An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling
Abstract
:1. Introduction
- A basic interpolation unit relevant to the S-type interpolation feed-rate profile based on the tool path with C3 continuity is presented to describe the curve features.
- An offline local smooth strategy is proposed to smooth the feed-rate profile and reduce the exceeding of kinetic limitations and feed-rate fluctuations caused by frequent acceleration and deceleration.
- A global online smoothing strategy based on the data generated by offline pre-interpolation is presented to increase machining efficiency and reduce larger jerks that easily cause the exceeding of kinetic limitations and feed-rate fluctuations.
- FIR login and logout conditions are proposed to further smooth the feed-rate profile and improve the real-time performance and machining efficiency.
2. Offline Pre-Interpolation Based on a Local Smooth Strategy
2.1. The Generation of Tool Path with C3 Continuity
2.1.1. Optimized Fitting of Position Spline
2.1.2. Optimized Fitting of Orientation Spline
2.2. S-Type Interpolation Feed-Rate Profile
2.3. Offline Local Smooth Strategy
2.3.1. Basic Interpolation Unit
2.3.2. Local Smooth Strategy
- Local smoothing on a single segment
- Local smoothing between multiple segments
3. Online Interpolation Based on Global Smooth Strategy
3.1. FIR Feed Rate Compensation
3.2. Basic Interpolation Units Mapping with FIR
3.3. Global Online Smoothing Strategy
3.3.1. Fundamental Theory
3.3.2. FIR Login Condition
3.3.3. FIR Logout Condition
4. Case Study
4.1. Simulation Experiment of the WM-Shaped NURBS Curve
4.2. Machining Experiments
4.2.1. Machining Experiment of the Butterfly-Shaped NURBS Curve
4.2.2. Machining Experiment of the Tree-Shaped NURBS Curve
5. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Chen, L.; Wei, Z.; Ma, L. Five-axis Tri-NURBS spline interpolation method considering compensation and correction of the nonlinear error of cutter contacting paths. Int. J. Adv. Manuf. Technol. 2022, 119, 2043–2057. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Mei, X.; Hou, D.; Li, Q.; Sun, Z. Global smoothing for five-axis linear paths based on an adaptive NURBS interpolation algorithm. Int. J. Adv. Manuf. Technol. 2021, 114, 2407–2420. [Google Scholar] [CrossRef]
- Du, X.; Li, J.; Yu, Y. A complete S-shape feed rate scheduling approach for NURBS interpolator. J. Comput. Des. Eng. 2015, 2, 206–217. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, J.; Zhang, L.; Wang, X.; Luo, Y.; Chen, X. Generalised NURBS interpolator with nonlinear feed rate scheduling and interpolation error compensation. Int. J. Mach. Tools Manuf. 2022, 183, 103956. [Google Scholar] [CrossRef]
- Beudaert, X.; Lavernhe, S.; Tournier, C. feed rate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path. Int. J. Mach. Tools Manuf. 2012, 57, 73–82. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, T.Y.; Dong, J.C.; Liu, Y.F.; Ke, R.J. A corner smoothing method with feed rate blending for linear segments under geometric and kinematic constraints. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 1227–1245. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, F.; Tao, T.; Mei, X. A novel local smoothing method for five-axis machining with time-synchronization feed rate scheduling. IEEE Access 2020, 8, 89185–89204. [Google Scholar] [CrossRef]
- Liu, X.; Peng, J.; Si, L.; Wang, Z. A novel approach for NURBS interpolation through the integration of acc-jerk-continuous-based control method and look-ahead algorithm. Int. J. Adv. Manuf. Technol. 2016, 87, 1193–1205. [Google Scholar]
- Mizoue, Y.; Sencer, B.; Beaucamp, A. Identification and optimization of CNC dynamics in time-dependent machining processes and its validation to fluid jet polishing. Int. J. Mach. Tools Manuf. 2020, 159, 103648. [Google Scholar] [CrossRef]
- Xu, B.; Ding, Y.; Ji, W. An interpolation method based on adaptive smooth feedrate scheduling and parameter increment compensation for NURBS curve. ISA Trans. 2022, 128, 633–645. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, W.; Zhang, L.; Beaucamp, A. Region adaptive scheduling for timedependent processes with optimal use of machine dynamics, Int. J. Mach. Tools Manuf. 2020, 156, 103589. [Google Scholar] [CrossRef]
- Erkorkmaz, K.; Chen, Q.; Zhao, M.; Beudaert, X.; Gao, X. Linear programming and windowing based feed rate optimization for spline toolpaths. CIRP Ann. 2017, 66, 393–396. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, H.; Wang, L. A pareto-based discrete jaya algorithm for multiobjective carbon-efficient distributed blocking flow shop scheduling problem. IEEE Trans. Ind. Inform. 2023, 19, 8588–8599. [Google Scholar] [CrossRef]
- Han, Y.; Peng, H.; Mei, C.; Cao, L.; Deng, C.; Wang, H.; Wu, Z. Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning. Knowl.-Based Syst. 2023, 277, 110801. [Google Scholar] [CrossRef]
- Hu, Z.; Gong, W.; Pedrycz, W.; Li, Y. Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization. Swarm Evol. Comput. 2023, 83, 101387. [Google Scholar] [CrossRef]
- Fan, W.; Ji, J.W.; Wu, P.Y.; Wu, D.Z.; Chen, H. Modeling and simulation of trajectory smoothing and feed rate scheduling for vibration-damping CNC machining. Simul. Model. Pract. Theory 2020, 99, 102028. [Google Scholar] [CrossRef]
- Du, J.; Zhang, L.; Gao, T. Acceleration smoothing algorithm for global motion in high-speed machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 233, 1844–1858. [Google Scholar] [CrossRef]
- Li, H.; Wu, W.J.; Rastegar, J.; Guo, A. A real-time and look-ahead interpolation algorithm with axial jerk-smooth transition scheme for computer numerical control machining of micro-line segments. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 2007–2019. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, L.M.; Ding, H. A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. Int. J. Mach. Tools Manuf. 2013, 65, 88–98. [Google Scholar] [CrossRef]
- Huang, J.; Du, X.; Zhu, L.M. Real-time local smoothing for five-axis linear tool path considering smoothing error constraints. Int. J. Mach. Tools Manuf. 2018, 124, 67–79. [Google Scholar] [CrossRef]
- Ji, S.; Lei, L.; Zhao, J.; Lu, X.; Gao, H. An adaptive real-time nurbs curve interpolation for 4-axis polishing machine tool. Robot. Comput.-Integr. Manuf. 2021, 67, 102025. [Google Scholar] [CrossRef]
- Tajima, S.; Sencer, B. Online interpolation of 5-axis machining toolpaths with global blending. Int. J. Mach. Tools Manuf. 2022, 175, 103862. [Google Scholar] [CrossRef]
- Tajima, S.; Sencer, B. Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing. Int. J. Mach. Tools Manuf. 2019, 142, 1–15. [Google Scholar] [CrossRef]
- Tajima, S.; Sencer, B.; Shamoto, E. Accurate interpolation of machining tool-paths based on fir filtering. Precis. Eng. 2018, 52, 332–344. [Google Scholar] [CrossRef]
- Hayasaka, T.; Minoura, K.; Ishizaki, K.; Shamoto, E.; Burak, S. A Lightweight Interpolation Algorithm for Short-Segmented Machining Tool Paths to Realize Vibration Avoidance, High Accuracy, and Short Machining Time. Precis. Eng. 2019, 59, 1–17. [Google Scholar] [CrossRef]
- Sencer, B.; Ishizaki, K.; Shamoto, E. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP Ann. 2015, 64, 369–372. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, J.; Xia, L.; Lei, L.; Liu, H. A decoupled five-axis local smoothing interpolation method to achieve continuous acceleration of tool axis. Int. J. Adv. Manuf. Technol. 2020, 111, 449–470. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhang, Y.B.; Dong, J.C.; Ke, R.J.; Ding, Y.Y. NURBS interpolator with adaptive smooth feed rate scheduling and minimal feed rate fluctuation. Int. J. Precis. Eng. Manuf. 2020, 21, 273–290. [Google Scholar] [CrossRef]
- Tulsyan, S.; Altintas, Y. Local toolpath smoothing for five-axis machine tools. Int. J. Mach. Tools Manuf. 2015, 96, 15–26. [Google Scholar] [CrossRef]
- Jia, Z.; Ma, J.; Song, D.; Chen, S.; He, G.; Wang, F.; Liu, W. Feed Rate Scheduling Method for Five-Axis Dual-Spline Curve Interpolation. U.S. Patent US11188056B2, 8 January 2024. [Google Scholar]
- Goto, S.; Nakamura, M.; Kyura, N. Trajectory generation of industrial mechatronic systems to achieve accurate contour control performance under torque saturation. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; Volume 3, pp. 2401–2406. [Google Scholar]
- Wang, F.; Han, G.; Fan, Q. Statistical test for detrending-moving-average-based multivariate regression model. Appl. Math. Model. 2023, 124, 661–677. [Google Scholar] [CrossRef]
- Yang, F.; Li, Z.; Xue, Y.; Yang, Y. A penalized least product relative error loss function based on wavelet decomposition for non-parametric multiplicative additive models. J. Comput. Appl. Math. 2023, 432, 115299. [Google Scholar] [CrossRef]
- Frías-Paredes, L.; Mallor, F.; Gastón-Romeo, M.; León, T. Dynamic mean absolute error as new measure for assessing forecasting errors. Energy Convers. Manag. 2018, 162, 176–188. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Interpolation period T | 1 | ms |
Maximum chord error ςmax | 0.001 | mm |
Maximum contour error εmax | 0.05 | mm |
Maximum normal acceleration an,max | 950 | mm/s2 |
Maximum tangential acceleration at,max | 2000 | mm/s2 |
Maximum normal jerk Jn,max | 26,000 | mm/s3 |
Maximum tangential jerk Jt,max | 30,000 | mm/s3 |
Maximum feed rate fmax | 60 | mm/s |
Constraints | Typical Offline Method | Proposed Method | FIR Method |
---|---|---|---|
Maximum contour error (mm) | 4.12 × 10−4 | 4.08 × 10−4 | 3.27 × 10−4 |
Maximum chord error (mm) | 6.24 × 10−4 | 5.87 × 10−4 | 5.17 × 10−4 |
Maximum tangential jerk (mm/s3) | 30,000.00 | 30,000.00 | 30,000.00 |
Maximum normal jerk (mm/s3) | 28,736.12 | 26,000.00 | 25,762.07 |
Response time (us) | 25 | 38 | 102 |
CPU occupancy rate (%) | 13 | 15 | 22 |
Machining time (s) | 1.62 | 1.66 | 1.95 |
Scheduling time (s) | 2.75 | 2.18 | \ |
FIR interpolator intervention | No | No | Yes |
Parameter | Value | Unit |
---|---|---|
Interpolation period T | 1 | ms |
Maximum tangential acceleration at,max | 2000 | mm/s2 |
Maximum tangential jerk Jt,max | 30,000 | mm/s3 |
Maximum feed rate fmax | 60 | mm/s |
Maximum chord error ςmax | 0.001 | mm |
Maximum contour error εmax | 0.05 | mm |
Constraints | Typical Offline Method | Proposed Method | FIR Method |
---|---|---|---|
Maximum contour error (mm) | 5.36 × 10−4 | 4.78 × 10−4 | 4.13 × 10−4 |
Maximum chord error (mm) | 8.11 × 10−4 | 5.32 × 10−4 | 4.95 × 10−4 |
Maximum X-axis jerk (mm/s3) | 73,164.00 | 21,715.27 | 31,742.69 |
Maximum Y-axis jerk (mm/s3) | 69,214.15 | 23,654.46 | 51,782.83 |
Response time (us) | 75 | 261 | 306 |
CPU occupancy rate (%) | 14 | 23 | 29 |
Machining time (s) | 8.05 | 8.43 | 9.52 |
Scheduling time (s) | 6.39 | 4.57 | \ |
FIR interpolator intervention | No | Yes | Yes |
Methods | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Unit |
---|---|---|---|---|---|---|
Typical offline method | 0.0597 | 0.0498 | 0.0472 | 0.0661 | 0.0392 | mm |
Proposed method | 0.0278 | 0.0314 | 0.0214 | 0.0473 | 0.0183 | mm |
FIR method | 0.0219 | 0.0363 | 0.0593 | 0.0588 | 0.0365 | mm |
Constraints | Typical Offline Method | Proposed Method | FIR Method |
---|---|---|---|
Response time (us) | 65 | 213 | 289 |
CPU occupancy rate (%) | 14 | 19 | 25 |
Machining time (s) | 375 | 392 | 465 |
Scheduling time (s) | 5.11 | 3.92 | \ |
FIR interpolator intervention | No | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X. An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling. Machines 2024, 12, 186. https://doi.org/10.3390/machines12030186
Zhou X. An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling. Machines. 2024; 12(3):186. https://doi.org/10.3390/machines12030186
Chicago/Turabian StyleZhou, Xiaoyang. 2024. "An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling" Machines 12, no. 3: 186. https://doi.org/10.3390/machines12030186
APA StyleZhou, X. (2024). An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling. Machines, 12(3), 186. https://doi.org/10.3390/machines12030186