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Abstract: Feedrate plays a crucial role in determining the machining quality, tool life, and machin-
ing time. Thus, this research aimed to improve the accuracy of NURBS interpolator systems by
minimizing feedrate fluctuations during CNC machining. Previous studies have proposed various
methods to minimize these fluctuations. However, these methods often require complex calculations
and are not suitable for real-time and high-precision machining applications. Given the sensitivity
of the curvature-sensitive region to feedrate variations, this paper proposed a two-level parameter
compensation method to eliminate the feedrate fluctuation. First, in order to address federate fluctu-
ations in non-curvature sensitive areas with low computational costs, we employed the first-level
parameter compensation (FLPC) using the Taylor series expansion method. This compensation
allows us to achieve a chord trajectory for the new interpolation point that matches the original arc
trajectory. Second, even in curvature-sensitive areas, feedrate fluctuations can still occur because
of truncation errors in the first-level parameter compensation. To address this, we employed the
Secant-based method for second-level parameter compensation (SLPC), which does not require
derivative calculations and can regulate feedrate fluctuation within the fluctuation tolerance. Finally,
we applied the proposed method to the simulation of butterfly-shaped NURBS curves. These simu-
lations demonstrated that our method achieved maximum feedrate fluctuation rates below 0.01%
with an average computational time of 360 us, which is sufficient for high-precision and real-time
machining. Additionally, our method outperformed four other feedrate fluctuation elimination
methods, highlighting its feasibility and effectiveness.

Keywords: NURBS interpolator; feedrate fluctuation; parameter compensation; curvature
sensitive area

1. Introduction

In computer-aided manufacturing, Non-Uniform Rational B-Spline (NURBS) inter-
polation is used to generate a toolpath for the CNC machining of parts. Feedrate is an
important parameter that needs to be carefully controlled during machining, as it affects
not only the quality and accuracy of the machined part but also the tool life and the time
required for machining. The feedrate of CNC machines is determined based on the NURBS
curve and the cutting parameters such as spindle speed, depth of cut, and feed per tooth.
However, the feedrate can fluctuate because of irregularities in the NURBS curve, which
can result in unwanted effects such as tool vibration, chatter, and excessive tool wear.
Therefore, minimizing feedrate fluctuations in the NURBS interpolation process is essential
to attain high-precision and high-quality machined parts. Since NURBS curves are con-
structed piecewise using B-spline basis functions, the solution of curve trajectory points,
the calculation of curve arc length, the derivation of NURBS curves, and the calculation
of curvature surfaces have high computational loads. In particular, there is a nonlinear
mapping relationship between the curve parameters and the arc length because of the
segmented structure of the NURBS curve.
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Nie et al. [1] fully considered various constraints when planning the feedrate for
the NURBS interpolator to improve the interpolation accuracy effectively. Liu et al. [2]
generated smooth instructions that satisfy all the specified kinematic requirements. Wang
et al. [3] introduced the pre-compensation-based theory to increase machining precision
by lowering contour errors while maintaining federate. Cao et al. [4] suggested a feedrate
direct interpolator (FDI), which can effectively acquire potentially precise interpolation
parameters without using rounding or compensation techniques. Li et al. [5] employed the
Sigmoid function for feedrate planning, considering both geometric and kinematic errors.
Guo et al. [6] presented a federate scheduling method to overcome the NURBS curvature
changing along the trajectory. Hu et al. [7] presented a brand-new feedrate scheduling
approach based on an S-shape feedrate profile to improve interpolation accuracy. Wang
et al. [8] introduced the cosines theorem in the NURBS interpolation algorithm to minimize
feedrate fluctuations. Sang et al. [9] integrated morphological filtering with an S-shaped
acc/dec profile for the NURBS interpolator in difficult regions. This resulted in more stable
feedrates. Ji et al. [10] corrected the estimated parameters iteratively to achieve smaller
velocity fluctuations and lower computation load. Jiang et al. [11] constrained the feedrate
fluctuation by an iterative method. Zhao et al. [12] generated the smooth feedrate profile
by improving the feed correction polynomial to reduce fluctuations. Zhang et al. [13]
introduced a feedrate optimization method to achieve an ideal feedrate profile efficiently
for the fastest machining efficiency. Ni et al. [14] designed a novel feedrate scheduling
approach that maintains the machining efficiency of interpolation while keeping high
motion smoothness. To minimize fluctuations, Zhong et al. [15] employed federate and
acceleration lookahead operations. Ni et al. [15] employed a two-way control strategy to
maintain NURBS interpolation accuracy under round-off errors. Cho and Kim [16] reduced
the feedrate fluctuation using the compensation mechanism. Peng et al. [17] presented the
improved Adams–Moulton (IAM) method to attain minimal feedrate fluctuation. Huang
and Zhu [18] proposed a sinusoidal representation of the jerk profile for the parametric
interpolator, thus making the feedrate profile more concise. These studies and analy-
ses of the abovementioned literature indicate that direct interpolation of NURBS curves
is a systematic project and obtaining high-speed and high-precision machining effects
is essential.

Feedrate fluctuation during interpolation is unavoidable because of the improper map-
ping between the NURBS parameter and the arc length along the toolpath. The machining
quality in NURBS interpolation is substantially influenced by feedrate fluctuation [19].
Many strategies have been put up to eliminate feedrate fluctuation successfully. For in-
stance, UI (uniform increment) method [20] is the earliest direct approximation method.
Although UI is the simplest method in this area, it may cause feedrate fluctuations. Taylor’s
expansion (TE) based methods were widely utilized in the literature [21–25]. However,
the unavoidable rounding-off error will cause feedrate fluctuation. An improved Tay-
lor’s expansion (TE) method [26] was proposed to suppress feedrate fluctuation. The
predictor–corrector interpolators (PCI) methods [27,28] can maintain feedrate fluctuations
within specified tolerances after iteration while requiring variable iterations over succes-
sive sampling periods. Thus, the uncertain computation time caused by iteration is not
conducive to interpolation stability and not suitable for high-speed real-time applications.
Besides, there are remapping methods (RM) based on Hermite cubic splines [29], cubic
polynomials [30], quintic splines [31], and seventh-order polynomials [32], which can re-
duce feedrate fluctuations. However, these methods require much storage space to store
intermediate sub-polynomials and increase the computational load. Besides, the Steffensen-
based iterative method [33] was also employed to refine the estimated initial parameter to
reduce the feedrate fluctuation. However, this method requires continuous iterative and
repeated complex parameter calculations, causing issues such as time-consuming calcula-
tions and enormous difficulties. Some scholars have proposed an arc-length compensation
method [34], in which the command position is corrected by compensating for the arc and
chord lengths in the parameter calculation process to reduce feedrate fluctuation. How-
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ever, this method only considers the truncation error, and obtaining satisfactory results
using the approximate method in the solution process is challenging. Super-resolution
techniques [35,36] can be applied to the interpolated curves to enhance their resolution and
improve their smoothness and curvature continuity. it is possible to improve the accuracy,
precision, and overall quality of the interpolated curves, resulting in better performance
and increased efficiency in various applications. However, super-resolution can bring a
high computational load.

To improve the accuracy of NURBS interpolator systems and minimize feedrate
fluctuations during CNC machining, a two-level parameter compensation strategy is
proposed. The corresponding feedrate fluctuation methods are designed for different
regions according to the curvature characteristics, which can greatly reduce the feedrate
fluctuation rate on the premise of ensuring real-time performance. The first-level parameter
compensation is employed in the non-curvature sensitive area to control the feedrate
fluctuation of the interpolation. In the curvature-sensitive area, the second-level parameter
compensation is adopted after the first-level parameter compensation to overcome the
problem of large federate fluctuations caused by large curvature. This strategy raises the
tolerated time load and cannot affect the interpolator’s real-time performance. It generally
utilizes the fact that feedrate changes are more noticeable in the curvature-sensitive area.

The novelty of the proposed two-level parameter compensation method lies in
(1) proposing a two-level parameter compensation method specifically for NURBS in-
terpolation to minimize feedrate fluctuation and improve machining quality, which utilizes
the Taylor series expansion method in the first level and an iterative method without deriva-
tive calculations in the second level; (2) developing a novel approach for reducing feedrate
fluctuation that considers the sensitivity of the curvature-sensitive areas, which can result
in significant improvements in the quality of the final product; And (3) demonstrating
the effectiveness of the proposed method through simulation studies and experiments,
which show that the maximum feedrate fluctuation rate is below 0.01% with an average
computational time of 360 us and that the proposed method outperforms other feedrate
fluctuation elimination methods. Overall, the minimization of feedrate fluctuations is a
novel contribution that can be applied to various applications, including those that re-
quire high precision and accuracy in motion control systems, such as 3D printing, CNC
machining, and robotics.

The main contributions of this paper can be summarized as follows:
(1) We focused on the critical role of curvature in feedrate fluctuation, proposed

the concept of the curvature-sensitive area, and divide the NURBS curve into curvature-
sensitive areas and non-curvature-sensitive areas according to the curvature threshold to
adapt to the curvature variations;

(2) A NURBS interpolator with minimum feedrate fluctuation based on two-level
parameter compensation was proposed;

(3) The first-level parameter compensation based on Taylor series expansion was
employed in the non-curvature-sensitive area; the second-level parameter compensation
based on Secant method was employed in the curvature-sensitive area. Compared with the
other four methods for eliminating feedrate fluctuation, the proposed method performed
best and controlled the feedrate fluctuation within the standard range.

The remainder of this paper is structured as follows. Section 2 introduces the NURBS
interpolation and feedrate fluctuation. Section 3 describes the feedrate fluctuation elimina-
tion method based on the two-level parameter compensation. The simulation results of
applying the suggested method on NURBS curves with a butterfly shape are presented in
Section 4. Finally, conclusions and future aspects are presented in Section 5.



Sensors 2023, 23, 3789 4 of 21

2. NURBS Interpolation and Feedrate Fluctuation
2.1. The NURBS Curve and Parameter Discretization

NURBS curves are often expressed in the following rational fractional form [1]:

C(u) =

x(u)
y(u)
z(u)

 =

n
∑

i=0
Ni,k(u)ωi pi

n
∑

i=0
Ni,k(u)ωi

(1)

where Pi is the control point, ωi is the weight of Pi, u is the non-uniform knot vector, and
Ni,k(u) is the kth-order B-spline basic function.

Determining the curve parameter u for every interpolation period in the NURBS curve
interpolation process is essential. The definition of the NURBS curve gives a deterministic
mathematical expression for the free curve. Therefore, the key function of the NURBS
interpolator is to discretize the curve parameter u and obtain the coordinates of interpolation
point C(u) that meet the requirements of dynamic and motion characteristics.

The Taylor expansion approach effectively creates commands in general motion sys-
tems to discretize the curve parameter. By applying the Taylor expansion on the function
u(t) at t = ti and ignoring the higher-order terms, the First-order Taylor expansion method
can be expressed as

ui+1 = ui +
du
dt

∣∣∣∣
t=ti

T (2)

Additionally, the Second-order Taylor expansion method can be written as

ui+1 = ui +
du
dt

∣∣∣∣
t=ti

T − 1
2

d2u
dt2

∣∣∣∣
t=ti

T2 (3)

Then, the curve velocity v(ui) can be derived as

v(ui) = ‖
dC(u)

dt
‖

u=ui
= ‖dC(u)

du
‖

u=ui
· du

dt

∣∣∣∣
t=ti

(4)

Since the curve parameter discretization by Taylor expansion approximation ignores
the higher-order terms, there is a deviation between the discretized and actual values of u.
Subsequently, this will cause a bias between the expected and actual arc lengths. Therefore,
according to Equation (4), the bias of the arc length will cause a deviation between the
interpolation and actual velocities.

Besides, the CNC interpolation trajectory comprises micro-straight lines fed at v(ui)
per cycle. There is a gap between the feed micro-line and the planned arc trajectory, called
the chord error. If the feedrate v(ui) is inappropriate, it might become unsatisfactory.
Throughout the interpolation procedure, the curve velocity v(ui) must be modified adap-
tively depending on the curvature to maintain the chord error within a tolerance range. As
shown in [37], the adaptive velocity corresponding to the maximum chord error can be
obtained as:

vi =
2
T
·
√
(1/ki)

2 − (1/ki − δmax)
2 (5)

where ki is the curvature of the current interpolation point v(ui). The interpolation feedrate
cannot always be constant since the velocity is adaptively altered in response to curvature
changes. Set the given maximum feedrate to F, then we can get

v(ui) =

{
F, i f vi ≥ F
vi, i f vi < F

(6)
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Substituting Equation (6) into Equation (2) yields the first-order adaptive-feedrate
method (FAM):

ui+1 = ui +
v(ui)
‖C′(ui)‖

T

=

ui +
FT

‖C′(ui)‖
i f vi ≥ F

ui +
viT

‖C′(ui)‖
i f v < F

(7)

Substituting Equation (6) into Equation (3) yields the second-order adaptive-feedrate
method (SAM):

ui+1 = ui +
v(ui)
‖C′(ui)‖

T − v2(ui)C′(ui)C′′ (ui)

2‖C′′ (ui)‖4 T2

=


ui +

FT
‖C′(ui)‖

− F2T2C′(ui)C′′ (ui)

‖C′′ (ui)‖4 i f vi ≥ F

ui +
viT

‖C′(ui)‖
− (vi)

2T2C′(ui)C′′ (ui)

‖C′′ (ui)‖4 i f vi < F

(8)

The interpolation parameter upre,i+1 of the next point is first predicted according to
the current adaptive velocity v(ui) and the interpolation period by FAM or SAM. SAM has
one more item than FAM, with higher calculation accuracy, while FAM should calculate
the second-order derivative, which has higher calculation complexity.

2.2. Feedrate Fluctuation Analysis

Feedrate fluctuation, resulting from a nonlinear correspondence between the curve
parameters and the arc length displacement, is the difference between the desired and
actual feed rates. The actual feedrate during the interpolation process can be expressed
as [34]

.
s = (ds/dt)︸ ︷︷ ︸

actual f eedrate command

= ‖C′(u)‖ · (dû/dsd)︸ ︷︷ ︸
f eedrate flucuation

(dsd/dt)︸ ︷︷ ︸
desired feedrate

(9)

where s is the actual arc length, C′(u) is the derivative of the NURBS curve, ‖ ‖ is the
Euclidean norm, û is the predicted parameter, and sd is the desired arc length.

There is no accurate analytical expression for the NURBS curve’s parameters and
arc length because of their unique definitions in Equation (1). The acquisition of the
predicted parameter û generally adopts an approximate method (such as FAM or SAM).
Because of the deviation of the estimated parameter û from the actual value, the arc
displacement along the curved path is inaccurately mapped to the spline parameters,
causing the term ‖C′(u)‖ · (dû/dsd) not to be equal to 1. Consequently, the inequality

.
s︸︷︷︸

actual f eedrate command

6= (dsd/dt)︸ ︷︷ ︸
desired feedrate

holds and feedrate fluctuations follow.

According to Figure 1, A and B represent the actual ith point and the predicted

(i + 1)th point.
_

AB and AB are the arc and chord lengths, respectively. The arc length
between A and B is Si+1, and the chord length AB is li+1. When the arc length is tiny
enough, a circle with the same curvature can approximate it. Ri is the curvature radius at
point A.

Interpolation feedrate can be obtained as

vi+1 =
Li+1

T
(10)

The theoretical feedrate can be calculated as

v′ i+1 =
Si+1

T
(11)
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For the path with nonzero curvatures, as depicted in Figure 1, the expression li+1 6=
Si+1 holds, which results in vi+1 6= v′ i+1. Consequently, feedrate fluctuations during
the NURBS curve interpolation may result from discrepancies between the actual and
predicted trajectories.
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Thus, the feedrate fluctuations rate of the (i + 1)th interpolation point can be defined as

εi+1 =
v′ i+1 − vi+1

vi+1
(12)

It can be rewritten as
εi+1 =

Si+1 − li+1

li+1
(13)

From Figure 1, according to the relationship between arc length and radian, it can be
obtained as

Si+1

2
= Ri·θ = Ri·arcsin

(
li+1

2Ri

)
(14)

Ri is the curvature radius at point A
In (14), the arcsine term can be roughly calculated using the Maclaurin series, which is

written as

arcsin
(

li+1

2Ri

)
≈ li+1

2Ri
+

1
6

(
li+1

2Ri

)3
(15)

Substituting Equation (15) into Equation (14) yields

Si+1 = 2
(

Ri·arcsin
(

li+1

2Ri

))
= 2Ri

(
li+1

2Ri
+

1
6

(
li+1

2Ri

)3
)

= li+1 +
(li+1)

3

24Ri
2 (16)

Substituting Equation (16) into Equation (13) gives

εi+1 =
Si+1 − li+1

li+1
=

li+1 +
(li)

3

24(Ri)
2 − li+1

li+1
=

(li)
3

24(Ri)
2li+1

(17)

Equation (17) shows that the curvature radius change directly determines the feedrate
fluctuation’s magnitude.

As the reciprocal of the curvature equals the curvature radius, Ri = 1
k(ui)

R holds,
where k(ui) is the curvature obtained as follows:
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k(ui) =
C′(ui)× C′′ (ui)

|C′(ui)|3
(18)

where the first and second-order derivatives of the current point are denoted by C′(ui) and
C′′ (ui), respectively.

Equation (17) can be rewritten as

εi+1 =
(li)

3

24
(

1
k(ui)

)2
li+1

=
(li)

3(k(ui))
2

24li+1
(19)

Under the same actual interpolation trajectory length l, it can be concluded from
Equation (19) that greater curvature leads to more significant feedrate fluctuations. Af-
ter eliminating the feedrate fluctuations, it is necessary to take corresponding measures
combined with the curvature properties.

3. Two-Level Parameter Compensation

In this research, we aimed to address the issue of feedrate fluctuations that occur dur-
ing NURBS interpolation. Such fluctuations can significantly impact the quality, accuracy,
and efficiency of Computer Numerical Control (CNC) machining processes. Although
various methods have been proposed in previous studies to reduce these fluctuations, most
of them involve complex calculations and are not conducive to real-time and high-precision
machining applications. Hence, we proposed a new two-level parameter compensation
method that effectively minimizes feedrate fluctuations, considering the curvature-sensitive
areas in the NURBS curve.

3.1. Feedrate Fluctuation Elimination Strategy

In order to balance efficiency and effectiveness, a two-level parameter compensation
method is suggested to avoid feedrate fluctuations. Figure 2 shows the schematic diagram
of two-level parameter compensation for the (i + 1)th interpolation point. Firstly, to address
the federate fluctuation in non-curvature sensitive areas with low computational cost, first-
level parameter compensation is performed. The compensation is achieved through the
Taylor series expansion method, ensuring that the chord trajectory of the new interpolation
point after compensation closely matches the original arc trajectory. Secondly, although the
first-level parameter compensation reduces truncation error in curvature-sensitive areas,
significant feedrate fluctuations can still occur. To further address this issue, second-level
parameter compensation is performed using an iterative method that does not require
derivative calculations.

As shown in Figure 2, initially, parameters such as ui and curvature k(ui) of the cur-
rent interpolation point, command feedrate F, the maximum chord error δmax, curvature
threshold kthreshold, and the feedrate fluctuation tolerance ε are input into the two-level
parameter compensation module. Then, the first-level parameter compensation is per-
formed. In this process, the adaptive velocity of the next interpolation point is calculated
using the adaptive velocity approach described in Equation (5) and is restrained under
the command feedrate constraint according to Equation (6). The estimated parameters
upre,i+1 of the next interpolation point are obtained by using the FAM or SAM described
in Equations (7) and (8). As the numerical approximation method is utilized to obtain the
estimated parameters, there are inevitable discrepancies between these parameters and
the actual ones. Consequently, the arc displacement along the curved path is inaccurately
mapped to the spline parameters, leading to fluctuations in the federate. In this paper, we
provided a theoretical derivation process for compensating for the problem of feedrate fluc-
tuation caused by parameter estimation deviation. More details can be found in Section 3.2.
Therefore, we can obtain the parameter compensation step size ∆ui+1 according to the
method called first-level compensation in this paper. In this way, the first-level parameter
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compensation is completed and we can update the new predicted parameter through the
formula u f ,i+1 = upre,i+1 + ∆ui+1.
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Greater curvature leads to more prominent fluctuation in feedrate. Even after eliminat-
ing the feedrate variation through the first-level parameter compensation in the curvature-
sensitive area, there is still a pressing issue of substantial feedrate fluctuations. This paper
presents a second-level parameter compensation method that is combined with curvature
characteristics to address this problem. As shown in Figure 2, after completing the first-level
parameter compensation, it is important to check whether the next interpolation point is
situated in the curvature-sensitive area. If the point is located in the non-curvature-sensitive
area, the NURBS interpolator will proceed with the calculation process, which involves
obtaining the interpolation position based on the parameters. Once this is done, the feed
system will execute the interpolation action to complete the feed process. If the point falls
within the curvature-sensitive area, then proceed to the second-level parameter compensa-
tion based on the Secant iteration method. First, initialize the parameters, including the
number of iterations, uk and uk−1, etc. In each iteration, a new compensated parameter
uk+1 is updated according to the formula uk+1 = uk −

f (uk)(uk−1−uk)
f (uk−1)− f (uk)

. Then, the estimated
feedrate vk+1 is obtained by the ratio of the distance between two points uk+1 and ui, which
are the new compensated interpolation point and the previous interpolation point, to the
interpolation period. After that, the new feedrate fluctuation is gained and is compared
with the set fluctuation tolerance ε. If the feedrate fluctuation is still higher than the set
tolerance, the number of iterations k will update and the next update iteration process
proceed. If the current parameter compensation results in the feedrate fluctuation being
within the set tolerance and meets the accuracy condition, then, the second-level compen-
sation will end. Next, the NURBS interpolator will solve the curve point coordinates and
perform the feed motion. The specific process of second-level parameter compensation is
detailed in Section 3.3. After two-level parameter compensation, the feedrate fluctuation of
the estimated point can be well eliminated, and the quality of the processed surface can be
better guaranteed.

High curvature regions are the curve parts that exceed the curvature threshold in
the second-level parameter compensation. The NURBS curve is firstly divided into low
and high curvature regions by the curvature threshold. The curve’s curvature threshold
is determined by considering dynamic limitations and geometric properties. Taking F as
the maximum command feedrate, and δmax as the chord error tolerance, the curvature
threshold can be determined from Equation (5) as

kthreshold =
8δmax

F2T2 + δ2
max

(20)

Then, the curve is divided into numerous sections based on the curvature threshold.
The NURBS curve’s high and low-curvature areas are defined as the portion with curvature
larger and less than the threshold, respectively. It can be seen from the curvature character-
istics that when the interpolation point is located in the low curvature area, the feedrate
fluctuation is slight, and only the first-level parameter compensation is required. In contrast,
when the interpolation point is located in the high curvature area, the feedrate fluctuation
is significant, and it is necessary to perform the second-level parameter compensation after
the first-level parameter compensation.

3.2. The First-Level Parameter Compensation

The main factor causing feedrate fluctuation is that the synthesis trajectory is a short
straight line instead of a circular arc. In order to make the chord trajectory of the new
interpolation point after compensation as similar to the original arc trajectory as possible,
the first-level parameter compensation was performed, as shown in Figure 1, where C is
the new point of point B after the first-level compensation.

The parameters of B and C were set as upre,i+1u f ,i+1. The parameter compensation
incremental value of point B was set to ∆ui+1. Now, we have

∆ui+1 = u f ,i+1 − upre,i+1 (21)
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where upre,i+1 is the predicted parameter of the next interpolation point by FAM or SAM.
Here, the first-order Taylor series expansion technique establishes a model between

the interpolation point and the compensation value [38].

C(u f ,i+1) = C(upre,i+1) + C′(upre,i+1)∆ui+1 (22)

where C′(upre,i+1) is the first-order derivative of C(upre,i+1).
After the first-level parameter compensation, it is assumed that there is no feedrate

fluctuation, and
_

AB = AB holds. This also means that the desired feedrate should equal
the actual feedrate. It yields

Si+1

T
=
‖C(u f ,i+1)− C(ui)‖

T
(23)

Equation (23) can be rewritten by

vi+1 =
‖C(u f ,i+1)− C(ui)‖

T
(24)

By substituting (22) with (24), we obtain

‖C(upre,i+1) + C′(upre,i+1)∆ui+1 − C(ui)‖ = vi+1T (25)

The quadratic equation for ∆ui+1 can be obtained by squaring both sides of
Equation (25).

‖C′(upre,i+1)‖
2∆u2

i+1 + 2(C′(upre,i+1), C(upre,i+1)− C(ui))∆ui+1 + ‖C(upre,i+1)− C(ui)‖2 − v2
i+1T2 = 0 (26)

Then, it can be rewritten as

a∆u2
i+1 + b∆ui+1 + c = 0 (27)

where a, b, and c are listed as follows:
a = ‖C′(upre,i+1)‖2

b = 2(C′(upre,i+1), C(upre,i+1)− C(ui))

c = ‖C(upre,i+1)− C(ui)‖2 − v2
i+1T2

(28)

Two roots of Equation (27) can be obtained as

∆ui+1,1 =
−b +

√
b2 − 4ac

2a
(29)

and

∆ui+1,2 =
−b−

√
b2 − 4ac

2a
(30)

Since c = ‖C(u f ,i+1)− C(ui)‖2 − v2
i+1T2 ≈ 0, one of the roots turns out to be close to

zero, and the other root is ∆ui+1,2 = − b
a . Therefore, the parameter compensation should be

slight, and the parameter compensation is taken to be the value of ∆ui+1,1.

3.3. The Second-Level Parameter Compensation

The FAM or SAM based on Taylor expansion employed in the first-level compensation
has truncation errors, which cannot be ignored in high curvature areas, and will still cause
feedrate fluctuations.
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Suppose a point in the high curvature region with feedrate vi+1. Assuming there
are no feedrate fluctuations on this point, it just requires finding parameter u to satisfy
f (u) = 0 in Formula (31).

F(u) = ‖C(u)− C(ui)‖ − viT= 0 (31)

where f (u) represents the difference between the linear distance of adjacent interpolation
points and the actual interpolation trajectory length. When f (u) equals 0, there is no
feedrate fluctuation. The Secant method is introduced to solve (31), an iterative method
without calculating the derivatives. Suppose the feedrate fluctuation tolerance is ε. The
pseudocode representation of the method is shown in Algorithm 1.

Algorithm 1. Secant-Method Based Parameter Compensation

Input: ui, vi, upre,i+1, u f ,i+1, ε

Output: ui+1
1: initialize: Set k = 1, uk = u f ,i+1, uk−1 = upre,i+1
2: do
3: uk+1 = uk −

f (uk)(uk−1−uk)
f (uk−1)− f (uk)

4: vk+1 = ‖C(uk+1)−C(ui)‖
T

5: until |vi+1−vk+1|
vi+1

≤ ε

6: ui+1 = uk

In Algorithm 1, the input parameters include parameter ui, the desired feedrate vi+1,
the predicted parameter upre,i+1, the first-level parameter compensation u f ,i+1, and the fee-
drate fluctuation tolerance ε. uk+1 represents the parameter compensation of Equation (31)
at the (k + 1)th iteration, and vk+1 indicates the actual feedrate according to parameter uk+1.
If the feedrate fluctuation is under the upper bound ε, then uk+1 is set to the desired value.

3.4. The Order of Convergence for the Second-Level Parameter Compensation

Let ek be an error in the kth iteration approximation. The parameter compensations uk
and uk−1 can be written as {

uk = u + ek
uk−1 = u + ek−1

(32)

Substituting Equation (32) into Equation (31) and expanding with the Taylor series,
we get  f (uk) = f (u + ek) = f (u) + ek f ′(u) + e2

k
2 f ′′ (u)

f (uk−1) = f (u + ek−1) = f (u) + ek−1 f ′(u) +
e2

k−1
2 f ′′ (u)

(33)

Since f (u) = 0, Equation (33) can be rewritten as f (uk) = ek f ′(u) + e2
k
2 f ′′ (u)

f (uk−1) = ek−1 f ′(u) +
e2

k−1
2 f ′′ (u)

(34)

Now, the following formula can be obtained

f (uk)− f (uk−1) = (ek − ek−1) f ′(u) +
1
2
(e2

k − e2
k−1) f ′′ (u) (35)

The second-level iteration parameter compensation can be described as

uk+1 = uk −
f (uk)(uk−1−uk)
f (uk−1)− f (uk)

=
uk−1 f (uk)−uk f (uk−1)

f (uk)− f (uk−1)

(36)
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Substituting Equations (34) and (35) into Equation (36) gives

ek+1 + u =
(ek−1+u)

(
ek f ′(u)+

e2
k
2 f ′′ (u)

)
−(ek+u)

(
ek−1 f ′(u)+

e2
k−1
2 f ′′ (u)

)
(ek−ek−1) f ′(u)+ 1

2 (e
2
k−e2

k−1) f ′′ (u)

=
(ek−ek−1)

[
u f ′(u)+ u

2 f ′′ (u)(ek−ek−1)+
ekek−1

2 f ′′ (u)
]

(ek−ek−1)[ f ′(u)+ 1
2 (ek+ek−1) f ′′ (u)]

(37)

Equation (37) can be rewritten as

ek+1 = −u +
u f ′(u)+ u

2 f ′′ (u)(ek−ek−1)+
ekek−1

2 f ′′ (u)
f ′(u)+ 1

2 (ek+ek−1) f ′′ (u)

=
ekek−1

2 f ′(u)

f ′(u)
[

1+ 1
2 (ek+ek−1)

f ′′ (u)
f ′(u)

]

=
ekek−1

2 · f ′′ (u)
f ′(u)

[
1 + ek+ek−1

2
f ′′ (u)
f ′(u)

]−1

(38)

By binomial theorem, Equation (38) can be rewritten as

ek+1 =
ekek−1

2
· f ′′ (u)

f ′(u)

[
1− ek + ek−1

2
f ′′ (u)
f ′(u)

]
(39)

Neglecting powers of ek and ek−1 yields

ek+1 ≈
ekek−1

2
f ′′ (u)
f ′(u)

(40)

or ek+1 ∝ ekek−1 (41)

If p is the order of convergence of iterations, then

ek+1 ∝ ep
k (42)

Or ek ∝ ep
k−1 (43)

According to Equations (41) and (42), we have

ep
k ∝ ekek−1 (44)

From Equation (43), we have

ep
k ∝ ep

k−1ek−1

ek ∝ ep+1
k−1

(45)

And then
ek ∝ ep+1/p

k−1 (46)

From Equations (43) and (46), we can obtain

p =
p + 1

p
or p2 − p− 1 = 0 (47)

The roots of Equation (47) are

p =
1±
√

1 + 4
2

=
1±
√

5
2

(48)
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Taking the positive sign, we have p = 1+
√

5
2 ≈ 1.618.

The order of convergence of the second-level parameter compensation is 1.618, which
is superlinear.

4. Simulation Results
4.1. The Simulation Parameters and Methods

In order to demonstrate the feasibility and effectiveness of the supposed approach,
the typical butterfly-shaped NURBS curve is simulated. The typical butterfly-shaped curve
and its control polygon are shown in Figure 3. In this simulation, the command feedrate,
maximum chord error, and interpolation period are set to 0.1 mm/ms, 0.001 mm, and 2 ms,
respectively.
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Figure 3. Butterfly-shaped NURBS curve.

Figure 4 depicts the curvature of the butterfly-shaped curve. The curvature threshold
is 0.19998, calculated by the given parameters according to Equation (20), as shown by the
red line in Figure 4. As shown in Figure 4, most regions are below the curvature threshold,
while there are also several regions above the curvature threshold, which are high curvature
areas that require performing second-level parameter compensation after the first-level
parameter compensation. In Figure 4, the part with the parameter range of 0.30–0.40 is
selected and magnified (the area indicated by the arrow in Figure 4), which can be seen
more clearly.

This paper performed simulation experiments on the first-level and second-level
parameter compensations under the FAM and SAM. The horizontal axis shows the nor-
malized parameter vector and its value range is 0~1. The vertical axis shows the feedrate
fluctuation rate as a percentage.

4.2. Simulation Analysis

In Figure 5, the NURBS curve interpolation adopts the FAM, which does not consider
the deviation between the estimated and theoretical interpolation trajectories. Figure 5
shows that this method gives significant feedrate fluctuations, and the maximum feedrate
fluctuation rate reaches 18.39%. Such high feedrate fluctuations will directly degrade the
interpolation accuracy and surface quality.
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In Figure 6, the first-level parameter compensation is performed on FAM. For the
parameter estimated by the FAM in Equation (7), the compensation increment is calculated
according to Equation (29), and the compensation increment is added to update the next
point parameters. Figure 6 shows that the FAM algorithm’s feedrate fluctuation range
is significantly reduced after the first-level parameter compensation, and the maximum
fluctuation rate is reduced from 18.39% to 1.2%. The feedrate fluctuation after the first-level
parameter compensation in FAM is 93.5% lower than without parameter compensation.
However, Figure 6 shows that most feedrate fluctuations are less than 0.2%, and the area
with significant feedrate fluctuations corresponds to the curvature-sensitive area shown in
Figure 4.
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Figure 6. The feedrate fluctuation of the FAM with the first-level parameter compensation.

Since the feedrate fluctuation is still relatively significant after the first-level parameter
compensation in the curvature-sensitive areas, the second-level parameter compensation
method is adopted. Figure 7 shows the feedrate fluctuation of the FAM with two-level
parameter compensation. This paper selected the maximum number of iterations as 1~5
in the second-level parameter compensation for real-time performance and investigated
the feedrate fluctuation under the fixed iteration period. Figure 7 shows the feedrate
fluctuation reduction under different iterations. When the iteration parameter was set to 1,
the maximum feedrate fluctuation rate was reduced to 0.5036%, 58.03% lower than that of
the FAM with the first-level parameter compensation. When the iteration parameter was
set to 5, the feedrate fluctuation rate in the curvature-sensitive area continued to decrease,
falling below 0.1%.

In order to further eliminate the feedrate fluctuation rate, this paper also simulated
two-level parameter compensation of the SAM, as shown in Figures 8–10. Figure 8 depicts
the SAM’s feedrate fluctuation without parameter compensation. Since SAM has one
more second-order derivative than FAM, its truncation error is smaller than that of FAM,
and its estimated parameter of the interpolation point is closer to the theoretical value.
Therefore, the feedrate fluctuation rate in the SAM is lower than in the FAM. Nevertheless,
the maximum feedrate fluctuation rate of the SAM still reached 6.32%, which cannot meet
the high precision machining requirements.

Figure 9 depicts the SAM’s feedrate fluctuation with the first-level parameter com-
pensation. Similar to the simulation results in Figure 6, the feedrate fluctuation rate was
significantly reduced (from a maximum of 1.2% to 0.178%, a drop of 85.17%) after adopting
the first-level parameter compensation. The main reason is that the parameters estimated
by the SAM in Equation (8) are compensated according to Equation (29), so the estimated
parameters were closer to the theoretical ones.

However, Figure 9 shows that corresponding to the curvature-sensitive areas in
Figure 4, the feedrate fluctuations were more significant than other areas, which still cannot
meet the high-quality machining requirements. The main reason is that the first-level com-
pensation has a truncation error, and the length of the interpolation trajectory is minimal
in the curvature-sensitive area. Thus, the effect of truncation error on feedrate fluctuation
cannot be ignored.
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Therefore, the secondary second-level parameter compensation is adopted in SAM,
and the feedrate fluctuation rate is shown in Figure 10. Similar to the second-level parameter
compensation of the FAM, the maximum number of iterations was specified as 1~5 in the
second-level parameter compensation, and the feedrate fluctuation under the fixed iteration
period was investigated. As shown in Figure 10, when the iteration parameter was set to 1,
the maximum feedrate fluctuation rate after parameter compensation for the curvature-
sensitive area was reduced to 0.0679%, 61.85% lower than the SAM with the first-level
parameter compensation. When the iteration parameter was set to 5, the feedrate fluctuation
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rate in the curvature-sensitive area decreased, falling below 0.01%. Even if the iteration
parameter was set to 1 in the SAM with the two-level parameter compensation, the feedrate
fluctuation error was sufficient for high-precision machining compared with the standard
range of 0.001–0.1% [8].
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Table 1 shows a comparison of the performance of parameter compensation inter-
polation algorithms. The FAM has a maximum feedrate fluctuation rate of 18.39%. The
maximum federate fluctuation rate of the FAM with the first-level parameter compensation
was 93.5% lower than the FAM. When using the two-level parameter compensation and
setting the iteration parameter to one, the maximum feedrate fluctuation rate was 0.5, 97.3%
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less than the FAM. When the iteration parameter was set to 5, the feedrate fluctuation rate
was 0.1%, 99.5% lower than the FAM. Correspondingly, in terms of the sum of feedrate
fluctuations in the whole interpolation process, the FAM with the first-level parameter com-
pensation was 99.19% lower than that without compensation, and the two-level parameter
compensation was reduced by 99.56% and 99.71% when the iteration parameters were set
to 1 and 5, respectively.

Table 1. Simulation results of the proposed parameter compensation interpolation algorithms.

IA MFFR (%) SFF (Σεi,%) ACT (us)

FAM 18.39 2.2484×103 135
FAM with FLPC 1.20 (↓93.5%) 18.14 (↓99.19%) 290

FAM with TLPC (iteration 1) 0.50 (↓97.3%) 9.86 (↓99.56%) 302
FAM with TLPC (iteration 5) 0.10 (↓99.5%) 6.59 (↓99.71%) 350

SAM 6.32 269.41 155
SAM with FLPC 0.18 (↓97.2%) 6.44 (↓97.10%) 310

SAM with TPPC (iterations 1) 0.07 (↓98.9%) 5.71 (↓97.88%) 322
SAM with TLPC (iterations 5) 0.01 (↓99.8%) 5.40 (↓98.00%) 360

IA—interpolation algorithms. MFFR—the maximum feedrate fluctuation rate. SFF—the sum of feedrate fluctua-
tion in the whole interpolation process. ACT—average computational time.

Besides, for the SAM, the proposed two-level parameter compensation also provided
excellent performance, as shown in Table 1. The maximum rate of feedrate fluctuations
obtained with the SAM was 6.32%, while it was 0.18% for the SAM with the first-level
parameter compensation, 97.2% lower than the SAM. When the two-level parameter
compensation was adopted and the iteration parameter was set to 1, the maximum rate
of feedrate fluctuation was 0.07%, 98.9% lower than that of the SAM. When the iteration
parameter was set to 5, the maximum rate of feedrate fluctuation was 0.01%, 99.8% lower
than the SAM. Similarly, the maximum rate of feedrate fluctuations obtained with the SAM
with the first-level parameter compensation was 97.10% lower than without compensation,
and the two-level parameter compensation reduced it by 97.88% and 98.00% when the
iteration parameter was set to 1 and 5, respectively. At the same time, in the case of
horizontal comparison, when the two-level parameter compensation was adopted and
the number of iterations was set to 5, SAM’s maximum rate of feedrate fluctuation was
only one-tenth that of FAM. Under the SAM with the two-layer parameter compensation,
even if the iteration parameter was set to 1, the feedrate fluctuation was sufficient for
high-precision machining.

Furthermore, the FAM and SAM without parameter compensation consumed the least
computational time while generating the worst feedrate fluctuation rate. The time required
for the first-level parameter compensation to compute the NURBS curve’s first derivative
was doubled. However, the feedrate fluctuation rate decreased by more than 93% after
adopting FAM and SAM. The second-level parameter compensation does not require calcu-
lating the first derivative of the NURBS curve while adding some simple calculations with
no discernible time increase. The feedrate fluctuation control was further improved after
adopting FAM and SAM. The SAM with the two-level parameter compensation (iteration
is 5) consumed most time than the other methods and could reach the maximum rate of
feedrate fluctuation below 0.01%. The proposed two-level parameter compensation method
provided the best feedrate accuracy compared with the other methods. Furthermore, the
proposed method has a computational time of about 350 us for FAM and 360 us for SAM,
which is acceptable for the specified interpolation period (2 ms). As a result, the proposed
method’s real-time performance can meet the requirements of typical computer numerical
control (CNC) systems.

Table 2 compares the following four interpolation methods: the proposed SAM with
two-level parameter compensation, the IRF method [26], Fast NURBS (fifth-degree ILF) [29],
the TFSS method [12], and the OFB method [37]. The five methods had maximum federate
fluctuation rates of 0.01%, 2%, 0.025%, 0.25%, and 0.027%, respectively. The proposed
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method had the smallest feedrate fluctuation among the four methods. The feedrate
fluctuations of the other four methods were significantly higher than the proposed method,
which were 1.99 × 103%, 1.5 × 102%, 2.4 × 103%, and 1.7 × 102%.

Table 2. Simulation results of different interpolation algorithms.

Interpolation Algorithms The Maximum Feedrate Fluctuation Rate (%)

Proposed SAM with TLPC 0.01
IRF method [26] 2 (↑1.99 × 104%)

Fast NURBS (fifth-degree ILF) [29] 0.025 (↑1.5 × 102%)
TFSS [12] 0.25 (↑2.4 × 103%)
OFB [39] 0.027 (↑1.7 × 102%)

4.3. Physical Mechanisms Analysis

The Taylor expansion approximation method disregards higher-order terms, inducing
truncation errors, and discrepancies between estimated and theoretical interpolation points.
As a result, it creates feedrate fluctuations that exceed the required range for high-speed
and high-precision machining. This paper suggests a first-level parameter compensation
method that establishes a mathematical analytical solution for the truncation error com-
pensation and compensates for the error with a step increment. The simulation results
indicated that utilizing a first-level parameter compensation for the first-order and second-
order Taylor expansion methods can decrease feedrate fluctuation to less than 0.02% in
non-curvature sensitive areas. However, fluctuations in curvature-sensitive areas remain
significant because of the continuous impact of curvature on NURBS interpolation. To
solve this issue, the paper suggests the second-level parameter compensation to further
limit the impact of curvature on feedrate fluctuation. The Secant method was introduced to
iteratively regulate feedrate fluctuation within the fluctuation tolerance. The simulation
results also demonstrated that feedrate fluctuation can be effectively managed within 0.01%
after the second-level parameter compensation is implemented.

5. Conclusions

This paper suggests a two-level parameter compensation method for the NURBS
interpolator to minimize feedrate fluctuation. First, the Taylor series expansion method was
utilized in the first-level parameter compensation to obtain precise parameters to make the
chord trajectory of the new interpolation point after compensation as close to the original
arc trajectory as possible, eliminating federate fluctuation in non-curvature-sensitive areas
with low calculation cost. Second, the second-level parameter compensation was performed
based on the Secant method to overcome the truncation error of the first-level parameter
compensation, an iterative method without derivative calculation requirement. Finally, the
butterfly-shaped NURBS curves were simulated. The simulation results indicated that the
maximum feedrate fluctuation rate was below 0.01% with an average computational time
of 360 us in SAM with two-level parameter compensation, which is 99.8% lower than the
SAM without parameter compensation. The proposed method performed best among the
four feedrate fluctuation elimination methods. Compared with the standard range, the
simulation demonstrated its feasibility and effectiveness for high-precision and real-time
machining. However, this paper still has limitations, for example, the effectiveness of
the proposed method in minimizing feedrate fluctuations during actual CNC machining
needs to be tested experimentally. Future research will investigate the potential of machine
learning and artificial intelligence algorithms in developing adaptive and self-optimizing
feedrate control systems for CNC machining.
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