which comprises path smoothing, bidirectional scanning, and feed-rate
scheduling to acquire a feed-rate profile with smooth acceleration. HUANG [20] proposed
an online smoothing method that is integrated into a self-developed open-architecture
CNC system to optimize the feed rate with a jerk-bounded trajectory profile. JI [21] pro-
posed an adaptive NURBS curve interpolation with a real-time and flexible S-shaped
curve acceleration/deceleration (ACC/DEC) control method to realize high-speed and
high-precision machining. However, the methods mentioned above require a lot of system
resources and depend on the accuracy of the prediction model in the actual machining
process. Moreover, a constant low-feed rate will occur for a long period in the online feed-
rate scheduling method, which decreases the machining efficiency. Hence, instead of the
traditional online feed-rate scheduling method, the FIR feed-rate scheduling method has
gradually become the core method. Tajima [22–24] uses FIR to adjust the machining feed
rate to control the global blending accuracy along the five-axis machining tool path, which
enables real-time interpolation of densely discretized five-axis machining tool paths in real
time and, at the same time, provides control over the frequency spectrum of interpolated
trajectories. Hayasaka [25] used the FIR filter to optimize the feed-rate profile of G01 and
G02/G03 movement and then proposed a novel “block segmentation” method to keep
the extension time of the G line block to a minimum. Sencer [26] introduced a real-time
trajectory-generation algorithm based on FIR to optimize overlapping acceleration profiles.
JIANG [27] introduced a two-step real-time decoupling local smoothing method to solve
the problem of the five-axis tool-path smoothing. Further, the continuous acceleration of
each axis motion of the machine tool is realized through feed-rate scheduling by the FIR
filtering. Note that, compared with the offline method, the FIR method can better ensure
the processing error, but there will be a significant decrease in the processing efficiency. At
the same time, as the deceleration point of the FIR method appears earlier in the feed-rate
scheduling, the instantaneous large jerk is usually needed to ensure that the interpolation
can pass the curve endpoint at a determined feed rate, which will produce a large feed-
rate fluctuation and affect the processing quality. Few studies have conducted feed-rate
scheduling based on both offline and online feed-rate scheduling. WANG [28] proposed
a NURBS interpolator with two offline–online stages. In the offline module, the limited
feed rate of the curve is calculated with a consideration of geometric characteristics and
dynamic constraints, and the curve is split into several segments according to the key
region. In the real-time interpolation module, an average feed-rate calculation method is
proposed to determine the sampling step size and to minimize the feed-rate fluctuation.
This feed-rate scheduling method can ensure processing efficiency and steady it to a certain
degree. However, it does not consider the situation that the call of offline data and online
prediction data will lead to a decrease in the real-time performance of the CNC system.
Further, real-time feed-rate scheduling data tend to dominate the whole interpolation
process, thus reducing the effect of offline feed-rate scheduling data. Therefore, real-time
feed-rate scheduling is still a challenge and remains a limitation, which is the other focus of
this work.

This paper addresses the feed-rate scheduling problem and proposes a novel approach
to smooth the feed-rate profile within both the offline phase and the real-time phase. As
opposed to utilizing simple offline or online methods, the entire process is realized by
the local smooth of the feed-rate profile in the offline phase and the global smoothing
of the feed-rate profile in the real-time phase. This paper, for the first time, presents a
basic interpolation unit relevant to the S-type interpolation feed-rate profile. Then, an
offline local smooth strategy is proposed to smooth the feed-rate profile and reduce the
exceeding of kinetic limitations and feed-rate fluctuations caused by frequent acceleration
and deceleration. Further, a global online smoothing strategy based on the data generated
by offline pre-interpolation is presented. What is more, FIR login and logout conditions are
proposed to further smooth the feed-rate profile and improve the real-time performance
and machining efficiency. Some of the key contributions are:



Machines 2024, 12, 186 4 of 33

• A basic interpolation unit relevant to the S-type interpolation feed-rate profile based
on the tool path with C3 continuity is presented to describe the curve features.

• An offline local smooth strategy is proposed to smooth the feed-rate profile and reduce
the exceeding of kinetic limitations and feed-rate fluctuations caused by frequent
acceleration and deceleration.

• A global online smoothing strategy based on the data generated by offline pre-
interpolation is presented to increase machining efficiency and reduce larger jerks that
easily cause the exceeding of kinetic limitations and feed-rate fluctuations.

• FIR login and logout conditions are proposed to further smooth the feed-rate profile
and improve the real-time performance and machining efficiency.

The rest of the paper is organized as follows: In Section 2, an offline pre-interpolation
based on a local smooth strategy is developed. In Section 3, an online interpolation based on
a global smooth strategy carrying FIR login and logout conditions is presented. In Section 4,
three comparison experiments, one simulation experiment, and two actual machining
experiments are present to verify the effectiveness of the proposed method. Finally, in
Section 5, the discussion of the paper and future work is proposed.

2. Offline Pre-Interpolation Based on a Local Smooth Strategy

2.1. The Generation of Tool Path with C3 Continuity

The cutter-location (CL) data generated by the computer-aided manufacturing (CAM)
system, such as PowerMILL and SolidCAM, is fitted to parametric B-splines P(u) and
O(u), which interpolate the tool-tip position and orientation as a function of the geometric
parameters u. The parametric position spline P(u), with the control points Pi = [Px,i, Py,i,
Pz,i]T and degree n, is defined as follows [2]:

P(u) =
n

∑
i=0

Ni,n(u)Pi (1)

where Ni,k(u) is the basis function and Ni,k(u) can be expressed as:

Ni,k(u) =
u − ui

ui+k−1 − ui
Ni.k−1(u) +

ui+k − u
ui+k − ui+1

Ni+1.k−1(u) (2)

Note that the limiting condition for k = 1 is:

Ni,1(u) =
{

1 u i ≤ u ≤ ui+1 u ∈ [0, 1]
0 otherwise

(3)

To achieve continuity in a third geometric derivative of P(u), the number of control
points is set to 7 and the degree is set to 5. Moreover, the symmetry on both sides of the
high-curvature points is guaranteed by introducing a non-periodic vector Up = [0 0 0 0 0 0
0.5 1 1 1 1 1 1].

Similarly, the parametric orientation spline can be expressed as:

O(u) =
n

∑
i=0

(Nnorm)i,k(u)Oi (4)

Note that O(u) is a normalized spline with respect to the seventh-degree heptic spline
curve B(u), where O(u)= B(u)/∥B(u)∥, u ∈ [0,1]. (Nnorm)i,k can be defined as (Nnorm)i,k =
Ni,k/∥B(u)∥. To achieve continuity in a third geometric derivative of O(u), the number of
control points is set to 9, the degree is set to 7, and the non-periodic vector is Uo = [0 0 0 0 0
0 0 0 0.5 1 1 1 1 1 1 1 1].
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2.1.1. Optimized Fitting of Position Spline

The tool-tip spline generated by CAM software is fitted by a quintic spline with the
help of seven control points Pi = [P0, P1, . . ., P6], shown in Figure 1. Note that points P0
and P6 are regarded as the starting point (i.e., u = 0) and the endpoint (i.e., u = 1) of the
tool-tip spline, respectively. Moreover, P3 is the point with the highest curvature within the
spline. To achieve C3 continuity of the tool path and ensure the accuracy of the feed-rate
value in the starting point P0 and the endpoint P6, the chord error εp is also essential to take
into consideration.
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The condition of C3 continuity for the tool-tip spline is that the second and the third
derivative of the position vector P, with respect to the tool-path length s for a linear tool-path
profile, is always zero [25].

d2P
du2

∣∣∣
u=us ,ue

= 0 ; d3P
du3

∣∣∣
u=us ,ue

= 0 ,

d2u
ds2

∣∣∣
u=us ,ue

= 0 ; d3u
ds3

∣∣∣
u=us ,ue

= 0
(5)

The control points P0 and P6 can be regarded as the starting points of the forward and
inverse interpolation, due to the symmetry of the fitting quintic spline. Then, submitting us
= 0 and ue = 0 into Equation (5):

d2P
du2

∣∣∣
us=0

= 80P0 − 120P1 + 40P2

d3P
du3

∣∣∣
us=0

= −480P0 + 840P1 − 480P2 + 120P3

d2P
du2

∣∣∣
ue=0

= 80P6 − 120P5 + 40P4

d3P
du3

∣∣∣
ue=0

= −480P6 + 840P5 − 480P4 + 120P3

(6)

Submitting Equation (6) into Equation (5), the relationship of the control points P1, P2,
P3, P4, P5 can be expressed as: 

P1 = 2P2−P3
P0 = 2.5P2 − 0.5P3
P5 = 2P4 − P3
P6 = 2.5P4 − 0.5P3

(7)

Assume that the linear length between the control points P2 and P3 is l. Similarly, the
length between P3 and P4 is also l due to the symmetry of the fitting spline. Submitting the
liner length l into Equation (6), the linear length P0P1 is 0.5l, P1P2 is l, P6P5 is 0.5l, and P5P4
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is l. Note that the linear length l is variable, respected with the chord error εp which occurs
between control point P3 and u=0.5 of the fitting spline. As shown in Figure 1, the chord
error εp can be expressed as:

εp = P3 − P(0.5)
εp = 1

4 (P3 − P4) + 1
4 (P3 − P2) + 1

16 (P3 − P5) + 1
16 (P3 − P1)

εp = 3
4 l cos( α

2 )
(8)

where α is the angle between the vector P3P0 and P3P6.
To ensure surface quality, the chord error εp should be within the maximum chord

εmax defined by the user, which means εmax ≥ εp. Hence, the maximum linear length lmax,
in respect with the maximum chord εmax, can be expressed as:

lmax ≤ 4εmax · [3 cos(
α

2
)]
−1

(9)

2.1.2. Optimized Fitting of Orientation Spline

As shown in Figure 2, nine control points Oi = [O0, O1, . . .. . .O8] are inserted to fit
the orientation spline. Since the orientation spline is located in a 3D space, the linear
relationship among control points cannot be easily obtained. Hence, the tangential vectors
at each control point are mapped to the XOY plane, where a fan-shaped plane is obtained
and the angle among tangential vectors is θl, γl, βl, αl, θr, γr, βr, and αr. Note that O0 and
O8 are regarded as the starting point (us = 0) and endpoint (ue = 1), and O4 is located at the
highest curvature of arc O0O8. Similarly, the vector OO4 divides the fan-shaped plane into
two equal sections, where θ1 = θr, γl = γr, and so on.
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The condition that ensures the C3 continuity of the fitting spline can be expressed
as [29]: 

dO
du

∣∣∣
u=us

= 5θl(
−OO0 cos θl+OO4 cos(θ−θl)

sin θ )

d2O
du2

∣∣∣
u=us

= −25θ2
l(

−OO0 sin θl+OO4 sin(θ−θl)
sin θ )

dO
du

∣∣∣
u=ue

= 5θr(
−OO8 cos θr+OO4 cos(θ−θr)

sin θ )

dO
du

∣∣∣
u=ue

= −25θ2
r(

−OO8 sin θr+OO4 sin(θ−θr)
sin θ )

(10)
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Similar to the position spline, O0 and O8 can be regarded as the starting points of
forward and backward interpolations. Then, submit us = 0 and ue = 0 into Equation (10):

dO
du

∣∣∣
us=0

= AOo + BO1 + CO2 + D1O3

dO
du

∣∣∣
ue=0

= AO8 − BO7 − CO6 − DO5
(11)

The coefficient matrix about [A B C D]T can be expressed as:
A
B
C
D

 =


−84[(−273 − 126∆2 − 210∆1 + 490(∆1)

2) · ∆1 + 22∆2 + 5∆3 + 42∆4 + 70
588(−20∆1 − 6∆2 + 42(∆3)

2 − 11)
1848 − 3528∆1
420

 (12)

where ∆1 = cos(θl − γl), ∆2 = cos(θl − βl), ∆3 = cos(θl − αl), and ∆4 = cos(γl− βl).
The synchronization of the position and orientation splines at the starting point us = 0

and endpoint ue = 1 should respect Equation (13).

δl/ax = 2.5l/lx (13)

where ax∈[0, δl] is the intermediate angle between the vector OO0 and OO4, lx ∈[0, 2.5l]
is the intermediate distance in P0P3. Since the fitting spline is a symmetrical curve, the
intermediate angle between the vectors OO4 and OO8, and the intermediate position in
the P3P6, can also be expressed as Equation (13).

It can be figured out that the maximum orientation error occurs at the middle point
O4 of the orientation spline. To satisfy the accuracy, the reverse cosine of the angle between
the vector OO4 and the vector generated at u = 0.5 of O(u) should be within the maximum
chord error εom.

cos−1(OO4 · O(0.5)) ≤ εom

⇒ cos−1( cos γl+6 cos βl+15 cos αl+10
32∥B(0.5)∥ ) ≤ εom

(14)

The Newton–Raphson iterative optimization algorithm [29] is utilized to obtain the
solution of Equations (13) and (14). Then, the maximum orientation error εom respected
with maximum liner length lmax can be expressed as:

lmax ≤ 2.5l · εom

θl
(15)

Hence, the restrictive condition of the position spline and the orientation spline to
achieve C3 continuity can be expressed as:

lmax = min
{

2.5l · εom

θl
, 4εmax · [3 cos(

α

2
)]
−1

}
(16)

2.2. S-Type Interpolation Feed-Rate Profile

During the machining process, the dynamic characteristics of the tool have a great
impact on the machining efficiency and accuracy [30]. To reduce the tool vibration, an
S-type feed-rate profile is introduced to implement the interpolation. As shown in Figure 3,
the feed-rate profile consists of seven phases (i.e., Phase I–VII), where I to III is the accel-
eration phase, IV is the constant-speed phase, and V–VII is the deceleration phase that is
symmetrical with the acceleration phase.
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Velocity v(t) can be expressed as follows [10]:

v(t) =



vs +
1
2 Jmaxτ1

2 t0 ≤ t < t1 v0 = vs
v1 + amaxτ2 t1 ≤ t < t2 v1 = vs +

1
2 JmaxT1

2

v2 + amaxτ3 − 1
2 Jmaxτ3

2 t2 ≤ t < t3 v2 = v1 + amaxT2
v3 t2 ≤ t < t3 v3 = v1 = v2 +

1
2 JmaxT1

2

v4 − 1
2 Jmaxτ5

2 t4 ≤ t < t5 v4 = v3 = v1
v5 − amaxτ6 t5 ≤ t < t6 v5 = v4 − 1

2 JmaxT5
2

v6 − amaxτ7 +
1
2 Jmaxτ7

2 t6 ≤ t < t7 v6 = v5 − amaxT6

(17)

where τi is the integration variable that represents the local-time coordinate of each phase,
vs is the start velocity, ve is the end velocity, amax is the maximum acceleration, and Jmax is
the maximum jerk.

Then, acceleration a(t) can be expressed as Equation (18).

a(t) =



vsτ1 +
1
6 Jmaxτ1

3 t0 ≤ t < t1 s0 = 0
s1 + v1τ2 +

1
2 amaxτ2

2 t1 ≤ t < t2 s1 = vsT1 +
1
6 JmaxT1

3

s2 + v2τ3 +
1
2 amaxτ3

2 − 1
6 Jmaxτ3

3 t2 ≤ t < t3 s2 = s1 + v1T2 +
1
2 amaxT2

2

s3 + v3τ4 t3 ≤ t < t4 s3 = s2 + v2T1 +
1
3 JmaxT1

2

s4 + v4τ5 − 1
6 Jmaxτ3

3 t4 ≤ t < t5 s4 = s3 + v3T4
s5 + v5τ6 − 1

2 amaxτ3
2 t5 ≤ t < t6 s5 = s4 + v4T5 − 1

6 JmaxT5
3

s6 + v6τ7 − 1
2 amaxτ7

2 + 1
6 Jmaxτ7

3 t6 ≤ t < t7 s6 = s4 + v5T6 − 1
2 amaxT6

2

(18)

During the interpolation, it is necessary to limit the maximum feed rate vmax of each
segment to avoid exacerbating the chord error. Considering the effect of the radius of
curvature on the chord error, the following conditions should be respected to limit the
maximum feed rate.

vmax ≤ 2
Ts

√
εmax(2ρi − εmax) (19)

where ρi is the radius of curvature, εmax is the maximum chord error, and Ts is the interpo-
lation period.

Note that the inherent characteristics of machine tools, such as the electrical-response
frequency, will limit the interpolation feed rate of each segment. Thus, the interpolation
parameters shall be limited within the requirements of the machine tool.



Machines 2024, 12, 186 9 of 33


vmax ≤ vlim
amax ≤ alim
Jmax ≤ Jlim

(20)

Considering Equations (19) and (20), the maximum feed rate of each segment vmax can
be expressed as:

vmax = min
{

2
Ts

√
εmax(2ρi − εmax), vlim

}
(21)

2.3. Offline Local Smooth Strategy

Based on the C3 continuity of the fitting spline, the feed-rate profile must guarantee
that the feed-rate value at the start and end points of each segment follows a definite feed-
rate value that fulfills the feed-rate limitation requirements. However, during interpolation,
a shorter interpolation segment can lead to an acceleration mutation, resulting in significant
changes in the direction or the value of acceleration, ultimately leading to overcutting or
undercutting. Furthermore, when the interpolation spline comprises multiple complex
segments, it becomes challenging to obtain an optimal solution, and in some cases, no
solution can be achieved. Moreover, the significant curvature variations in interpolation
between continuous segments can also impact the interpolation accuracy. Hence, this paper
presented a local feed-rate smoothing strategy for feed-rate profiles based on C3 continuity.

2.3.1. Basic Interpolation Unit

According to the fitting spline in Section 2.1, the basic interpolation unit consists of
three segments, as shown in Figure 4. To better describe the interpolation unit, it is depicted
with the upper and lower bound. Two curve segments, Segment 1 and Segment 2, represent
the quintic splines from P3 to P6 and P0 to P3, respectively. As a linear segment, Segment 2
serves to connect the two curve segments, ensuring a smooth transition between them.
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Note that Segment 1 and Segment 3 represent the deceleration and acceleration phases
of the S-type interpolation feed-rate profile shown in Figure 3, respectively. To facilitate
the discussion of the following interpolation situation, define Sacc = s0 + s1 + s2, Sdec = s4
+ s5 + s6, and Sav = s3 as acceleration distance, deceleration distance, and uniform feed-
rate distance, respectively. Furthermore, the interpolation proceeds from Segment 1 to
Segment 2, and subsequently to Segment 3.

2.3.2. Local Smooth Strategy

Based on the proposed basic interpolation unit, the following local instability may
arise: (1) The short length of a certain line segment precludes it from attaining full ac-
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celeration or deceleration. To address this issue, the maximum feed rate allowed in this
short segment will be reduced, and the feed rate will remain at a consistent low speed
for an extended duration. (2) Endpoint singularity may occur during the interpolation
between segments. A common approach to address this issue is to reduce the interpolation
density of unstable segments. However, this approach may not fully meet the requirement
of C3 continuity, potentially leading to increased contour errors and decreased machining
accuracy. Moreover, introducing boundary conditions between segments can facilitate
local smoothness, yet finding a solution to this multi-factor optimization problem may
not always be feasible. Hence, a local smooth strategy that considers both machining
efficiency and interpolation accuracy is proposed in this section. Note that the local smooth
strategy discussed in this section is mainly to address segments smoothing on the basic
interpolation unit: local smoothing on a single segment or between multi-segments. More
complex situations, such as a smooth strategy in multiple basic units, will be discussed in
Section 3.

• Local smoothing on a single segment

(1) Linear segment cannot realize feed-rate profile
The condition of realizing the complete feed-rate profile is that:

Sacc + Sdec ≤ ls (22)

where ls is the approximate length of the linear segment. Generally, the length of the
parametric curve cannot be obtained by analytical methods. Hence, the approximate
segment length is solved using the method shown in Figure 5. Note that this approximate
method is suitable for both the linear segment and curve segment.
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Insert n equidistant points into a curve and the length of the polyline can be expressed as:

ls = l1 + l2 + . . . . . . ln (23)

According to the definition of a NURBS curve, the approximate length of ls is

ls = ∥P(ub)− P(u1)∥+ ∥P(u1)− P(u2)∥+ . . . + ∥P(un)− P(ue)∥ (24)

Since the approximate length is always shorter than the actual length of the curve,
Equation (22) always remains valid.

When ls < Sacc + Sdec in the linear segment, it indicates that the linear segment cannot
achieve the complete feed-rate profile and requires local smoothing. Generally, when it
comes to ls-Sav ≥ Sacc, an adaptive vmax = max{vs, ve} is used to ensure that the interpolation
proceeds through the endpoint at a predefined feed rate of ve. However, for a long duration,
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the interpolation will process at a low-feed rate, which reduces machining efficiency. Thus,
a joint method to smooth the local segment is proposed to regard the linear segment 2 and
the curve segment 3 as one segment to realize the complete S-type feed-rate profile.

As mentioned before, spline fitting based on C3 continuity is constrained by the
step size l, but the total length of the joint segment remains constant. If Equation (25) is
satisfied, it is feasible to ensure that all joint segments adhere to the complete feed-rate
profile requirements.

2.5l − Sacc3 − Sdec3 ≥ Sacc2 + Sdec2 − ls (25)

where Sacc3 and Sacc2 are represented as the acceleration length of Segment 2 and Segment 3,
respectively. Sdec3 and Sdec2 are represented as the deceleration length of Segment 2 and
Segment 3.

For the joint segment, the step size of Segment 3 should be modified as:

lnew =
2.5l + ls − Sacc2 − Sdec2

2.5
(26)

If Equation (25) is not satisfied and the approximate length ls is more than the length
of the linear segment S2 and less than Sacc2, Sacc2 ≥ ls ≥ S2, the interpolation can only
accelerate or decelerate to a constant value until reaching vmax= max{vs, ve}. Unfortunately,
it will inevitably reduce the machining efficiency. To solve this problem, a multi-segment
local smooth strategy will be introduced in the next section.

(2) Curve segment cannot realize the feed-rate profile.
In the basic unit, there are two curve segments, namely Segment 1 and Segment 3. As

the feed-rate profile of Segment 1 and Segment 3 is similar, take Segment 3 as an example to
make a detailed description. When the feed rate reaches the predefined vmax in Segment 3,
the interpolation may not reach the endpoint at the predefined feed-rate value ve due to a
shorter remaining length of Segment 3. In addition, to ensure the C3 continuity, the curve
length can be modified by adjusting the step length instead of merging with a new segment.
Note that a shorter curve length will result in a lower feed rate ve at the endpoint, which
will further worsen the acceleration and deceleration conditions within the curve segment.
Although modifying the maximum velocity as vmax = max{vs, ve} is a common method to
solve this problem, machining efficiency will inevitably decrease.

Hence, a feed-rate correction method based on the golden section is introduced.
Segment 3 is divided into acceleration areas and deceleration areas, where Sacc = 0.618 · 2.5l
with respect to vs > ve, or Sacc = 0.382 · 2.5l with respect to vs ≤ ve. As the length of
Segment 3 is fixed, the maximum velocity vmax can be modified as: |vs

2−vmax
2|

2a = 0.618 · 2.5l
|ve

2−vmax
2|

2a = 0.382 · 2.5l
(27)

If vmax can be solved with respect to a ≤ amax, the vmax of Segment 3 can be modified.
Otherwise, modified vmax = max{vs,ve}.

• Local smoothing between multiple segments

(1) Feed-rate mutation occurs at the interaction point between two segments
As mentioned before, when the step size of Segment 3 cannot be adjusted to ensure the

complete feed-rate profile of Segment 2, feed-rate mutation will occur at the intersection
between Segment 2 and Segment 3.

As shown in Figure 6, when it comes to vs > ve, the joint strategy is used to take
Segment 2 and Segment 3 as one segment to modify the feed-rate profile. In Figure 6a,
where ve < vs < vmax, set vs as ve and then modify the maximum feed rate of Segment 3
with the help of the S-type interpolation strategy to smooth local segments. If vmin < ve < vs,
shown in Figure 6b, Point A in the interval [us2, ue2] in Segment 2 of the fitting curve and
Point B in the interval [us3, ue3] in Segment 3 of the fitting curve are selected. The segment
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from Point A to Point B is the joint segment that smooths Segment 2 and Segment 3. Note
that the distance d from interaction point C to the joint segment should be within the
maximum chord error εmax to avoid overcutting and undercutting, which means d ≤ εmax,
as shown in Equation (28).

|(yb − ya)xc − (xb − xa)yc + xbya − xayb|√
(yb − ya)

2 + (xb − xa)
2

≤ ςmax (28)

where ya, yb, xa, xb are the Cartesian coordinate values of Point A and Point B, correspond-
ing to the parameter u of the NURBS curve. yc, and xc are the Cartesian coordinate values
of the interaction point C (i.e., u = ue).
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An iterative approach is used to yield a set of valid solutions (x, y) = {xi, yi}, and the
parameters u corresponding to the solution can also be determined, as well as the feed rate
at determined points. Furthermore, the feed-rate profile of the joint segment should respect:

Sacc + Sdce ≤
√
(yb − ya)

2 + (xb − xa)
2 (29)

The solution of Equation (29) can determine Points A and B, but it may not be unique.
Hence, to ensure the machining efficiency, the solution should guarantee the maximum
vmax of the feed-rate profile.

When it comes to ve < vmin < vs, as shown in Figure 6c, the interpolation cannot
accelerate to a corresponding feed rate in the interval [us, u2]. Even if the interpolation can
reach the corresponding feed rate, there will be a mutation in the direction of acceleration.
Hence, parameter values and the corresponding feed rate in Segment 2 are extracted along
the counter-clockwise direction [ue, u1], and then saved in two-tuple Di = (ui, vi) as Point A.
Then, the two-tuple is iterated to the parameter point u2 (i.e., Point C) in Segment 3 until
Equation (30) is satisfied. Note that, compared with Figure 6b, the point B in Segment 3
is fixed because the point B in the interval [u2, ue3] may cause the feed rate to exceed
the limitation.

Sacc + Sdec ≤ lm (30)

where lm is the distance between the varied-point A and the fixed-point B. Although the
iteration is a time-consumed method, the computation time in the proposed method will
not be affected due to the short length of Segment 2. When Equation (30) is satisfied, the
current point is regarded as the unique point B, and the S-type feed-rate strategy is used to
generate a smooth feed-rate profile. It can be found that there will be more points afterward
that satisfy Equation (30), but the machining efficiency in these points is lower than the
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previous point in turn. If there is no suitable point B, the current joint segment is marked
as an undetermined segment, and the global smoothing strategy is introduced in Section 3.

(2) Feed-rate direction mutation occurs at the interaction point between two segments
During the interpolation process, when there is an instantaneous change in the di-

rection of acceleration at the interaction point between two segments, shown in Figure 7,
vibration will occur. Although the vibration has little impact on the interpolation of a single
basic unit, it will affect the machining quality if continuous and intensive vibration occurs
within multiple basic units. Generally, if this instantaneous change can be reduced in a
single basic unit, the contour error caused by machining vibration will be effectively allevi-
ated. However, continuous changes in acceleration direction are sometimes unavoidable,
and solutions will be discussed in Section 3.
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(a) v1min > v2min; (b) Sacc ≤ ls(ab) ≤ Sacc(ab) + Sdec(ab); (c) (v1

2
max − v2

2
max)/2amax ≤ ls(ab) ≤ Sacc(ab);

(d) v1max < v2max.

When the angle θp generated by the acceleration direction of the interval ti and ti+1
meets Equation (31), the feed-rate direction mutation occurs.

at · ati+1

|at|
∣∣ati+1

∣∣ ≤ cos θp (31)

As θp affects the machining efficiency, θp is determined as 135◦. When v1min > v2min,
shown in Figure 7a, Point A (u = u1) and Point B (u = u2) can be taken as the starting
point and endpoint of the joint segment to conduct the S-type feed-rate strategy. If the
approximate length ls(ab) meets the condition, ls(ab) ≥ Sacc(ab) + Sdec(ab), the joint segment AB
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can realize the S-type feed-rate profile as a new segment. If Sacc ≤ ls(ab) ≤ Sacc(ab) + Sdec(ab),
shown in Figure 7b, only the deceleration phase in the S-type feed-rate profile is conducted.
When it comes to (v1

2
max − v2

2
max)/2amax ≤ ls(ab) ≤ Sacc(ab), shown in Figure 7c, the

feed rate first slows down to v2max and then moves at this constant feed rate to Point B.
Otherwise, the current basic unit is marked as an undetermined basic unit. Similarly, when
v1min < v2min, converting the deceleration phase into the acceleration phase can solve the
problem. When it comes to v1max < v2max, shown in Figure 7d, the interpolation cannot
directly accelerate to v2max due to the feed-rate limitation. Hence, the interpolation in
the interval [u1, ue] will process at the constant feed-rate v1max and then accelerate to
v2max. It should be guaranteed that the chord error εe at u = ue and v1e = v1max is less
than the maximum chord error εmax, which means 4εmax·(2ρe − εmax)/(Ts·v1max)2 ≥ 1.
Otherwise, the current basic unit is marked as an undetermined basic unit. Similarly, when
v1max > v2max, converting the acceleration phase into the deceleration phase can solve
the problem.

For smoothed basic interpolation units, the feed rate profile data is stored in a data
chain. In the real-time interpolation, the data in the data chain will be used as real-
time interpolation prediction data to further smooth the feed-rate profile. Especially for
undetermined basic units, when the symbol of an undetermined basic unit is identified, a
global online smoothing method will be applied, which is discussed in the following section.

3. Online Interpolation Based on Global Smooth Strategy

As mentioned above, interpolation can achieve a smoother process with the help of
offline pre-interpolation. However, the actual processing in the real-time interpolation
is more complex, especially when the curvature and the acceleration direction change
continuously. At this time, the optimized solution may not be found due to the NP hard
problem caused by multi-optimized targets, which will lead to overcutting or undercutting.
Although interpolation with FIR can smooth the interpolation process with continuous
kinematic features, it is not efficient because of the removal of most high-frequency sig-
nals. Hence, considering the advantages of FIR in the real-time domain for continuous
signal processing, a global online smoothing strategy is proposed based on the online
prediction and the offline feed rate profile generated in the offline interpolation, to realize
global smoothing.

3.1. FIR Feed Rate Compensation

The NC code generated by pre-interpolation data can be expressed as a time-dependent
feed-rate pulse [24], and the interpolation can be achieved by inserting the continuous
feed-rate pulses, shown in Figure 8.
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Since the continuous initial pulse convolution is not zero, the chord error in the
interpolation process can be precisely controlled by dwell time [5,6]. Thus, the position
spline in Figure 1 can be expressed by the overlap time Tk and the dwell time Td of FIR.
Then, Tk = 0, which means that interpolation reaches the start point P0, and Tk = 2Td, which
means that interpolation reaches the endpoint P6. When Tk ∈ [0, 2Td], the interpolation
is performed on the target spline segment. And the maximum chord error εp occurs at
Tk = Td. Note that the chord error around the segment junction due to changes in the
feed direction can be controlled analytically. As shown in Figure 9, a rectangular pulse
for a duration Tv indicates the acceleration and constant phases of the feed-rate profile.
When a non-zero overlapping time is set Tk > 0, the feed-rate direction from P2 towards
P3 is initiated with the start of convolution of the consecutive segment at t = Tv + Td − Tk.
The feed direction has completely changed when the interpolation reaches point P3 at t
= Tv + Td − Tk/2. Since P0P3 and P3P6 are symmetric, the feed rate is the same in these
continuous segments, but the feed-rate direction traverses. The change in feed direction is
controlled directly by the angle between linear segments:{

Fx
+

Fy
−

}
=

[
cos α − sin α
sin α cos α

]{
Fx

−

Fy
+

}
(32)

where Fx
+ and Fy

+ represent the interpolation that moves along P0P3, on the contrary, Fx
−

and Fy
− represent the interpolation that moves along P3P6. α is the angle between P0P3

and P3P6.
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Then, taking overlap time Tk and dwell time Td into consideration, the S-type feed-rate
profile can be expressed as [24]:

v′x,y(t) =



F−
x,y −

F−
x,y

2T1T2
(t − Tv)

2

F−
x,y −

F−
x,yT2

2T1
− F−

x,y
T1

(t − Tv − T2)
F−

x,y
2T1T2

(Tv + T1 + T2 − t)2

F−
x,y

2T1T2
(Tv + T1 + T2 − t)2 +

F+
x,y

2T1T2
(t − Tv − T1 − T2 + Tk)

2

F+
x,y

2T1T2
(t − Tv − T1 − T2 + Tk)

2

F+
x,yT2

2T1
+

F+
x,y

T1
(t − Tv − T1 − 2T2 + Tk)

2

F+
x,y −

F+
x,y

2T1T2
(Tv + 2T1 + 2T2 − Tk − t)2

Tv ≤ t ≤ Tv + T2

Tv + T2 ≤ t ≤ Tv + T1

Tv + T1 ≤ Tv + T1 + T2 − Tk

Tv + T1 + T2 − Tk ≤ t ≤ Tv + T1 + T2

Tv + T1 + T2 ≤ t ≤ Tv + T1 + 2T2 − Tk

Tv + T1 + 2T2 − Tk ≤ t ≤ Tv + 2T1 + T2 − Tk

Tv + 2T1 + T2 − Tk ≤ t ≤ Tv + 2T1 + 2T2 − Tk

(33)

where T1 and T2 are the time constant of two filters [27].
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Similarly, the maximum chord error εmax occurs at the intersection between F+
x,y

and F−
x,y. The relation between the chord error εp and the overlap time Tk is provided

as follows:

Tk =


3

√
24T1T2εp
F sin(α/2)

T2 +

√
4T1εp

F sin(α/2) −
T2

2

3

0 ≤ Tk ≤ 2T2

2T2 < Tk < T1 + T2

(34)

Since the chord error εmax has been determined in the offline interpolation, the synchro-
nization of parameters in both offline and online interpolation can be achieved. Similarly,
the chord error εo in the orientation spline can be expressed by the magnitude of the fre-
quency response of the FIR filter at the fundamental frequency of the circular motion wc.
Note that the radius of the fitting spline will be less than the actual curve with respect to
the FIR interpolation. Hence, the chord error εo generated by circular interpolation can be
expressed as:

εo =
√
(R(1 − G) cos(ωct + θs))2 + (R(1 − G) sin(ωct + θs))2

⇒ εo = R(1 − G)
(35)

where G is the frequency response function of two FIR filters, which can be expressed as:

G|ω=ωc
=

2R · sin( T1
2 ωc)

T1F
·

2R · sin( T2
2 ωc)

T2F
(36)

The fourth-order Taylor expansion is used to obtain the smooth approximation solution,
which is below the first notch of FIR filters. Note that the first notch is typically matched
with one of the structural resonances to mitigate vibrations [26] and minimize overall filter
delay. Then, with variable x expressed as wc

2, Equation (36) can be expressed as:

x4 − 80(
T1

2 + T2
2

T1
2T2

2 )x3 + 640(
10T1

2T2
2 + 3(T1

4 + T2
4)

T1
4T2

4 )x2 − 153600(
T1

2 + T2
2

T1
4T2

4 )x + 3686400
εo

T1
4T2

4 = 0 (37)

3.2. Basic Interpolation Units Mapping with FIR

The basic interpolation unit, mentioned in Figure 4, comprises two types of transitions:
the transition between linear and circular segments (from Segment 1 to Segment 2, or from
Segment 2 to Segment 3), and the transition between circular segments (from Segment 1
to Segment 3). For consecutive interpolations of multiple basic units, the chord error εi
should respect:

εi ≤ min{ε1, ε2 . . . . . . εn}, i = 1, 2 . . . . . . n (38)

During real-time interpolation, the chord error caused by the transition between basic
unit segments is mainly affected by the angle β between actual and theoretical interpolation
direction, tfilt and tref, respectively. Note that reducing the angle β can effectively control
the chord error within limitations. Hence, multiple-segment interpolation can be optimized
by controlling the vector angle β in the interpolation. For the transition between linear
and circular segments, as the radius of the circular interpolation is less than the theoretical
insertion radius, the actual interpolation direction tfilt will be located between circular
direction tref- and linear direction tref+, shown in Figure 10.

Therefore, the maximum value of the chord error can be expressed as:

cos β = max

 tre f
− · tre f

+∣∣∣tre f
−
∣∣∣∣∣∣tre f

+
∣∣∣ ,

t f ilt
− · tre f

+∣∣∣t f ilt‘
−
∣∣∣∣∣∣tre f

+
∣∣∣
 (39)

The solution in Equation (39) can be obtained in Ref. [31]. When the maximum angel
β between the actual and theoretical interpolation direction is found, the overlap time Tk
can also be determined.
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During the transition between circular segments, the contour error is also affected by
the angle between two direction vectors of the circular interpolation direction, shown in
Figure 11. Hence, the maximum chord error of the transition between arc segments can be
expressed as:

cos β = max

 tre f
− · tre f

+∣∣∣tre f
−
∣∣∣∣∣∣tre f

+
∣∣∣ ,

t f ilt
+ · tre f

−∣∣∣t f ilt‘
+
∣∣∣∣∣∣tre f

−
∣∣∣ ,

t f ilt
− · tre f

+∣∣∣t f ilt‘
−
∣∣∣∣∣∣tre f

+
∣∣∣ ,

t f ilt
− · t f ilt

+∣∣∣t f ilt‘
−
∣∣∣∣∣∣t f ilt

+
∣∣∣
 (40)
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Note that FIR will filter out the high-frequency signal in the real-time interpolation,
and the transition among multiple consecutive segments will make the interpolation at
an extremely low-feed rate. To solve this problem, a global online smoothing strategy is
proposed to combine the offline pre-interpolation data and the real-time FIR interpolation,
which aims to ensure the machining efficiency and realize the global optimization of the
feed-rate profile.

3.3. Global Online Smoothing Strategy
3.3.1. Fundamental Theory

Before the global smoothing strategy, the NC code corresponding to the pre-interpolated
data is generated, and then the feed rate profile is stored in the data chain. During real-
time interpolation, the FIR interpolator is activated to generate the feed-rate pulse of
each axis. Considering the low machining efficiency of FIR interpolation, a predictive
analysis method is introduced to determine the FIR intervention condition. The intervention
condition aids the interpolator in determining whether to utilize pre-interpolated data
or proceed with further smoothing of the feed rate. Simultaneously, if the interpolation
encounters an undetermined basic unit symbol of the NC code, the FIR interpolator declares
dominance in smoothing the feed rate. The predictive-analysis method aims to calculate
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the prediction error by filtering the real-time feed-rate signal into frequency components.
Subsequently, the mean absolute error (MAE) is introduced to evaluate prediction errors
to guarantee the FIR intervention condition. When the FIR interpolator completes the
smoothing task, the FIR logout condition is conducted to determine whether the FIR
interpolator continues processing or directly calls the rest of the offline data to complete
the remaining interpolation task. The flow chart of the global online smoothing strategy is
shown in Figure 12.
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3.3.2. FIR Login Condition

In real-time interpolation, the FIR module monitors the real-time interpolation process
according to the prediction error. When the prediction result is below the MAE, the
interpolated data are directly extracted from the data chain mentioned above, which
can increase the real-time performance of the system. Otherwise, there will be feed-rate
vibration in the following interpolation process, where FIR needs to intervene to realize the
global smoothing.
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The feed-rate signal v(t) can be divided into three parts, v(t), v′(t), v′′(t), to represent
velocity, acceleration, and jerk, respectively. Hence, the predictive model of real-time
interpolation can be expressed as [32]:

v(t + k) = v(t) + k · v′(t) + k2/2v′′ (t) (41)

where k is the predicted step length. Note that the length of the predicted step can affect
the accuracy of the predicted data. A larger predicted step length will increase the burden
of more calculations. However, high-frequency features within the feed-rate signal cannot
be accurately identified with a smaller predicted step length. Hence, the predicted step size
adopts the dynamic value, k = max{2.5l1 + l2 + 2.5l3}.

To obtain a smooth time series, the original velocity signal v(t) was filtered and
detrended by the sliding average method, and the original signal v(t) can be represented as
a sequence M of length n.

M = [v1, v2, . . . . . . , vn] (42)

Define the sliding-window size as m, and then M is segmented into m sequences. Each
sequence is averaged to obtain the smoothed signal value Vi ∈ M, where Vi is the time
series after smoothing:

v1
v2
. . .
vn

 =


(v1 + v2 + . . . . . . vm)/m
(v2 + v3 + . . . . . . + vm+1)/m

(vn−m+1 + vn−m+2 . . . . . . + vn)/m

 (43)

The smoothed time series V is regarded as the detrending section and is extracted
from the original signal v(t) to obtain the stationary time series Z(t) = v(t) − V(t). To obtain
the low-frequency component (detrend and periodic variation) and the high-frequency
component (noise and fluctuation) of the signal, wavelet decomposition was performed by
a discrete wavelet transform (DWT) for the stationary time series Z (t) [33]:

DWT(Z) = [cA(n), cD(n), cD(n − 1), . . . . . . , cD(1)] (44)

where cA(n) is the low-frequency component and the cD(n) to cD(1) are the high-frequency
components. The predicted value of the low-frequency component cA(n) can be obtained
by ARMA (autoregressive moving average model) as y1(t) = c+ Σ(ai*y(t-i)) + Σ(bj*e (t − j)).
Note that c is a constant, e(t-j) is the white noise, ai and bi are the self-regressive pa-
rameter and moving-average parameter, respectively. The predictive value y2(t) of
the high-frequency components is calculated using AR (autoregressive model) as
y2(t) = Σ(ai*z (t − i)) + e(t) and i is the order of the AR.

The prediction result V’(t) can be obtained by combining the prediction results of
the high-frequency and low-frequency components, with the help of the weighted aver-
ages method:

V′(t) = α · y1(t)− (1 − α) · y2(t) (45)

The prediction error e(t) is a basis for measuring whether feed-rate vibration occurs
due to a high-frequency signal, which can be expressed as [34]:

e(t) = V′(t)− v(t) (46)

MAE is very sensitive to small errors and is often used to evaluate prediction errors.
When it comes to Σ(e2(t)/n2 > 0.01, the feed-rate vibration occurs in the offline data.
Therefore, FIR filtering within Step i·k is required for the continuous high-frequency signal
in the feed-rate data. Note that i is determined as 3 to ensure the machining efficiency.
When Σ(e2(t)/n2 ≤ 0.01, the interpolation continues by reading the offline data.



Machines 2024, 12, 186 20 of 33

3.3.3. FIR Logout Condition

Generally, when FIR interpolation is involved, it can be ensured that the interpolation
can pass through the endpoint of the segment at the predefined feed rate. Moreover, the
FIR interpolator will log out if no condition to trigger the FIR login condition at the adjacent
segments is present. To prevent the system burden generated by the frequent calls of
the offline data and real-time data during the actual interpolation process, subsequent
segments will be evaluated when the FIR login condition is activated. When it comes to
∑n

0 en(tn) ≤ 0.05, n ≥ 5, the FIR interpolator will not log out. Otherwise, the offline data in
the data chain will be called to continue the interpolation process.

4. Case Study

In this section, simulations and experiments on the proposed feed-rate scheduling
method are performed to verify their effectiveness, and two feed-rate scheduling meth-
ods are compared (the typical offline feed-rate scheduling method and the FIR feed-rate
scheduling method) to highlight the superiority of the proposed method. Three different
NURBS curves were used as tool paths for the simulations and experiments. The WM-
shaped NURBS curve is used in the simulation experiment to verify the effectiveness of the
proposed method in the offline phase due to the simple geometry, where there exists no
continuous high-curvature segments that trigger the global online smoothing strategy in
the real-time phase. A butterfly-shaped NURBS curve and a tree-shaped NURBS curve are
used to verify the effectiveness of the complete functions of the proposed method in both
the offline phase and the real-time phase.

4.1. Simulation Experiment of the WM-Shaped NURBS Curve

The selected 2-orde WM-shaped NURBS curve and its curvature are shown in Figure 13.
The curve parameters are as follows: control points: (0,0), (9, 20), (11, 4), (13, 20), (25, −12),
(23, 8), (29, −4), (40, 0); weights vector: 1, 4, 6, 4, 1, 1,1, 1; knot vector: 0, 0, 0, 0.2, 0.3, 0.45,
0.7, 0.85, 1, 1, 1.
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the WM-shaped NURBS curve.

The simulation experiment is conducted on an Advantech industrial computer IPC-
610H with a 3.3 GHZ duel core, and all algorithms mentioned above are realized in
MATLAB. According to Ref. [4], the parameters used for the simulation are shown in
Table 1. For the configuration of the real-time phase, two FIR filters are used with time
constants set to T1 = 50 ms and T2 = 30 ms due to the simple geometry and fewer curve-
segment connections in the simulation experiment. Further, the dwell time identical to
the total FIR filter delay Td = 80 ms is inserted between the blocks, and the fundamental
frequency wc is set to 50 Hz.
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Table 1. Simulation parameters.

Parameter Value Unit

Interpolation period T 1 ms
Maximum chord error ςmax 0.001 mm
Maximum contour error εmax 0.05 mm
Maximum normal acceleration an,max 950 mm/s2

Maximum tangential acceleration at,max 2000 mm/s2

Maximum normal jerk Jn,max 26,000 mm/s3

Maximum tangential jerk Jt,max 30,000 mm/s3

Maximum feed rate f max 60 mm/s

The simulation results are shown in Figures 14–17. As shown in Figure 14, the feed-rate
profiles of the three methods are all within the limitations. Note that, within multiple high-
curvature segments u = [0.18, 0.24], the proposed method obtains a smoother transition of
the feed rate because the joint method is activated among the continuous high-curvature
segments instead of the maximum feed-rate scheduling. Although the typical offline
method can guarantee that the interpolation reaches the endpoint at the predefined feed
rate, large feed-rate fluctuations that affect the chord and contour errors occur in this
region. The FIR method also achieves a smoother feed-rate profile, but the processing time
simultaneously increases because a large number of high-frequency signals are filtered out.
Within u = [0.65, 0.78], the feed-rate and acceleration-direction mutation occur due to two
shorter segments with higher curvatures. It can be seen that the proposed method further
smoothed the feed-rate profile compared with the typical offline method to reduce the
feed-rate fluctuations. At the same time, there are frequent and high-amplitude acceleration
changes in the typical offline method. Moreover, the proposed method effectively reduces
the frequent changes in acceleration direction. Although a higher acceleration value is
used when leaving the curve segment (i.e., u > 0.62), the acceleration remains within the
limitation. Meanwhile, low-frequency signals are dominant in the interpolation with the
help of the FIR method, which causes an earlier deceleration to obtain a longer processing
time. For the jerk profile of the three methods, it exhibited relatively frequent jerk variations,
among which FIR performed the most ideally, effectively reducing both the frequency and
amplitude of jerk changes. The proposed method has alleviated the jerk fluctuations to
some extent compared with the typical offline method.

As shown in Figures 15 and 16, the chord error and contour error are guaranteed
in three methods. The FIR method achieves the best performance compared with other
methods. Although the typical offline method performs best during the processing time, it
has the highest amplitude of errors and the most curve segments with higher errors. Note
that, within the continuous high-curvature segments, the maximum errors of the proposed
method are consistent with the offline method, but the curve segments containing higher
errors are reduced. Moreover, the amplitude of chord and contour errors also decreased
due to the joint method in the offline local smoothing strategy.

As shown in Figures 17 and 18, the typical offline method performs worst, especially
within continuous high-curve segments where it has a higher normal acceleration and
jerk, as well as a higher proportion of high-amplitude segments. Due to the adoption of
the offline local smoothing strategy proposed in this paper, the feed-rate optimal solution
between curve segments can be effectively obtained, which reduces the amplitude of
normal acceleration, normal jerk, and the proportion of high-amplitude segments. The best
performance is achieved by the FIR method, as it achieves smaller normal acceleration and
jerk at the expense of a decreasing feed rate, resulting in smoother processing and smaller
amplitude values.
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Figure 14. Scheduled feed−rate, acceleration, and jerk profiles of WM−shaped NURBS curve. 
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Figure 15. Chord error of WM−shaped NURBS curve. (a) Proposed method; (b) typical offline 
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Figure 15. Chord error of WM−shaped NURBS curve. (a) Proposed method; (b) typical offline 
method; (c) FIR method. 

Figure 15. Chord error of WM-shaped NURBS curve. (a) Proposed method; (b) typical offline method;
(c) FIR method.
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Figure 18. Normal jerk of WM-shaped NURBS curve. (a) Proposed method; (b) typical offline method;
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From the simulation, the maximum tangential jerk, the maximum normal jerk, the
maximum contour error, and the maximum chord error obtained using the three methods
are listed and compared in Table 2, including a comparison of the machining indicators
of each method. Although all the kinematic parameters of the three methods are within
the limitations, the typical offline method performs worst, with the maximum normal
jerk 28,736.12 mm/s3, the maximum chord error 6.24 × 10−4 mm, and the maximum
contour error 4.12 × 10−4 mm. Owing to the offline local smooth strategy in the offline
phase, the parameter values scheduled by the proposed method were better with respect
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to the constraints. Although the FIR method performs best in kinematic parameters, it
obtains the worst performance on machining indicators, with a response time of 102 us,
a CPU occupancy rate of 22%, and a machining time of 1.95 s. Note that the FIR method
needs to schedule the feed-rate value in real time so system resources are more occupied,
and the scheduling time cannot be calculated. The proposed method obtains the best
scheduling time of 2.18 s because the proposed basic interpolation unit can solve the
feed-rate scheduling of joint segments more efficiently.

Table 2. Comparison of simulation results of the WM-shaped NURBS curve.

Constraints Typical Offline Method Proposed Method FIR Method

Maximum contour error (mm) 4.12 × 10−4 4.08 × 10−4 3.27 × 10−4

Maximum chord error (mm) 6.24 × 10−4 5.87 × 10−4 5.17 × 10−4

Maximum tangential jerk (mm/s3) 30,000.00 30,000.00 30,000.00
Maximum normal jerk (mm/s3) 28,736.12 26,000.00 25,762.07
Response time (us) 25 38 102
CPU occupancy rate (%) 13 15 22
Machining time (s) 1.62 1.66 1.95
Scheduling time (s) 2.75 2.18 \
FIR interpolator intervention No No Yes

To better verify the proposed method, the feed rate fluctuations are compared among
the three methods. As shown in Figure 19, high feed-rate fluctuations occur in the initial
transition of curve segments, which mainly comes from the large amplitude of accelerations
and decelerations of the typical offline method. However, the proposed method can
effectively reduce the feed-rate fluctuation so that the interpolation can smoothly pass
through curve segments. Note that the proposed method performs worse than the FIR
method in the transition of curve segments because high-frequency signals remain, but
feed-rate fluctuations are at a relatively excellent level. In the short transition of curve
segments, the typical offline method is adopted to produce more frequent and high-feed
rate fluctuations because the short deceleration distance needs a large acceleration and jerk
value. Less fluctuations occur in the proposed method with the help of the local smoothing
strategy. Although the fluctuation performance is slightly worse than the FIR method, the
proposed method meets the requirements of high-precision processing, and the processing
efficiency is guaranteed.
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4.2. Machining Experiments

In this section, machining experiments of a two-dimensional (2D) butterfly-shaped
NURBS curve and tree-shaped NURBS curve are conducted on an open CNC machine tool,
shown in Figure 20. For the machining experiment of the butterfly-shaped NURBS curve, it
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is designed to process without loading the workpiece and compare the kinematic param-
eters of each axis to verify the effectiveness of the proposed method. For the machining
experiment of a tree-shaped NURBS curve, actual machining processes are conducted with
three feed-rate scheduling methods: the proposed method, the typical offline method, and
the FIR method.
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Figure 20. Open CNC machine tool.

4.2.1. Machining Experiment of the Butterfly-Shaped NURBS Curve

The selected NURBS curve is shown in Figure 21a, and the curvature is shown in
Figure 21b. The curve parameters are shown in Appendix A, and the processing parameters
are shown in Table 3. Note that the selected NURBS curve is complex and that there exists
a large number of instantaneous acceleration and deceleration segments. Therefore, to
minimize the impact of processing vibrations and the frequent acceleration and deceleration
of the experimental results [22], the dwell time Td is set to 255 ms, and the time constants
of two filters are set to T1 = 175 ms and T2 = 80 ms. Also, the fundamental frequency wc is
set to 50 Hz.
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Table 3. Processing parameters.

Parameter Value Unit

Interpolation period T 1 ms
Maximum tangential acceleration at,max 2000 mm/s2

Maximum tangential jerk Jt,max 30,000 mm/s3

Maximum feed rate f max 60 mm/s
Maximum chord error ςmax 0.001 mm
Maximum contour error εmax 0.05 mm

The results of the kinematic parameters of the X-axis and Y-axis are shown in Figures 22–24.
It can be seen that the feed-rate profiles of the three methods are all within the kinetic
limitations. Note that, in the initial stages of the processing, Area A, there exist contiguous
shorter higher-curvature segments, and the proposed method obtains a smoother feed-rate
profile. However, the jerk profile of the typical offline method and the FIR method in this
area exceed the limitation because the acceleration rate varies significantly, and frequent
changes occur in the feed rate. For Areas B and C, where more short-curve segments
exist, there is no solution for local offline feed-rate scheduling proposed in this paper, and
parts of prediction error e(t) in the real-time interpolation have exceeded the MAE. Hence,
the proposed method activates the global online feed-rate scheduling to obtain a better
jerk profile compared with the FIR method. Furthermore, the processing efficiency is also
guaranteed due to the FIR login and logout condition. As multiple optimization problems
cannot be solved in the typical offline method, it is necessary to obtain a high and instant
acceleration, which causes the jerk profile to exceed the limitation. For Area D, since the
processing efficiency is the highest priority of the typical offline method, large values of
acceleration and deceleration are required to achieve the predefined feed rate at the end of
the segments, and the jerk profiles are beyond the limitation. Moreover, the deceleration
point of the FIR method appears earlier than other methods, which requires a greater jerk
to pass through the end of segments. Thus, the jerk profile of the FIR method is also beyond
the limitation. Compared with the FIR method and the typical offline method, the proposed
method obtains a better result to realize the kinetic constraints.
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From the machining experiment of the butterfly-shaped NURBS curve, the maximum
axis jerk, the maximum contour error, and the maximum chord error obtained using the
three methods are listed and compared in Table 4, including a comparison of the machining
indicators of each method. The proposed method performs best in both kinematic parame-
ters and machining indicators. Although the FIR method performs better than the typical
offline method, the X-axis jerk 31,742.69 mm/s3 and the Y-axis jerk 51,782.83 mm/s3 exceed
the limitation of 30,000 mm/s3. Owing to the FIR login and logout conditions proposed in
this paper, the proposed method got a higher machining time of 8.43 s, a response time of
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261 us, and a CPU occupancy rate of 23%, compared with the offline method. Considering
that the call of the real-time algorithm consumes system resources, the proposed method is
still resource-saving compared with the FIR method.

Machines 2024, 12, x FOR PEER REVIEW 28 of 34 
 

 

 
(a)  (b) (c) 

Figure 23. Acceleration results of butterfly-shaped NURBS curve. (a) Proposed method; (b) typical 
offline method; (c) FIR method. 

 
(a)  (b) (c) 

Figure 24. Jerk results of butterfly-shaped NURBS curve. (a) Proposed method; (b) typical offline 
method; (c) FIR method. 

From the machining experiment of the butterfly-shaped NURBS curve, the maximum 
axis jerk, the maximum contour error, and the maximum chord error obtained using the 
three methods are listed and compared in Table 4, including a comparison of the machin-
ing indicators of each method. The proposed method performs best in both kinematic pa-
rameters and machining indicators. Although the FIR method performs better than the 
typical offline method, the X-axis jerk 31,742.69 mm/s3 and the Y-axis jerk 51,782.83 mm/s3 
exceed the limitation of 30,000 mm/s3. Owing to the FIR login and logout conditions pro-
posed in this paper, the proposed method got a higher machining time of 8.43 s, a response 
time of 261 us, and a CPU occupancy rate of 23%, compared with the offline method. Con-
sidering that the call of the real-time algorithm consumes system resources, the proposed 
method is still resource-saving compared with the FIR method. 

Table 4. Comparison of machining results of the butterfly-shaped NURBS curve. 

Constraints 
Typical Offline 
Method Proposed Method FIR Method 

Maximum contour error (mm) 5.36 × 10−4 4.78 × 10−4 4.13 × 10−4 
Maximum chord error (mm) 8.11 × 10−4 5.32 × 10−4 4.95 × 10−4 
Maximum X-axis jerk (mm/s3) 73,164.00 21,715.27 31,742.69 
Maximum Y-axis jerk (mm/s3) 69,214.15 23,654.46 51,782.83 
Response time (us) 75 261 306 
CPU occupancy rate (%) 14 23 29 
Machining time (s) 8.05 8.43 9.52 
Scheduling time (s) 6.39 4.57 \ 
FIR interpolator intervention No Yes Yes 

  

Figure 23. Acceleration results of butterfly-shaped NURBS curve. (a) Proposed method; (b) typical
offline method; (c) FIR method.

Machines 2024, 12, x FOR PEER REVIEW 28 of 34 
 

 

 
(a)  (b) (c) 

Figure 23. Acceleration results of butterfly-shaped NURBS curve. (a) Proposed method; (b) typical 
offline method; (c) FIR method. 

 
(a)  (b) (c) 

Figure 24. Jerk results of butterfly-shaped NURBS curve. (a) Proposed method; (b) typical offline 
method; (c) FIR method. 

From the machining experiment of the butterfly-shaped NURBS curve, the maximum 
axis jerk, the maximum contour error, and the maximum chord error obtained using the 
three methods are listed and compared in Table 4, including a comparison of the machin-
ing indicators of each method. The proposed method performs best in both kinematic pa-
rameters and machining indicators. Although the FIR method performs better than the 
typical offline method, the X-axis jerk 31,742.69 mm/s3 and the Y-axis jerk 51,782.83 mm/s3 
exceed the limitation of 30,000 mm/s3. Owing to the FIR login and logout conditions pro-
posed in this paper, the proposed method got a higher machining time of 8.43 s, a response 
time of 261 us, and a CPU occupancy rate of 23%, compared with the offline method. Con-
sidering that the call of the real-time algorithm consumes system resources, the proposed 
method is still resource-saving compared with the FIR method. 

Table 4. Comparison of machining results of the butterfly-shaped NURBS curve. 

Constraints 
Typical Offline 
Method Proposed Method FIR Method 

Maximum contour error (mm) 5.36 × 10−4 4.78 × 10−4 4.13 × 10−4 
Maximum chord error (mm) 8.11 × 10−4 5.32 × 10−4 4.95 × 10−4 
Maximum X-axis jerk (mm/s3) 73,164.00 21,715.27 31,742.69 
Maximum Y-axis jerk (mm/s3) 69,214.15 23,654.46 51,782.83 
Response time (us) 75 261 306 
CPU occupancy rate (%) 14 23 29 
Machining time (s) 8.05 8.43 9.52 
Scheduling time (s) 6.39 4.57 \ 
FIR interpolator intervention No Yes Yes 

  

Figure 24. Jerk results of butterfly-shaped NURBS curve. (a) Proposed method; (b) typical offline
method; (c) FIR method.

Table 4. Comparison of machining results of the butterfly-shaped NURBS curve.

Constraints Typical Offline Method Proposed Method FIR Method

Maximum contour error (mm) 5.36 × 10−4 4.78 × 10−4 4.13 × 10−4

Maximum chord error (mm) 8.11 × 10−4 5.32 × 10−4 4.95 × 10−4

Maximum X-axis jerk (mm/s3) 73,164.00 21,715.27 31,742.69
Maximum Y-axis jerk (mm/s3) 69,214.15 23,654.46 51,782.83
Response time (us) 75 261 306
CPU occupancy rate (%) 14 23 29
Machining time (s) 8.05 8.43 9.52
Scheduling time (s) 6.39 4.57 \
FIR interpolator intervention No Yes Yes

4.2.2. Machining Experiment of the Tree-Shaped NURBS Curve

The selected NURBS curve is shown in Figure 25a, the curvature is shown in Figure 25b,
and the curve parameters are shown in Appendix B. The machining experiment of the tree-
shaped NURBS curve is conducted on aluminum materials (i.e., 80 mm × 100 mm × 30 mm)
with an R2 ball-end tool. Further, the feed rate is set as 100 mm/s, the speed is set at
2000 rpm, the cutting depth is set at 3 mm, and the maximum contour error is set at
0.05 mm. To ensure machining efficiency of the FIR interpolator in the real-time phase, FIR
filter delays are set to T1 = 110 ms and T2 = 70 ms, accordingly. The dwell time Td is 255 ms
and the fundamental frequency wc is 50 Hz. The finished parts of the three methods (the
typical offline method, the proposed method, and the FIR method) are shown in Figure 26.
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To verify the effectiveness of the proposed method, the comparison test is conducted
on the ZEISS scanning electron microscope shown in Figure 27 to compare the contour
errors of five points in Figure 26. Note that the magnification ratio was set at 1 mm.

The comparison results are shown in Figure 28. It can be seen that, at Point 1, the
proposed method achieves a small contour error and performs best relative to the other
two methods. For a continuous high-curve transition between Point 2 and Point 3, the
feed-rate profile is optimized by the offline local smooth strategy in the proposed method.
Thus, a longer deceleration distance is obtained, which further reduces the feed rate to let
the interpolation pass through the endpoint at a constant low-feed rate. However, there are
frequent accelerations and decelerations in the other two methods, which result in large
contour errors. At Point 4, no optimal solution can be obtained by the offline local smooth
strategy. Hence, Point 4 is marked as an undetermined segment by the proposed method.
When the interpolation processes at this segment, the global online smoothing strategy
activates, which makes the actual position similar to the FIR strategy. Since the FIR login
and logout conditions are introduced in this paper, the contour errors are slightly different
at the highest curvature point, whereas the FIR method has a larger contour error due to
the premature appearance of the deceleration point. For the typical offline method, the
contour error is large because frequent acceleration and deceleration are required. Similarly,
for Point 5, the proposed method has a better performance than the other two methods.
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From the machining experiment of the tree-shaped NURBS curve, the contour errors
of each point are listed in Table 5, and the comparison results of machining indicators are
listed in Table 6. From Table 5, it can be seen that the contour error of each point of the
proposed method is within the limitation. However, the contour errors of the offline method
in Point 1 (0.0597 mm) and Point 4 (0.0661 mm) exceed the limitation of 0.05 mm. What
is more, the contour error in Point 2 almost reaches the limitation. There are two points
(0.0593 mm in Point 3 and 0.0588 mm in Point 4) that exceed the limitation in the FIR
method. From Table 6, the offline method performs best with a response time of 65 us,
a CPU occupancy rate of 14%, and a machining time of 375 s because the interpolator
only needs to call the offline data without the online calculations. Although the proposed
method performs worse than the offline method, it ensures the machining quality with the
least average contour error of 0.029 mm. Note that the FIR method still performs worst in
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machining indicators with a machining time of 465 s, a response time of 289 us, and a CPU
occupancy rate of 25%.

Table 5. The comparison results of contour errors in tree-shaped NURBS curve.

Methods Point 1 Point 2 Point 3 Point 4 Point 5 Unit

Typical offline method 0.0597 0.0498 0.0472 0.0661 0.0392 mm
Proposed method 0.0278 0.0314 0.0214 0.0473 0.0183 mm
FIR method 0.0219 0.0363 0.0593 0.0588 0.0365 mm

Table 6. Comparison Results of machining indicators.

Constraints Typical Offline Method Proposed Method FIR Method

Response time (us) 65 213 289
CPU occupancy rate (%) 14 19 25
Machining time (s) 375 392 465
Scheduling time (s) 5.11 3.92 \
FIR interpolator intervention No Yes Yes

5. Discussion

Due to the increased requirement of the processing quality of complex surfaces, feed-
rate scheduling is a crucial component of interpolation. A smooth feed-rate profile not
only guarantees the machining quality but also improves the machining efficiency. Based
on the tool path with C3 continuity, this paper first presents a basic interpolation unit
relevant to the S-type interpolation feed-rate profile. Then, an offline local smooth strategy
is proposed to smooth the feed-rate profile and solve the exceeding of kinetic limitations
and feed-rate fluctuation caused by frequent acceleration and deceleration. Further, in the
case where there is no optimal solution between multiple continuous segments, this paper
defines these segments as undetermined segments to smooth the feed rate in real-time
interpolation. Considering that high-frequency signals will be filtered by FIR, resulting
in low-machining efficiency and larger jerks that easily cause the exceeding of kinetic
limitations and feed-rate fluctuation, which are required at the end of curve segments
to realize the predefined feed rate, a global online smoothing strategy based on the data
generated by offline pre-interpolation is presented. Firstly, the basic interpolation unit
is mapped on FIR. Then, in the real-time interpolation, the data are generated by offline
pre-interpolation before they are extracted. When the interpolation meets the FIR login
condition, which means the system has read the undetermined segment symbol or the
prediction error is beyond MAE, the FIR feed-rate scheduling activates to further smooth
the feed rate. On the contrary, the offline interpolation data are directly extracted to ensure
processing efficiency. To prevent the frequent switching of offline and online feed-rate
scheduling data from reducing the real-time performance and machining efficiency, an FIR
logout condition is also presented. The case study validates that the proposed method
performs better in kinetic profiles compared with the typical offline and FIR methods. In
the simulation experiment of a 2-orde WM-shaped NURBS curve and the actual machining
experiment of a butterfly-shaped NURBS curve, the proposed method performs best and
guarantees the kinetic limitations compared with the typical offline method and FIR method
due to the two-level feed-rate smoothing. Especially in the actual machining experiment
of a butterfly-shaped NURBS curve, the jerk profiles of the typical offline method and the
FIR method exceed the limitation when it comes to continuous segment transitions with
higher curvatures. In the actual machining experiment of a tree-shaped NURBS curve,
the proposed method obtains a 28% reduction in contour errors compared with the other
methods. Further, the proposed method compared with the FIR method obtains a 15%
increase in machining efficiency, but it only obtains a 4% decrease compared with the
typical offline method.
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For future research, the authors suggest further investigations from two aspects:
(1) extend the proposed method to more a complex NURBS curve. (2) Further improve the
machining efficiency.
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Appendix A

The curve parameters of the butterfly-shaped NURBS curve
Weights vector:
[1,1,1,1.2,1,1,1,1,1,1,1,2,1,1,5,3,1,1.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1.1,1,3,5,1,1,2,1,1,1,1,1,1,1,

1.2,1,1,1.0]
Knot vector: [0 0 0 0 0.008286 0.014978 0.036118 0.085467 0.129349 0.150871 0.193075

0.227259 0.243467 0.256080 0.269242 0.288858 0.316987 0.331643 0.348163 0.355261 0.364853
0.383666 0.400499 0.426851 0.451038 0.465994 0.489084 0.499973 0.510862 0.533954 0.548910
0.573096 0.599447 0.616280 0.635094 0.644687 0.651784 0.668304 0.682958 0.711087 0.730703
0.743865 0.756479 0.772923 0.806926 0.849130 0.870652 0.914534 0.963883 0.985023 0.991714
1 1 1 1]

Control point:
X = [0.0 1.014 1.589 2.287 15.082 23.293 36.033 51.480 45.907 40.074 37.876 28.947 37.399

34.951 28.725 33.128 26.452 25.341 21.581 15.690 9.678 5.500 1.187 2.432 5.272 0.0 −5.273
−2.433 −1.188 −5.501 −9.679 −15.691 −21.582 −25.341 −26.453 −33.129 −28.725 −34.954
−37.396 −28.956 −37.891 −40.294 −45.825 −51.493 −36.028 −23.296 −15.082 −2.289
−1.589 −1.015 0.0]

Y = [0.0 0.0 −2.524 −7.168 −0.781 6.434 14.942 11.662 −4.813 −12.226 −21.654 −18.382
−23.630 −31.746 −36.693 −47.309 −42.872 −37.604 −43.617 −39.589 −35.274 −30.017
−15.780 −27.144 −32.311 −37.199 −32.311 −27.145 −15.780 −30.017 −35.274 −39.588
−43.618 −37.604 −42.872 −47.309 −36.692 −31.748 −23.627 −18.389 −21.643 −12.336
−4.731 11.655 14.945 6.433 −0.781 −7.168 −2.524 0.0 0.0]

Appendix B

The curve parameters of the tree-shaped NURBS curve
Weights vector: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
Knot vector: [0 0 0 0 0.1 0.15 0.17 0.2 0.24 0.34 0.37 0.39 0.41 0.43 0.47 0.49 0.51 0.57 0.67

0.69 0.75 0.78 0.85 0.89 0.91 0.96 0.98 1 1 1 1]
Control point:
X = [−12.47 −7.47 −4.97 −6.69 −9.04 −36.22 −12.47 −7.47 −22.47 −9.97 −1.22 −19.97

−1.22 0.03 12.77 7.77 5.27 6.99 9.34 36.52 12.77 7.77 22.77 10.27 1.52 20.27 1.52]
Y = [10.97 13.47 20.97 27.23 30.98 30.97 35.97 42.22 40.97 48.47 60.97 62.22 65.97 84.72

65.97 62.22 60.97 48.47 40.97 42.22 35.97 30.97 30.98 27.23 20.97 13.47 10.97]
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