Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = NPHS2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2357 KB  
Article
Targeting GLP-1 Signaling Ameliorates Cystogenesis in a Zebrafish Model of Nephronophthisis
by Priska Eckert, Maike Nöller, Merle Müller, Rebecca Haas, Johannes Ruf, Henriette Franz, Katharina Moos, Jia-ao Yu, Dongfang Zhao, Wanqiu Xie, Melanie Boerries, Gerd Walz and Toma A. Yakulov
Int. J. Mol. Sci. 2025, 26(15), 7366; https://doi.org/10.3390/ijms26157366 - 30 Jul 2025
Viewed by 368
Abstract
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing [...] Read more.
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing screen in zebrafish. By simultaneously depleting nphp1 and nphp4, we developed a robust zebrafish model that reproduces key features of human NPH, including glomerular cyst formation. Our screen revealed that dipeptidyl peptidase-4 (DPP4) inhibitors (Omarigliptin and Linagliptin) and GLP-1 receptor agonists (Semaglutide) significantly reduce cystogenesis in a dose-dependent manner. Genetic analysis demonstrated that GLP-1 receptor signaling is important for maintaining pronephros integrity, with gcgra and gcgrb (GLP-1 receptor genes) playing a particularly important role. Transcriptomic profiling identified adenosine receptor A2ab (adora2ab) as a key downstream effector of GLP-1 signaling, which regulates ciliary morphology and prevents cyst formation. Notably, nphp1/nphp4 double mutant zebrafish exhibited the upregulation of gcgra as a compensatory mechanism, which might explain their resistance to cystogenesis. This compensation was disrupted by the targeted depletion of GLP-1 receptors or the inhibition of adenylate cyclase, resulting in enhanced cyst formation, specifically in the mutant background. Our findings establish a signaling cascade from GLP-1 receptors to adora2ab in terms of regulating ciliary organization and preventing cystogenesis, offering new therapeutic opportunities for NPH through the repurposing of FDA-approved medications with established safety profiles. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

16 pages, 348 KB  
Systematic Review
Time Course of Symptoms in Normal-Pressure Hydrocephalus: A Systematic Review
by Bekir Rovčanin, Ibrahim Omerhodžić, Adem Nuhović, Emir Begagić, Nevena Mahmutbegović, Hakija Bečulić, Haso Sefo, Enra Mehmedika-Suljić, Almir Džurlić and Mirza Pojskić
Diagnostics 2025, 15(14), 1778; https://doi.org/10.3390/diagnostics15141778 - 14 Jul 2025
Viewed by 622
Abstract
Background and Objectives: Idiopathic normal-pressure hydrocephalus (NPH) is a treatable, but diagnostically challenging condition in the elderly marked by gait disturbance, cognitive decline, and urinary incontinence. Ventriculoperitoneal (VP) shunting is effective, but the prognostic significance of symptom duration before surgery remains unclear. This [...] Read more.
Background and Objectives: Idiopathic normal-pressure hydrocephalus (NPH) is a treatable, but diagnostically challenging condition in the elderly marked by gait disturbance, cognitive decline, and urinary incontinence. Ventriculoperitoneal (VP) shunting is effective, but the prognostic significance of symptom duration before surgery remains unclear. This systematic review evaluates symptom duration in NPH patients with postoperative outcomes. Methods: A systematic search of PubMed, Scopus, and Embase was conducted per PRISMA guidelines. Studies were included if they assessed clinical or radiological outcomes of VP shunting in adult NPH patients, reported symptom duration, and had a follow-up of at least one month. Clinical outcomes (MMSE, TUG, NPH score) were qualitatively analyzed due to study heterogeneity. Results: Twenty-four studies comprising 1169 patients were included (mean age: 72.45 years; mean symptom duration: 33.04 months). Most studies reported clinical improvement after VP shunting. However, few directly evaluated the effect of symptom duration, yielding inconsistent findings: some suggested better outcomes with shorter symptom duration, while others found no clear correlation. Larger studies often lacked conclusive data, and no randomized controlled trials were identified. Conclusions: VP shunting remains an effective intervention for NPH; however, evidence supporting the predictive value of preoperative symptom length is inconclusive. This review highlights the need for standardized diagnostic protocols and larger prospective studies to clarify this association and optimize surgical timing. Full article
Show Figures

Figure 1

24 pages, 842 KB  
Review
Hydrocephalus: Molecular and Neuroimaging Biomarkers in Diagnosis and Management
by Andrada-Iasmina Roşu, Diana Andrei, Laura Andreea Ghenciu and Sorin Lucian Bolintineanu
Biomedicines 2025, 13(7), 1511; https://doi.org/10.3390/biomedicines13071511 - 20 Jun 2025
Viewed by 996
Abstract
Hydrocephalus is a complex neurological condition marked by abnormal cerebrospinal fluid (CSF) accumulation, often leading to elevated intracranial pressure and structural brain damage. Despite advances in surgical treatment, diagnostic precision and prognosis remain challenging, especially in idiopathic normal pressure hydrocephalus (iNPH). This narrative [...] Read more.
Hydrocephalus is a complex neurological condition marked by abnormal cerebrospinal fluid (CSF) accumulation, often leading to elevated intracranial pressure and structural brain damage. Despite advances in surgical treatment, diagnostic precision and prognosis remain challenging, especially in idiopathic normal pressure hydrocephalus (iNPH). This narrative review aims to synthesize the current knowledge regarding molecular and neuroimaging biomarkers that hold diagnostic, prognostic, and therapeutic significance in hydrocephalus. A comprehensive literature search was conducted across PubMed, Scopus, Web of Science, and Google Scholar. The inclusion criteria encompassed peer-reviewed studies involving congenital or acquired hydrocephalus and reporting on mechanistic, diagnostic, or monitoring biomarkers. Both established and emerging biomarkers were included, and preclinical findings were considered when translational relevance was apparent. The review highlights a broad spectrum of molecular markers including aquaporins, vascular endothelial growth factor, neurofilaments, glial fibrillary acidic protein, matrix metalloproteinases, and neuroinflammatory markers. The genetic markers associated with ciliogenesis also show promise in subtyping disease. Parallel to molecular advances, neuroimaging techniques, ranging from classic markers like Evans’ index to advanced modalities such as diffusion tensor imaging (DTI), arterial spin labeling (ASL), and glymphatic MRI, provide functional perspectives on hydrocephalus diagnosis and management, while artificial intelligence may further enhance diagnostic algorithms. Molecular and imaging markers could not only increase diagnostic confidence, but also provide information on disease causes and progression. As research progresses, merging various methodologies may result in more accurate diagnoses. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

10 pages, 3631 KB  
Case Report
Idiopathic Normal-Pressure Hydrocephalus Revealed by Systemic Infection: Clinical Observations of Two Cases
by Shinya Watanabe, Yasushi Shibata, Kosuke Baba, Yuhei Kuriyama and Eiichi Ishikawa
Neurol. Int. 2025, 17(6), 86; https://doi.org/10.3390/neurolint17060086 - 30 May 2025
Viewed by 940
Abstract
Background/Objectives: Idiopathic normal-pressure hydrocephalus (iNPH) is a potentially reversible neurological disorder characterized by gait disturbance, cognitive impairment, and urinary incontinence. Its pathophysiology involves impaired cerebrospinal fluid (CSF) absorption, and recent research has highlighted the role of the glymphatic and meningeal lymphatic systems in [...] Read more.
Background/Objectives: Idiopathic normal-pressure hydrocephalus (iNPH) is a potentially reversible neurological disorder characterized by gait disturbance, cognitive impairment, and urinary incontinence. Its pathophysiology involves impaired cerebrospinal fluid (CSF) absorption, and recent research has highlighted the role of the glymphatic and meningeal lymphatic systems in this process. However, the factors that trigger the clinical manifestations of iNPH in subclinical cases remain poorly understood. Case Presentation: Herein, we report two rare cases of iNPH in which clinical symptoms only became apparent following systemic infections. An 82-year-old man presented with transient neurological deficits during a course of sepsis caused by Klebsiella pneumoniae. Neuroimaging revealed periventricular changes and mild ventricular enlargement. Shunting and a tap test led to significant improvements to both his gait and cognition. An 80-year-old man with a history of progressive gait disturbance and cognitive decline developed worsening urinary incontinence and acute cerebral infarction caused by Staphylococcus haemolyticus bacteremia. Magnetic resonance imaging revealed a ventriculomegaly with features of disproportionally enlarged subarachnoid space hydrocephalus and a corona radiata infarct. Clinical improvement was achieved after a ventriculoperitoneal shunt was placed. Conclusions: Our two present cases suggest that systemic inflammatory states may act as catalysts for the manifestation of iNPH in patients with predisposing cerebral ischemia or subclinical abnormalities in CSF flow, highlighting the need for higher clinical awareness of iNPH in older patients who present with neurological deterioration during systemic infections. Early diagnosis and timely shunting after appropriate infection control may facilitate significant functional recovery in such patients. Full article
(This article belongs to the Section Brain Tumor and Brain Injury)
Show Figures

Figure 1

16 pages, 588 KB  
Study Protocol
The Effects of Endoscopic Third Ventriculostomy Versus Ventriculoperitoneal Shunt on Neuropsychological and Motor Performance in Patients with Idiopathic Normal Pressure Hydrocephalus—ENVENTOR-iNPH: Study Protocol
by Gianluca Scalia, Nicola Alberio, Pietro Trombatore, Mariangela Panebianco, Grazia Razza, Gianluca Galvano, Giovanni Federico Nicoletti and Francesca Graziano
Brain Sci. 2025, 15(5), 508; https://doi.org/10.3390/brainsci15050508 - 16 May 2025
Viewed by 1463
Abstract
Background: Idiopathic normal pressure hydrocephalus (iNPH) is a progressive neurological disorder characterized by cognitive decline, gait disturbances, and urinary incontinence. Surgical interventions such as ventriculoperitoneal shunt (VPS) and endoscopic third ventriculostomy (ETV) are the primary treatment options. While VPS is the standard of [...] Read more.
Background: Idiopathic normal pressure hydrocephalus (iNPH) is a progressive neurological disorder characterized by cognitive decline, gait disturbances, and urinary incontinence. Surgical interventions such as ventriculoperitoneal shunt (VPS) and endoscopic third ventriculostomy (ETV) are the primary treatment options. While VPS is the standard of care, ETV offers a minimally invasive alternative with potentially fewer complications. However, comparative evidence regarding their impact on cognitive, motor, and structural outcomes remains limited. This study, titled ENVENTOR-iNPH (endoscopic ventriculostomy versus shunt on neuropsychological and motor performance in patients with iNPH), aims to address this gap through a rigorously designed comparative protocol. Methods: This protocol is designed as a multicenter, randomized, controlled trial (ENVENTOR-iNPH) to compare the effects of ETV and VPS in patients diagnosed with iNPH. The study will enroll 100 patients aged 60 years or older, randomly assigned to undergo ETV (n = 50) or VPS (n = 50). Preoperative and postoperative evaluations will include comprehensive cognitive and motor assessments, standardized quality-of-life instruments, and advanced neuroimaging techniques such as MRI with flowmetry and diffusion tensor imaging (DTI). Functional outcomes will also be evaluated using navigated transcranial magnetic stimulation (nTMS) and wearable motion analysis systems. The objective of this study is to compare the efficacy and safety of ETV versus VPS in restoring cognitive and motor performance in patients with iNPH. Results: Primary outcomes include cognitive and motor function improvements. Secondary endpoints are surgical complications, hospital stay duration, and changes in quality of life. Neuroimaging will assess changes in white matter integrity and cerebrospinal fluid dynamics, while nTMS will provide insights into neuroplasticity and motor pathway recovery. ETV is hypothesized to demonstrate clinical outcomes comparable or superior to VPS, particularly in terms of complication reduction and hospital recovery metrics. Conclusions: The ENVENTOR-iNPH protocol establishes the framework for a comprehensive, multicenter study comparing ETV and VPS in iNPH patients. The findings from this initial study will inform the design of larger-scale multicenter trials, guide clinical decision making, and potentially position ETV as a preferred treatment option for eligible patients. Full article
(This article belongs to the Special Issue Editorial Board Collection Series: Insight into Neurosurgery)
Show Figures

Figure 1

24 pages, 4582 KB  
Article
Multiple Hits on Cerebral Folate, Tetrahydrobiopterin and Dopamine Metabolism in the Pathophysiology of Parkinson’s Disorder: A Limited Study of Post-Mortem Human Brain Tissues
by Dhruti Balakrishna Doddaballapur, Derren J. Heyes and Jaleel A. Miyan
Metabolites 2025, 15(5), 307; https://doi.org/10.3390/metabo15050307 - 5 May 2025
Viewed by 1230
Abstract
Background: Parkinson’s disorder (PD) affects around 1:500 individuals and is associated with enlarged ventricles and symptoms of normal pressure hydrocephalus (NPH). These features suggest disrupted cerebrospinal fluid (CSF) dynamics and folate metabolism. With L-DOPA treatment showing diminishing benefits over time, there is [...] Read more.
Background: Parkinson’s disorder (PD) affects around 1:500 individuals and is associated with enlarged ventricles and symptoms of normal pressure hydrocephalus (NPH). These features suggest disrupted cerebrospinal fluid (CSF) dynamics and folate metabolism. With L-DOPA treatment showing diminishing benefits over time, there is an urgent need to investigate upstream metabolic disruptions, including folate and tetrahydrobiopterin (BH4) pathways, in post-mortem CSF and brain tissue to understand their roles in PD pathogenesis. Methods: CSF and brain tissue from 20 PD patients (mean age 84 years; 55% male; disease duration 10–30 years) and 20 controls (mean age 82 years; 50% male) were analysed. Western and Dot Blots measured proteins and metabolites, spectroscopic assays assessed enzyme activities, BH4 and Neopterin levels were measured using ELISA, and levels of hydrogen peroxide, used as a proxy for reactive oxygen species, and calcium were quantified using horseradish peroxidase and flame photometry assays, respectively. ClinVar genetic data were analysed for variants in genes encoding key enzymes. Statistical significance was assessed using unpaired t-tests (p < 0.05). Results: All enzymes were significantly reduced in PD compared to controls (p < 0.01) except for methyltetrahydrofolate reductase (MTHFR), which was elevated (p < 0.0001). Enzymes were functional in control but undetectable in PD CSF except tyrosine hydroxylase (TH). BH4 and Neopterin were elevated in PD CSF (p < 0.0001, p < 0.001) but significantly reduced (p < 0.001) or unchanged in tissue. Peroxide was increased in both PD CSF (p < 0.001) and tissue (p < 0.0001) selectively inhibiting TH. Calcium was 40% higher in PD than controls (p < 0.05). No pathogenic variants in enzyme genes were found in ClinVar data searches, suggesting the observed deficiencies are physiological. Conclusions: We identified significant disruptions in folate and BH4 pathways in PD, with enzyme deficiencies, oxidative stress and calcium dysregulation pointing to choroid plexus dysfunction. These findings highlight the choroid plexus and CSF as key players in cerebral metabolism and promote further exploration of these as therapeutic targets to address dopaminergic dysfunction and ventricular enlargement in PD. Full article
(This article belongs to the Special Issue Metabolomics in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 3278 KB  
Article
Therapeutic Efficacy of Mesenchymal Stem Cells in Modulating Oxidative Stress in Puromycin-Induced Nephropathy
by Yusuke Iizuka, Masanori Sasaki, Kojiro Terada, Takuro Sakai, Yoshinobu Nagaoka, Shinobu Fukumura, Jeffery D. Kocsis, Takeshi Tsugawa and Osamu Honmou
Pathophysiology 2025, 32(2), 19; https://doi.org/10.3390/pathophysiology32020019 - 1 May 2025
Viewed by 559
Abstract
Background: Podocytes are essential for kidney function, and their dysfunction can result in nephrotic syndrome, such as minimal change disease (MCD). Oxidative stress contributes to podocyte damage. We investigated the therapeutic potential of intravenously infused mesenchymal stem cells (MSCs) in a puromycin aminonucleoside [...] Read more.
Background: Podocytes are essential for kidney function, and their dysfunction can result in nephrotic syndrome, such as minimal change disease (MCD). Oxidative stress contributes to podocyte damage. We investigated the therapeutic potential of intravenously infused mesenchymal stem cells (MSCs) in a puromycin aminonucleoside (PAN)-induced rodent MCD model, focusing on oxidative stress modulation. Methods: Sprague-Dawley rats were divided into three groups: intact, PAN-Vehicle, and PAN-MSC. MCD was induced through subcutaneous PAN injection. MSCs were infused intravenously in the PAN-MSC group on day 7. Urinary albumin, serum albumin, and creatinine levels were assessed. Histological analysis of the renal cortex was performed. Podocyte protein (NPHS1, NPHS2, and PODXL) and antioxidant enzyme (SOD1, SOD2, and GPX1) levels were measured using quantitative real-time reverse-transcription PCR (qRT-PCR). Results: MSC infusion significantly reduced proteinuria and restored podocyte structure in the PAN-MSC group. Electron microscopy revealed that infused MSCs could inhibit the fusion of the foot process induced by PAN injection. qRT-PCR showed that intravenous infusion of MSCs rescued the inhibition of GPX1 expression. GFP-labeled MSCs accumulated at the podocyte injury sites. Conclusion: Systemic MSC infusion mitigates PAN-induced MCD by reducing proteinuria, preserving podocyte structure, and modulating oxidative stress via the GPX1 pathway, offering a potential therapeutic approach for nephrotic syndrome. Full article
(This article belongs to the Section Cellular and Molecular Mechanisms)
Show Figures

Figure 1

27 pages, 982 KB  
Systematic Review
Artificial Intelligence Approaches for the Detection of Normal Pressure Hydrocephalus: A Systematic Review
by Luis R. Mercado-Diaz, Neha Prakash, Gary X. Gong and Hugo F. Posada-Quintero
Appl. Sci. 2025, 15(7), 3653; https://doi.org/10.3390/app15073653 - 26 Mar 2025
Cited by 1 | Viewed by 1472
Abstract
Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), shows promise in diagnosing [...] Read more.
Normal pressure hydrocephalus (NPH) is a neurological disorder characterized by altered cerebrospinal fluid accumulation in the brain’s ventricles, leading to symptoms such as gait disturbance and cognitive impairment. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), shows promise in diagnosing NPH using medical images. In this systematic review, we examined 21 papers on the use of AI in detecting NPH. The studies primarily focused on differentiating NPH from other neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease. We found that traditional ML methods like Support Vector Machines, Random Forest, and Logistic Regression were commonly used, while DL methods, particularly Deep Convolutional Neural Networks, were also widely employed. The accuracy of these approaches varied, ranging from 70% to 95% in differentiating NPH from other conditions. Feature selection techniques were used to identify relevant parameters for diagnosis. MRI scans were more frequently used than CT scans, but both modalities showed promise. Evaluation metrics like Dice similarity coefficients and ROC-AUC were the most typical metrics of model performance. Challenges in implementing AI in clinical practice were identified, and the authors suggested that a hybrid deep-traditional ML framework could enhance NPH diagnosis. Further research is needed to maximize the benefits of AI while addressing limitations. Full article
Show Figures

Figure 1

22 pages, 2991 KB  
Article
Luminescent Manganese(II) Iminophosphorane Derivatives
by Domenico Piccolo, Jesús Castro, Daniele Rosa-Gastaldo and Marco Bortoluzzi
Molecules 2025, 30(6), 1319; https://doi.org/10.3390/molecules30061319 - 14 Mar 2025
Viewed by 1330
Abstract
The reaction between the iminophosphorane ligand N-phenyl-1,1,1-triphenylphosphanimine (NPh=PPh3) and anhydrous manganese(II) halides allowed the isolation of complexes with the general formula [MnX2(NPh=PPh3)2] (X = Cl, Br, I). The compounds showed luminescence in the green [...] Read more.
The reaction between the iminophosphorane ligand N-phenyl-1,1,1-triphenylphosphanimine (NPh=PPh3) and anhydrous manganese(II) halides allowed the isolation of complexes with the general formula [MnX2(NPh=PPh3)2] (X = Cl, Br, I). The compounds showed luminescence in the green region attributed to the 4T1(4G)→6A1(6S) transition of the metal centre in the tetrahedral field, which was superimposed in the cases of X = Cl and X = Br on weak ligand-centred fluorescence. The emission and excitation spectra were compared with those of the free ligand and of the related zinc(II) bromo-complex. DFT calculations on the free ligand and on the manganese(II) bromo-complex helped to rationalise the experimental data. The protonation of NPh=PPh3 led to the formation of the iminium cation [NHPh=PPh3]+, which was used as a building block for the synthesis of organic–inorganic hybrids with the general formula [NHPh=PPh3]2[MnX4] (X = Cl, Br, I). The crystal structure of [NHPh=PPh3]2[MnBr4] was determined by means of X-ray diffraction. Green photoluminescence associated with the metal-centred transition was also observed for the organic–inorganic hybrids, with higher quantum yields with respect to the neutral [MnX2(NPh=PPh3)2] complexes. In the case of X = I, luminescence from the cation was superimposed on that from the tetraiodomanganate anion upon excitation of the compound with near–UV light. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

20 pages, 10010 KB  
Article
Genome-Wide Analysis of NPH3/RPT2-like (NRL) Genes in Grape (Vitis vinifera L.): Their Identification, Characterization, and Different Responses to Light Quality
by Shiyang Li, Hongsheng Gao, Xiaoyan Li, Yihua Liu, Hang Zhao, Nianwei Qiu and Hongxia Zhang
Horticulturae 2025, 11(3), 274; https://doi.org/10.3390/horticulturae11030274 - 3 Mar 2025
Viewed by 782
Abstract
NRL (NPH3/RPT2-Like) proteins, which are exclusive to plants, serve as critical mediators in phototropic signaling by dynamically regulating light-dependent cellular processes. We identified 24 NRL genes (VvNRL) in the Vitis vinifera L. genome, which were unevenly distributed on 11 chromosomes. Phylogenetic analysis [...] Read more.
NRL (NPH3/RPT2-Like) proteins, which are exclusive to plants, serve as critical mediators in phototropic signaling by dynamically regulating light-dependent cellular processes. We identified 24 NRL genes (VvNRL) in the Vitis vinifera L. genome, which were unevenly distributed on 11 chromosomes. Phylogenetic analysis showed that these family members were divided into six groups, and promoter analysis revealed ubiquitous light-responsive cis-elements across all 24 members, suggesting conserved regulatory mechanisms. Sequence alignment and structural similarity analysis showed that VvNRL4 and VvNRL6 were highly similar to NPH3 and NPR2. Experiments with different light qualities showed that VvNRL6 was induced by blue and red light, while VvNRL4 was not affected by light spectra, similar to NPH3 in Arabidopsis. Molecular docking prediction suggested that VvNRL4 and VvNRL6 may, respectively, interact with the LOV domain in VvPHO1 and VvPHO2, through their C-terminal coiled-coil domain and N-terminal BTB domain, to further regulate the activity of VvPHO1 and VvPHO2. In addition, 10 of the 24 VvNRLs, including VvNRL4 and VvNRL6, possessed the conserved RxS motif in their conserved C-terminal consensus sequences. This study provides a reference for further studies on the function and regulation of VvNRL family members in fruit vine plants. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

16 pages, 1835 KB  
Article
Brain Ischemia in Alzheimer’s Disease May Partly Counteract the Disruption of the Blood–Brain Barrier
by Grant A. Bateman and Alexander R. Bateman
Brain Sci. 2025, 15(3), 269; https://doi.org/10.3390/brainsci15030269 - 2 Mar 2025
Cited by 1 | Viewed by 1898
Abstract
Background: In normal pressure hydrocephalus (NPH) there is blood–brain barrier (BBB) disruption, which should increase the CSF formation rate (CSFfr) and, therefore, also increase the intracranial pressure (ICP). However, the ICP is normal in NPH. A lumped parameter study was performed to [...] Read more.
Background: In normal pressure hydrocephalus (NPH) there is blood–brain barrier (BBB) disruption, which should increase the CSF formation rate (CSFfr) and, therefore, also increase the intracranial pressure (ICP). However, the ICP is normal in NPH. A lumped parameter study was performed to look at the interrelation between the ICP, cerebral blood flow (CBF), and the degree of BBB disruption in NPH. The model suggested that the CSFfr could be reduced in this condition if the BBB disruption was moderated by a reduction in the capillary transmural pressure (TMP) secondary to arteriolar constriction and a reduced CBF. In early Alzheimer’s disease (AD), there is BBB disruption, reduced ICP, and global ischemia. This raises the possibility that the same physiology may occur in AD as occurs in NPH. Methods: A lumped parameter model previously used to describe the hydrodynamics of NPH was modified to investigate the effects of changes in CSF pressure and blood flow in patients with mild cognitive impairment (MCI) and AD. Results: The model indicates that the average capillary TMP is normal in MCI, but decreases as AD progresses. Removing CSF in AD patients during a tap test initially increases the capillary TMP. The brain in AD responds to a tap test by increasing its level of ischemia, and this reduces the capillary TMP. Conclusions: A hypothesis is put forward that the BBB disruption in AD is partially mitigated by the brain making itself ischemic. Modelling gives support to this hypothesis. The model can suggest a cause for the development of ischemic neuronal loss and amyloid accumulation secondary to glymphatic flow disruption as AD progresses. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

28 pages, 1249 KB  
Systematic Review
Technological Advances for Gait and Balance in Normal Pressure Hydrocephalus: A Systematic Review
by Alessandro Zampogna, Martina Patera, Marco Falletti, Giulia Pinola, Francesco Asci and Antonio Suppa
Bioengineering 2025, 12(2), 135; https://doi.org/10.3390/bioengineering12020135 - 30 Jan 2025
Viewed by 1492
Abstract
Normal pressure hydrocephalus (NPH) is a recognized cause of reversible cognitive and motor decline, with gait and balance impairments often emerging early. Technologies providing gait and balance measures can aid in early detection, diagnosis, and prognosis of the disease. This systematic review comprehensively [...] Read more.
Normal pressure hydrocephalus (NPH) is a recognized cause of reversible cognitive and motor decline, with gait and balance impairments often emerging early. Technologies providing gait and balance measures can aid in early detection, diagnosis, and prognosis of the disease. This systematic review comprehensively discusses previous studies on the instrumental assessment of gait and balance in NPH. A PubMed search following PRISMA guidelines identified studies published between 2000 and 2024 that used laboratory instruments to assess gait and balance in NPH. Studies underwent quality assessment for internal, statistical, and external validity. Methodological details such as motor tasks, instruments, analytical approaches, and main findings were summarized. Overall, this review includes 41 studies on gait and 17 on balance, most of which used observational, cross-sectional designs. These studies employed various tools, such as pressure-sensitive platforms, optoelectronic motion-capture systems, and wearable inertial sensors. Significant differences in kinematic measures of gait and balance have been found in NPH patients compared to healthy controls and individuals with other neurological conditions. Finally, this review explores potential pathophysiological mechanisms underlying the kinematic changes in gait and balance in NPH and emphasizes the absence of longitudinal data, which hinders drawing definitive conclusions for prognostic purposes. Full article
Show Figures

Figure 1

14 pages, 1142 KB  
Project Report
A Dimensional Diagnostic Strategy for Depressive Disorders
by Scott B. Patten
J. Clin. Med. 2025, 14(3), 844; https://doi.org/10.3390/jcm14030844 - 27 Jan 2025
Viewed by 1647
Abstract
Background/Objectives: Depressive disorders are diagnosed using categorical definitions provided by DSM-5 and ICD-11. However, categorization for diagnostic purposes fails to account for the inherently dimensional nature of depression. Artificial categorization may impede research and obstruct the achievement of optimal treatment outcomes. Methods: The [...] Read more.
Background/Objectives: Depressive disorders are diagnosed using categorical definitions provided by DSM-5 and ICD-11. However, categorization for diagnostic purposes fails to account for the inherently dimensional nature of depression. Artificial categorization may impede research and obstruct the achievement of optimal treatment outcomes. Methods: The current study utilized a Canadian historical dataset called the National Population Health Survey (NPHS) to explore a simple alternative approach that does not depend on categorization. The NPHS collected complete data from 5029 participants through biannual interviews conducted in 1994–2010. Data collection included the K6 Distress Scale as well as the Composite International Diagnostic Interview Short Form for Major Depression. Data from the National Population Health Survey (NPHS) were used to quantify vulnerability to depressive symptoms through longitudinal K6 Distress Scale assessments. Variability of symptoms across this dimension of apparent vulnerability was quantified using ordinal regression, adjusting for age and sex. Results: Predicted probabilities from these models were used in simulations to produce a visualization of the epidemiology and to explore clinical implications. Conclusions: Consideration of these two dimensional factors (estimated overall level of vulnerability to depression and variability over time) is already a component of clinical assessment and is also accessible to repeated measurement in settings adopting measurement-based care. More formal consideration of these elements may provide a complementary approach to categorical diagnostic assessment and an opportunity for greater personalization of care and improved clinical outcomes. Future studies should validate these findings in diverse clinical settings to ensure their applicability in real-world contexts. Full article
(This article belongs to the Special Issue Mood Disorders: Diagnosis, Management and Future Opportunities)
Show Figures

Figure 1

17 pages, 326 KB  
Article
Genomic Insights into Blood Pressure Regulation: Exploring Ion Channel and Transporter Gene Variations in Jordanian Hypertensive Individuals
by Mansour Abdullah Alghamdi, Laith AL-Eitan, Rasheed Ibdah, Islam Bani Khalid, Salma Darabseh, Maryam Alasmar and Asaad Ataa
Medicina 2025, 61(1), 156; https://doi.org/10.3390/medicina61010156 - 17 Jan 2025
Viewed by 1544
Abstract
Background and Objectives: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion [...] Read more.
Background and Objectives: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion channels and transporters, including KCNJ1, WNK1, NPPA, STK39, LUC7L2, NEDD4L, NPHS1, BDKRB2, and CACNA1C. Materials and Methods: This research involved 200 hypertensive patients and 224 healthy controls. Whole blood samples were collected from each participant, and genomic DNA was extracted. The genetic distribution of the polymorphisms was analyzed. The haplotype frequencies were investigated using the SNPStats web tool, and the genotype and allele frequencies of the studied variants were assessed using the χ2 test. Results: Sixteen single nucleotide polymorphisms (SNPs) from nine genes were evaluated. A significant association was observed between the rs880054 variant of the WNK1 gene and hypertension susceptibility, with the T allele elevating the risk of hypertension. This association remained important in the codominant model (p = 0.049) and the dominant model (p = 0.029). In addition, rs880054 was associated with clinical characteristics such as triglyceride levels and cerebrovascular accidents (p-value > 0.05). Conclusions: Our findings reveal a significant link between the rs880054 SNP and an increased hypertension risk, suggesting that variations in WNK1 may be crucial in regulating blood pressure. This study provides new insights into the genetic factors contributing to hypertension and highlights the potential of WNK1 as a target for future therapeutic interventions. Full article
(This article belongs to the Section Cardiology)
16 pages, 3432 KB  
Article
Chemoselective Transfer Hydrogenation over MgO as the Catalyst: Acetylnaphthalenes, Diacylbenzenes, Acetophenone, Benzaldehyde, and Various Aliphatic Ketones as Hydrogen Acceptors
by Marek Gliński, Olga Dubinin, Klaudia Rostek and Patrycja Waniek
Reactions 2025, 6(1), 4; https://doi.org/10.3390/reactions6010004 - 4 Jan 2025
Cited by 2 | Viewed by 1178
Abstract
Liquid and vapor phase transfer hydrogenation with 2-alkanols as hydrogen donors in the presence of MgO as a catalyst was studied. A series of dicarbonyl compounds as well as the equimolar mixtures of various monocarbonyl compounds were used as hydrogen acceptors in order [...] Read more.
Liquid and vapor phase transfer hydrogenation with 2-alkanols as hydrogen donors in the presence of MgO as a catalyst was studied. A series of dicarbonyl compounds as well as the equimolar mixtures of various monocarbonyl compounds were used as hydrogen acceptors in order to determine the chemoselectivity (ChS) in the reduction of their carbonyl groups. Thus, 1,4-diacetylbenzene was reduced to 1-(4-acetylphenyl)-1-ethanol with 89% ChS and 1,3-diacetyl-4,6-dimethylbenzene with 100% ChS. Mesitylene diacyl derivatives were unreactive in the studied reaction. CTH of an equimolar mixture of benzaldehyde and acetophenone gave benzyl alcohol and 1-PhEtOH with yields of 91 and 3%, respectively (97% ChS). An equimolar mixture of acetophenone and 6-undecanone underwent CTH with yields of the corresponding alcohols of 89 and 2%, respectively, with 98% ChS towards 1-PhEtOH. Significant differences in reactivity in CTH were reported for an equimolar mixture of regioisomeric 1- and 2-acetylnaphthalenes. The yields of the corresponding alcohols were 20 and 68% with a ChS of 77% towards 2-NphCH(OH)Me. In the case of CTH of 3-oxo-2,2-dimethylbutanal and 2,4-bis(spirocyclohexyl)-1,3-cyclobutanedione with 2-propanol, only the solvolysis of the substrates was observed. The products were methyl isopropyl ketone and isopropyl formate for the former diketone and 1-(cyclohexylcarbonyl)-1-(carboisopropoxy)cyclohexane for the latter. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2024)
Show Figures

Figure 1

Back to TopTop