Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (390)

Search Parameters:
Keywords = NRAS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 394
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

39 pages, 3100 KiB  
Review
RESEARCH CHALLENGES IN STAGE III AND IV RAS-ASSOCIATED CANCERS: A Narrative Review of the Complexities and Functions of the Family of RAS Genes and Ras Proteins in Housekeeping and Tumorigenesis
by Richard A. McDonald, Armando Varela-Ramirez and Amanda K. Ashley
Biology 2025, 14(8), 936; https://doi.org/10.3390/biology14080936 - 25 Jul 2025
Viewed by 425
Abstract
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades [...] Read more.
Proto-oncogenes in the RAS superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies. This narrative review examines RAS genes and Ras proteins in both housekeeping functions, such as cell growth, apoptosis, and protein trafficking, as well as in tumorigenesis, integrating insights from human (HRAS, KRAS, NRAS), mouse (Hras, Kras, Nras), and Drosophila melanogaster (ras) models. While RAS mutations are tightly linked to human tumors, the interplay between their standard and oncogenic functions remains complex. Even within the same tissue, distinct cancer pathways—such as the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways—can drive varied disease courses, complicating treatment. Advanced-stage cancers add further challenges, including heterogeneity, protective microenvironments, drug resistance, and adaptive progression. This synthesis organizes current knowledge of RAS gene regulation and Ras protein function from genomic alterations and intracellular signaling to membrane dynamics and extracellular interactions, offering a layered perspective on the Ras pathway’s role in both housekeeping and tumorigenic contexts. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

14 pages, 3307 KiB  
Article
Expanding the Spectrum of CSF3R-Mutated Myeloid Neoplasm Beyond Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia: A Comprehensive Analysis of 13 Cases
by Neha Seth, Judith Brody, Peihong Hsu, Jonathan Kolitz, Pratik Q. Deb and Xinmin Zhang
J. Clin. Med. 2025, 14(15), 5174; https://doi.org/10.3390/jcm14155174 - 22 Jul 2025
Viewed by 258
Abstract
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid [...] Read more.
Background: Genetic alterations in CSF3R, typically associated with chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML), rarely occur in other myeloid neoplasms. Methods: This study characterized the clinical, morphologic, cytogenetic, and molecular features of 13 patients with non-CNL non-aCML myeloid neoplasms with CSF3R alterations. Patients (median age, 77 years) were categorized into groups with a myelodysplastic/myeloproliferative neoplasm (MDS/MPN) (n = 5), acute leukemia (n = 4), and other myeloid neoplasms (n = 4) based on the WHO 2022 and ICC criteria. Results: The CSF3R p.Thr618Ile mutation was most frequent (11/13), with additional pathogenic variants including p.Gln743Ter and frameshift mutations affecting the cytoplasmic tail. Variant allele frequencies (VAFs) ranged from 2% to 49%, with the highest median VAF in the MDS/MPN group. Co-mutations varied by subtype; MDS/MPN, NOS, and CMML cases frequently harbored mutations in epigenetic regulators (ASXL1, TET2) and splicing factors (SF3B1, SRSF2, ZRSR2), while acute leukemia cases showed alterations in JAK3, STAT3, and NRAS. Survival analysis revealed distinct patterns across the three diagnostic groups, with MDS/MPN having the poorest prognosis. Conclusion: This study expands the recognized spectrum of CSF3R-related myeloid neoplasms and highlights the clinical and molecular heterogeneity associated with these mutations, emphasizing the need for comprehensive molecular profiling and the potential for targeted therapies. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Acute Myeloid Leukemia)
Show Figures

Figure 1

14 pages, 1077 KiB  
Article
Identification of Molecular Subtypes of B-Cell Acute Lymphoblastic Leukemia in Mexican Children by Whole-Transcriptome Analysis
by Norberto Sánchez-Escobar, María de los Ángeles Romero-Tlalolini, Haydeé Rosas-Vargas, Elva Jiménez-Hernández, Juan Carlos Núñez Enríquez, Angélica Rangel-López, José Manuel Sánchez López, Daniela Rojo-Serrato, América Mariana Jasso Mata, Efraín Abimael Márquez Aguilar, Janet Flores-Lujano, Juan Carlos Bravata-Alcántara, Jorge Alfonso Martín-Trejo, Silvia Jiménez-Morales, José Arellano-Galindo, Aurora Medina Sanson, Jose Gabriel Peñaloza Gonzalez, Juan Manuel Mejía-Aranguré and Minerva Mata-Rocha
Int. J. Mol. Sci. 2025, 26(14), 7003; https://doi.org/10.3390/ijms26147003 - 21 Jul 2025
Viewed by 241
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is classified into more than 20 molecular subtypes, and next-generation sequencing has facilitated the identification of these with high sensitivity. Bulk RNA-seq analysis of bone marrow was realized to identify molecular subtypes in Mexican pediatric patients with B-ALL. [...] Read more.
B-lineage acute lymphoblastic leukemia (B-ALL) is classified into more than 20 molecular subtypes, and next-generation sequencing has facilitated the identification of these with high sensitivity. Bulk RNA-seq analysis of bone marrow was realized to identify molecular subtypes in Mexican pediatric patients with B-ALL. High hyperdiploidy (27.3%) was the most frequent molecular subtype, followed by DUX4 (13.6%), TCF3::PBX1 (9.1%), ETV6::RUNX1 (9.1%), Ph-like (9.1%), ETV6::RUNX1-like (9.1%), PAX5alt (4.5%), Ph (4.5%), KMT2A (4.5%), and ZNF384 (4.5%), with one patient presenting both the PAX5alt and low hypodiploidy subtypes (4.5%). The genes TYK2, SEMA6A, FLT3, NRAS, SETD2, JAK2, NT5C2, RAG1, and SPATS2L harbor deleterious missense variants across different B-ALL molecular subtypes. The Ph-like subtype exhibited mutations in STAT2, ADGRF1, TCF3, BCR, JAK2, and NRAS with overexpression of the CRLF2 gene. The DUX4 subtype showed mutually exclusive missense variants in the PDGRFA gene. Here, we have demonstrated the importance of using RNA-seq to facilitate the differential diagnosis of B-ALL with successful detection of gene fusions and mutations. This will aid both patient risk stratification and precision medicine. Full article
(This article belongs to the Special Issue Novel Agents and Molecular Research in Multiple Myeloma)
Show Figures

Figure 1

13 pages, 860 KiB  
Article
Identification of Genetic Variants Using Next-Generation Sequencing in Pediatric Myelodysplastic Syndrome: From Disease Biology to Clinical Applications
by Viviane Lamim Lovatel, Gerson Moura Ferreira, Beatriz Ferreira da Silva, Rayane de Souza Torres, Rita de Cássia Barbosa da Silva Tavares, Ana Paula Silva Bueno, Eliana Abdelhay and Teresa de Souza Fernandez
Int. J. Mol. Sci. 2025, 26(14), 6907; https://doi.org/10.3390/ijms26146907 - 18 Jul 2025
Viewed by 219
Abstract
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed [...] Read more.
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed with the Ion Torrent Personal Genome Machine for the following genes: GATA2, RUNX1, CEBPA, ANKRD26, ETV6, SAMD9, SAMD9L, PTPN11, NRAS, SETBP1, DDX41, TP53, FLT3, SRP72, and JAK3. Analyses were performed with Ion Reporter 5.20.8.0 software. Genetic variants were classified using the dbSNP, 1000 Genomes, COSMIC, and Varsome databases. We analyzed 25 cases of pMDS; 15 presented abnormal karyotypes, and 19 showed genetic variants. Among the 29 variants identified across 12/15 genes, 27% were pathogenic and 14% were likely pathogenic, with NRAS and GATA2 most frequently associated with disease progression. A new somatic variant of uncertain significance in SETBP1 was detected in seven patients showing heterogeneous clinical outcomes. Genetic variants were found in 7/10 patients with normal karyotypes, indicating that submicroscopic alterations can shed light on disease biology. Our results highlight the critical role of a targeted NGS panel in identifying molecular alterations associated with pMDS pathogenesis, thereby enhancing diagnostic precision, prognosis, and aiding in treatment selection. Full article
Show Figures

Figure 1

13 pages, 12971 KiB  
Article
The Role of Gonadotropins and Growth Factor in Regulating Ras During Maturation in Cumulus–Oocyte Complexes of Pigs
by Eunju Seok, Minyoung Son, Seunghyung Lee, Hee-Tae Cheong and Sang-Hee Lee
Animals 2025, 15(14), 2100; https://doi.org/10.3390/ani15142100 - 16 Jul 2025
Viewed by 336
Abstract
Oocytes and cumulus cells undergo meiotic resumption and proliferation via gonadotropins and growth factors during maturation, and various small G proteins are activated when COCs undergo physiological changes. This study investigated the influence of gonadotropins and growth factors on Ras and its GTPases [...] Read more.
Oocytes and cumulus cells undergo meiotic resumption and proliferation via gonadotropins and growth factors during maturation, and various small G proteins are activated when COCs undergo physiological changes. This study investigated the influence of gonadotropins and growth factors on Ras and its GTPases during porcine COC maturation. Unmatured COCs were treated with FSH, LH, or EGF for 44 h. The mRNA expression levels of the Ras subfamily (H-Ras, K-Ras, N-Ras, and R-Ras), its GTPases (RASA1 and SOS1), and proliferation factors (ERK, CCNB1, and Cdc2) were analyzed using RT-PCR. In contrast to other Ras subfamilies, R-Ras expression is upregulated during COC maturation. We evaluated the effects of FSH, LH, and EGF at various concentrations that most effectively regulated the expression of R-Ras and GTPases. The results demonstrated that 0.5 µg/mL FSH, 10 IU/mL human chorionic gonadotropin (hCG), and 10 ng/mL EGF effectively enhanced R-Ras expression and cell proliferation. FSH supplementation during porcine COC maturation significantly upregulated R-Ras and ERK expression, independent of LH and EGF, and downregulated Cdc2 expression. These results indicated that FSH regulates R-Ras expression, thereby promoting cell proliferation during COC maturation. These results provide fundamental knowledge for understanding the role of Ras and its family members in the development of follicular environments in pigs. Full article
(This article belongs to the Special Issue Health of the Ovaries, Uterus, and Mammary Glands in Animals)
Show Figures

Figure 1

26 pages, 1016 KiB  
Article
TIM-3/Galectin-9 Immune Axis in Colorectal Cancer in Relation to KRAS, NRAS, BRAF, PIK3CA, AKT1 Mutations, MSI Status, and the Cytokine Milieu
by Błażej Ochman, Anna Kot, Sylwia Mielcarska, Agnieszka Kula, Miriam Dawidowicz, Dorota Hudy, Monika Szrot, Jerzy Piecuch, Dariusz Waniczek, Zenon Czuba and Elżbieta Świętochowska
Int. J. Mol. Sci. 2025, 26(14), 6735; https://doi.org/10.3390/ijms26146735 - 14 Jul 2025
Viewed by 224
Abstract
In this study, we investigated the expression of TIM-3 and Galectin-9 (Gal-9) in colorectal cancer (CRC) and their associations with oncogenic mutations, MSI status, cytokine profiles, and transcriptional data. TIM-3 and Gal-9 protein levels were significantly increased in CRC tissues compared to matched [...] Read more.
In this study, we investigated the expression of TIM-3 and Galectin-9 (Gal-9) in colorectal cancer (CRC) and their associations with oncogenic mutations, MSI status, cytokine profiles, and transcriptional data. TIM-3 and Gal-9 protein levels were significantly increased in CRC tissues compared to matched non-tumor margins (p < 0.05 and p < 0.001, respectively). TIM-3 protein concentration was notably higher in PIK3CA-mutated tumors (p < 0.05), while no associations were found with KRAS, NRAS, BRAF, AKT1, or MSI status. Multiplex cytokine profiling revealed strong correlations between TIM-3 and Gal-9 levels and key immunomodulatory pathways, including IL-10, IL-17, and chemokine signaling. We also observed significant associations with cytokine subsets involved in protumor activity and immune regulation. Gene set enrichment analysis (GSEA) demonstrated that high TIM-3 and Gal-9 expression was associated with upregulation of cell cycle-related pathways, and downregulation of immune signatures, such as interferon responses and TNF-α/NFκB signaling. These findings suggest that increased TIM-3 and Gal-9 expression reflects a shift toward proliferative activity and immune suppression in the CRC tumor microenvironment, highlighting their potential as biomarkers of immunoevasive tumor phenotypes, especially in PIK3CA-mutant CRC tumors. Full article
Show Figures

Figure 1

22 pages, 547 KiB  
Review
RAS Mutations in Advanced Colorectal Cancer: Mechanisms, Clinical Implications, and Novel Therapeutic Approaches
by Osman Sütcüoğlu, Hasan Çağrı Yıldırım, Elvina Almuradova, Damla Günenç and Şuayib Yalçın
Medicina 2025, 61(7), 1202; https://doi.org/10.3390/medicina61071202 - 30 Jun 2025
Viewed by 498
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, posing significant treatment challenges, particularly in its metastatic form (mCRC). This review comprehensively examines the pivotal role of RAS mutations, specifically KRAS and NRAS, which are detected in approximately 40–45% of mCRC [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, posing significant treatment challenges, particularly in its metastatic form (mCRC). This review comprehensively examines the pivotal role of RAS mutations, specifically KRAS and NRAS, which are detected in approximately 40–45% of mCRC cases, and their impact on treatment decisions and patient outcomes. We assess the effectiveness of standard treatments within the RAS mutant population, highlighting the challenges and limitations these therapies face. Recent advancements in targeted therapies, particularly the focus on novel agents such as KRAS G12C inhibitors, including sotorasib and adagrasib, have shown promising efficacy in overcoming resistance to conventional treatments. Furthermore, this review discusses future directions, emphasizing the need for research into non-RAS targets to address the complexities of resistance mechanisms and improve therapeutic outcomes. This review aims to provide a detailed overview of the current treatments and innovative approaches, supporting the development of personalized management strategies for patients with mCRC. Full article
(This article belongs to the Section Oncology)
Show Figures

Graphical abstract

9 pages, 228 KiB  
Communication
Clinically Based Cetuximab Re-Challenge in Patients with RAS Wild-Type Metastatic Colorectal Cancer and Retrospective Analysis of Liquid Biopsies—Preliminary Data
by Zhasmina Mihaylova, Stoyan Bichev, Alexey Savov and Maria Radanova
Gastrointest. Disord. 2025, 7(3), 42; https://doi.org/10.3390/gidisord7030042 - 25 Jun 2025
Viewed by 396
Abstract
Background: Anti-EGFR therapy, combined with chemotherapy, represents the standard therapeutic approach for triple wild-type (KRAS/NRAS and BRAF), left-sided, microsatellite stable (MSS) metastatic colorectal cancer (mCRC). However, acquired resistance develops in approximately 50% of patients. This study evaluated the efficacy [...] Read more.
Background: Anti-EGFR therapy, combined with chemotherapy, represents the standard therapeutic approach for triple wild-type (KRAS/NRAS and BRAF), left-sided, microsatellite stable (MSS) metastatic colorectal cancer (mCRC). However, acquired resistance develops in approximately 50% of patients. This study evaluated the efficacy of anti-EGFR therapy re-challenge and analyzed circulating tumor DNA (ctDNA) for potential resistance mechanisms. Methods: Eleven patients with triple wild-type, MSS, HER2-negative, left-sided mCRC were included. All patients received Cetuximab with chemotherapy as the first-line treatment, with three patients subsequently receiving Cetuximab re-challenge. Twenty-one plasma samples were collected at baseline and at each response assessment for retrospective ctDNA analysis using next-generation sequencing with a 16-gene panel. Results: Genetic alterations were detected in only 14.2% of ctDNA samples. In one re-challenge patient, the KRAS: c.35G>A mutation appeared during progression. No RAS mutations were identified in four patients who progressed on first-line Cetuximab treatment. Conclusions: This preliminary study suggests that clinically based anti-EGFR re-challenge may benefit selected mCRC patients. The low detection rate of resistance-conferring mutations indicates potential alternative resistance mechanisms beyond RAS pathway alterations. Our findings, while limited by sample size and the retrospective design of ctDNA testing, contribute to the growing evidence supporting anti-EGFR re-challenge strategies in mCRC management. Full article
16 pages, 2462 KiB  
Article
Exploring MAPK and mTOR Pathways in Feline Thyroid Tumors
by Alexandra Monteiro, Tiago Bordeira Gaspar, Inês Borges, Sule Canberk, Mafalda Pinto, Isabel Pires, Paula Soares and Catarina Tavares
Vet. Sci. 2025, 12(7), 617; https://doi.org/10.3390/vetsci12070617 - 24 Jun 2025
Viewed by 486
Abstract
Thyroid tumors are common in humans and cats, occurring most commonly as benign lesions, whereas thyroid carcinoma is barely detected in both species. Determining the mutational status of MAPK-related genes (BRAF, NRAS, HRAS, and KRAS) and the activation [...] Read more.
Thyroid tumors are common in humans and cats, occurring most commonly as benign lesions, whereas thyroid carcinoma is barely detected in both species. Determining the mutational status of MAPK-related genes (BRAF, NRAS, HRAS, and KRAS) and the activation status of MAPK and mTOR pathways is crucial for establishing the diagnosis, treatment, and prognosis of human patients. So far, the role of such players in feline thyroid tumorigenesis remains underexplored. This study aims to elucidate the presence and implications of potential shared molecular mechanisms between human and feline thyroid tumors. Fifteen formalin-fixed paraffin-embedded feline thyroid epithelial tumors (four tumors with atypia and 11 with no atypia) were collected to perform mutational and immunohistochemical analyses. Sanger sequencing targeting human homologous hotspots revealed no mutations in BRAF (human codon 600) or RAS (human codon 61) regions. A KRAS missense mutation (p.Gln232His) was identified in two tumors with no atypia of follicular pattern (2/15, 13%). Regardless of the mutational status, pERK (Thr202/Ty204) was immuno-expressed in 10/11 (91%), pS6 (Ser235/236) in 100%, and pAKT (Ser473) in 8/11 (73%) of the tumors with no atypia. The expression patterns of pERK, pS6, and pAKT and their associations with clinical-pathological features seem to mirror the progression dynamics observed in human thyroid tumorigenesis. pAKT expression was associated with the presence of multiple tumor foci within the same thyroid lobe, suggesting its potential as a marker of aggressiveness in feline thyroid tumors. This study introduces cats as potential animal models for human thyroid tumorigenesis, with further research required to confirm such potential. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Graphical abstract

18 pages, 2195 KiB  
Article
Pilot Transcriptomic Profiling of Canine Oral Melanoma Reveals Conserved Oncogenic Pathways and Uncharacterized Molecular Signatures
by Carmen G. Pérez-Santana, Francisco Rodríguez-Esparragón, Sara E. Cazorla-Rivero, Ana A. Jiménez-Alonso, Bernardino Clavo, Jesús M. González-Martín, Ángeles Cánovas-Molina, Carmen Bartolomé, Lidia Estupiñán and Enrique Rodríguez Grau-Bassas
Cancers 2025, 17(13), 2106; https://doi.org/10.3390/cancers17132106 - 23 Jun 2025
Viewed by 861
Abstract
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize [...] Read more.
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize gene expression profiles in COM to identify differentially expressed genes (DEGs), potential biomarkers, and therapeutic targets. Methods: In this pilot study, we performed RNA sequencing (RNA-seq) on tumor and healthy oral tissue samples from dogs. Two independent analytical pipelines—Bowtie2-DESeq2 and HISAT-StringTie-Ballgown—were used to ensure robustness in DEG detection. We also conducted pathway enrichment and isoform-level analyses to investigate biological processes and alternative splicing events. Results: Both approaches identified a core set of 929 common DEGs. Key oncogenic pathways, including MAPK/ERK and cell cycle regulation, were significantly affected, with notable upregulation of BRAF, NRAS, CDK4, and MITF (log2FC = 2.86, p < 0.001). The transcription factor SOX10 and the cytokine IL-33, both previously implicated in melanoma progression, were consistently overexpressed. Additionally, NF1, a known RAS pathway inhibitor, was also upregulated. Isoform analysis revealed novel transcript variants, suggesting a complex layer of post-transcriptional regulation in COM. Many DEGs remained uncharacterized, and chromosomal distribution analysis highlighted potential genomic influences. Conclusions: Our findings provide new insights into the molecular landscape of COM, reinforcing its utility as a model for human melanoma. The identification of conserved oncogenic pathways and novel transcript variants opens avenues for further functional studies and the development of targeted therapies in both veterinary and human oncology. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

15 pages, 2187 KiB  
Article
Elucidating the Role of KRAS, NRAS, and BRAF Mutations and Microsatellite Instability in Colorectal Cancer via Next-Generation Sequencing
by Marta Rada Rodríguez, Bárbara Angulo Biedma, Irene Rodríguez Pérez and Javier Azúa Romeo
Cancers 2025, 17(13), 2071; https://doi.org/10.3390/cancers17132071 - 20 Jun 2025
Viewed by 408
Abstract
Methods: We retrospectively and cross-sectionally reviewed the cases of 648 patients with a histological diagnosis of colon adenocarcinoma. Of these, 166 had partial molecular studies, and 42 cases were selected based on the availability of the genetic markers targeted in this study. We [...] Read more.
Methods: We retrospectively and cross-sectionally reviewed the cases of 648 patients with a histological diagnosis of colon adenocarcinoma. Of these, 166 had partial molecular studies, and 42 cases were selected based on the availability of the genetic markers targeted in this study. We analyzed the frequency of mutations in these genes, as well as their correlation with microsatellite instability (MSI). Results: A high mutation rate was found in the KRAS gene (52.4%). NRAS mutations were less frequent (8.9%), whereas BRAF mutations were observed in 20.8% of cases. This allowed us to identify a patient subgroup with MSI, representing 12.1% of cases. Among the 42 patients analyzed for KRAS, NRAS, BRAF, and MSI mutations, a significant association was observed between KRAS mutations and microsatellite stability, while no association was found between NRAS mutations and MSI. BRAF mutations showed a statistically significant association with MSI (p < 0.05), with the most common mutation being c.1799T > A, p.Val600Glu. The objective of this study is to demonstrate that the NGS-based method for evaluating MSI is rigorously valid compared to the results obtained using IHC and PCR. Conclusions: Comprehensive NGS profiling from the start improves diagnostic efficiency by saving time, tissue, and costs compared to gene-by-gene analysis. It also enables better molecular characterization and facilitates tailored therapeutic strategies, particularly in identifying candidates for targeted therapy and immunotherapy. This approach supports efficient tumor classification based on using KRAS, BRAF, NTRK, ERBB2, and PIK3CA as key markers, along with MSI status. We recommend that, if initial NGS is not feasible, start with KRAS analysis, then test BRAF and MSI if no mutation is found. Full article
Show Figures

Figure 1

16 pages, 4948 KiB  
Article
CYP1A1/20-HETE/GPR75 Axis-Mediated Arachidonic Acid Metabolism Dysregulation in H-Type Hypertension Pathogenesis
by Hangyu Lv, Lingyun Liu, Baoling Bai, Kexin Zhang and Qin Zhang
Int. J. Mol. Sci. 2025, 26(13), 5947; https://doi.org/10.3390/ijms26135947 - 20 Jun 2025
Viewed by 385
Abstract
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the [...] Read more.
This study aims to explore the pathogenic mechanism of H-type hypertension. A rat model of H-type hypertension was established through high-methionine dietary intervention, with subsequent folic acid administration. Untargeted serum metabolomic profiling identified a significant reduction in arachidonic acid (AA) levels in the methionine-enriched group, which were effectively normalized following folic acid supplementation. Transcriptomic analysis revealed methionine-induced upregulation of AA pathway-associated genes Cyp1a1 and Gpr75. In contrast, after the intervention with folic acid, a downregulation of these genes was observed. These findings were corroborated through Western blotting and RT-qPCR validation. In vitro studies using EA.hy926 endothelial cells demonstrated that methionine exposure significantly elevated CYP1A1 expression. Furthermore, methionine stimulation induced marked upregulation of GPR75 and its downstream signaling components (NRAS, MEK1, and ERK1). Population-level evidence from the U.S. NHANES database substantiated significant correlations between essential fatty acids (AA, LA, and GLA) and H-type hypertension prevalence. Our research findings suggest that the CYP1A1/20-HETE/GPR75 axis-mediated dysregulation of AA metabolism may be one of the key pathological mechanisms of H-type hypertension. The research results provide clues for the discovery of new therapeutic targets for H-type hypertension. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

10 pages, 460 KiB  
Commentary
Targeting S-Nitrosylation to Overcome Therapeutic Resistance in NRAS-Driven Melanoma
by Jyoti Srivastava and Sanjay Premi
Cancers 2025, 17(12), 2020; https://doi.org/10.3390/cancers17122020 - 17 Jun 2025
Viewed by 402
Abstract
NRAS-mutant melanoma represents a clinically challenging subset of melanoma with limited effective therapies and intrinsic resistance to targeted MEK inhibition. Recent findings highlight protein S-nitrosylation, a redox-dependent post-translational modification as a critical modulator of MEK-ERK signaling and immune evasion in this context. In [...] Read more.
NRAS-mutant melanoma represents a clinically challenging subset of melanoma with limited effective therapies and intrinsic resistance to targeted MEK inhibition. Recent findings highlight protein S-nitrosylation, a redox-dependent post-translational modification as a critical modulator of MEK-ERK signaling and immune evasion in this context. In this commentary, we discuss how S-nitrosylation of MAPK components, including MEK and ERK, sustains oncogenic signaling and attenuates immunogenic cell death. Targeting this modification with nitric oxide synthase (NOS) inhibitors such as L-NAME, L-NMMA and 1400w restore sensitivity of MEK inhibitor, promotes dendritic cell activation, and enhances CD8+ T cell infiltration in preclinical models such as immunogenic mouse models and individual patient derived, primary melanoma cells. We also explore the emerging role of S-nitrosylation in regulating macrophage-mediated immune surveillance and propose translational strategies for combining redox modulation with targeted and immune therapies. These insights offer a compelling framework for overcoming therapeutic resistance and reprogramming the tumor immune microenvironment to activate the cytotoxic T-cells and enhance the responses to immunotherapy in NRAS-driven cancers. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

7 pages, 158 KiB  
Commentary
Strengthening National Regulatory Authorities in Africa: A Critical Step Towards Enhancing Local Manufacturing of Vaccines and Health Products
by Alemayehu Duga, Nebiyu Dereje, Mosoka Papa Fallah, Tedi Angasa, Abebe Genetu Bayih, Edinam Agbenu, Ngashi Ngongo, Raji Tajudeen and Jean Kaseya
Vaccines 2025, 13(6), 646; https://doi.org/10.3390/vaccines13060646 - 16 Jun 2025
Viewed by 775
Abstract
The World Health Organization (WHO) Global Benchmarking Tool (GBT) classifies regulatory systems into four maturity levels, with Maturity Level 3 (ML3) signifying a stable and effective regulatory environment. As of January 2025, eight African nations—Egypt, Ghana, Nigeria, Rwanda, Senegal, South Africa, Tanzania, and [...] Read more.
The World Health Organization (WHO) Global Benchmarking Tool (GBT) classifies regulatory systems into four maturity levels, with Maturity Level 3 (ML3) signifying a stable and effective regulatory environment. As of January 2025, eight African nations—Egypt, Ghana, Nigeria, Rwanda, Senegal, South Africa, Tanzania, and Zimbabwe—have attained ML3 status, marking a significant milestone in the continent’s regulatory landscape. Achieving ML3 confers critical benefits, including reducing substandard and falsified medicines, which enhances public health safety and fosters trust in healthcare systems. This progress encourages local manufacturing, diminishing reliance on imported medicines and promoting economic development. Furthermore, ML3 NRAs are better equipped to address public health emergencies, enabling swift approvals for vaccines and therapeutics while upholding safety standards. Nonetheless, challenges persist, including fragmented regulatory systems, the prevalence of counterfeit medicines, and limited resources. Overcoming these hurdles necessitates enhanced organizational capacity, investments in training, and the promotion of collaboration among NRAs. There is an urgent call for greater political commitment and resource allocation to strengthen regulatory systems across Africa. Achieving and maintaining ML3 status is essential for enhancing medicine regulation, supporting local manufacturing, and improving public health outcomes across the continent. While progress has been made, sustained efforts are crucial to tackling existing challenges and harnessing the full potential of advanced regulatory frameworks. Full article
Back to TopTop