Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,757)

Search Parameters:
Keywords = NO synthases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 740 KB  
Article
Mitochondrial Dysfunction Combined with Elevated CoQ10 Levels Specifically in Placental Cytotrophoblasts Suggests a Role for Mitophagy in Preeclampsia
by Jessica Ábalos-Martínez, Francisco Visiedo, María Victoria Cascajo-Almenara, Celeste Santos-Rosendo, Victoria Melero-Jiménez, Carlos Santos-Ocaña, Luis Vázquez-Fonseca and Fernando Bugatto
Biology 2026, 15(2), 139; https://doi.org/10.3390/biology15020139 - 13 Jan 2026
Abstract
Preeclampsia is a serious pregnancy disorder of unknown etiology. One of its cellular hallmarks is increased mitochondrial dysfunction in placental tissue. Further investigation into this aspect may help elucidate the molecular basis of preeclampsia. A total of 24 pregnant women who delivered by [...] Read more.
Preeclampsia is a serious pregnancy disorder of unknown etiology. One of its cellular hallmarks is increased mitochondrial dysfunction in placental tissue. Further investigation into this aspect may help elucidate the molecular basis of preeclampsia. A total of 24 pregnant women who delivered by cesarean section participated in the study: n = 13 controls and n = 11 diagnosed with preeclampsia. Maternal blood samples were collected to assess the biochemical profile, and demographic and clinical data were recorded. Placental trophoblast samples were processed to isolate mitochondria and perform molecular biology assays. Women with preeclampsia exhibited the characteristic clinical features of the disease, along with biochemical alterations consistent with an inflammatory process. A significant decrease (73%) in mitochondrial DNA (mtDNA) copy number in trophoblastic tissue and a reduction in citrate synthase (CS) activity (−51%) in cytotrophoblast mitochondria-enriched fractions were observed in preeclampsia, indicating mitochondrial dysfunction accompanied by a loss of functional mitochondrial mass. In addition, we detected a marked decrease in MnSOD levels (−32%), together with an increase in the LC3II/LC3I ratio (47%) in cytotrophoblast mitochondria-enriched fractions, supporting the presence of mitochondrial alterations and suggesting the possible activation of mitophagy specifically in this cell type. Moreover, coenzyme Q10 (CoQ10) levels were elevated by 31% in trophoblastic villi. A pronounced 2.5-fold increase in CoQ10 normalized to CS activity (CoQ10/CS) was detected specifically in cytotrophoblasts from preeclamptic placentas. Importantly, we did not observe these alterations in the syncytiotrophoblast. In conclusion, preeclampsia is associated with mitochondrial dysfunction and increased CoQ10 levels normalized to CS activity, specifically in cytotrophoblast mitochondria, with findings being consistent with a possible involvement of mitophagy in this cell type. These findings suggest that cytotrophoblast mitochondrial metabolism may be more affected in preeclampsia compared with syncytiotrophoblasts, and that CoQ10 accumulation together with the possible activation of mitophagy may represent cellular defense mechanisms. Due to the limitations of the study, it should be considered exploratory and hypothesis-generating, and its results should be regarded as preliminary. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

13 pages, 1671 KB  
Article
Structural Elucidation and Moisturizing Potential of a Polysaccharide Derived from Tremella mesenterica
by Geu-Rim Song, Hye-Ryung Park, Hye-Won Lee, Seo-Young Choi, You-Ah Kim, Byoung-Jun Park and Kwang-Soon Shin
Molecules 2026, 31(2), 278; https://doi.org/10.3390/molecules31020278 - 13 Jan 2026
Abstract
Tremella mesenterica, commonly known as the yellow brain or golden jelly fungus, has been traditionally used for its medicinal properties. In this study, we elucidated the structural characteristics of T. mesenterica polysaccharide (TMP) and evaluated its potential moisturizing mechanism in vitro, comparing [...] Read more.
Tremella mesenterica, commonly known as the yellow brain or golden jelly fungus, has been traditionally used for its medicinal properties. In this study, we elucidated the structural characteristics of T. mesenterica polysaccharide (TMP) and evaluated its potential moisturizing mechanism in vitro, comparing it to Tremella fuciformis polysaccharide (TFP) and hyaluronic acid (HA). TMP was isolated through enzyme assisted extraction and it has a molecular weight (MW) of approximately 143 kDa. We investigated the composition of mannose, xylose, glucuronic acid, and glucose as a ratio of 59.8 ± 0.3, 24.0 ± 1.2, 11.0 ± 0.8, 5.2 ± 0.0, respectively. Through methylation and GC-MS analysis, we discovered TMP was composed of a main chain of β-(1→3)-linked mannopyranoside, substituted with various side chains such as xylopyranoside, glucuronopyranoside, glucopyranoside at the C-2 or C-4 positions of the backbone. TMP upregulated the expression of key moisturizing-related factors compared to TFP and HA, such as aquaporin-3 (AQP3) with 55% and 57% at 25 and 50 μg/mL and hyaluronic acid synthase-2 (HAS2) with 22% at 25 μg/mL, as confirmed through qRT-PCR analysis. Additionally, TMP significantly enhanced the expression of filaggrin (FLG), a critical protein involved in skin barrier function, with 22% at 25 μg/mL. Immunocytochemistry (ICC) analysis further revealed that TMP achieved the highest improvement in hyaluronic acid synthase-3 (HAS3) protein levels by 475% at 50 μg/mL. While further in vivo studies are required to substantiate its functional moisturizing efficacy, these findings suggest that TMP serves as a promising moisturizing agent. The structural and functional properties of TMP provide a potential foundation for its application in diverse industries, including cosmetics, food, biopolymers, and pharmaceuticals. Full article
Show Figures

Figure 1

15 pages, 772 KB  
Article
High Ratio of Dietary Palmitic Acid to DHA + EPA Induces Glucose Metabolic Disorder Through Endocrine and Transcriptional Regulation in Large Yellow Croaker (Larimichthys crocea)
by Qi Wang, Huaicheng Ge, Zhixiang Gu, Hao Chen, Hua Mu, Kangsen Mai and Wenbing Zhang
Metabolites 2026, 16(1), 72; https://doi.org/10.3390/metabo16010072 - 13 Jan 2026
Abstract
Background/Objectives: Replacing fish oil with vegetable oil is an important measure for aquaculture to relieve the pressure of fish oil, but it is also easy to cause the growth decline and metabolic disorder of farmed animals, mainly due to the change in [...] Read more.
Background/Objectives: Replacing fish oil with vegetable oil is an important measure for aquaculture to relieve the pressure of fish oil, but it is also easy to cause the growth decline and metabolic disorder of farmed animals, mainly due to the change in dietary fatty acids. This study investigated the regulatory effects of dietary fatty acid composition on glucose metabolism in large yellow croaker (Larimichthys crocea) with an initial weight of 30.51 ± 0.16 g. Methods: Three isonitrogenous (~43% crude protein) and isolipid (~11% crude lipid) diets were formulated as follows: control (CON, DHA/EPA-rich oil as primary lipid), moderate palmitic acid (MPA, 50% of DHA+EPA-rich oil was replaced by glyceryl palmitate), and high palmitic acid (HPA, 100% of DHA+EPA-rich oil was replaced by glyceryl palmitate). Results: After 10 weeks of feeding, the HPA significantly reduced the liver/muscle glycogen contents, increased the liver lipid content, decreased the serum leptin/insulin level, and increased the adiponectin level. The levels of DHA and EPA in liver were decreased significantly. Transcriptionally, HPA upregulated hepatic glucokinase (gk, glycolysis) but down-regulated glycogen synthase (gys) and insulin/irs2 (insulin pathway) while inhibiting muscle ampk and leptin receptor (lepr). Conclusions: This study showed that high dietary PA/(DHA + EPA) impacted glycolipid homeostasis through endocrine and transcriptional regulation, leading to increased crude lipid and decreased glycogen levels, which provides a theoretical basis for scientific aquatic feed fatty acid formulation. Full article
(This article belongs to the Special Issue Nutrition, Metabolism and Physiology in Aquatic Animals)
Show Figures

Figure 1

28 pages, 14749 KB  
Article
Cytosolic Immunostimulatory DNA Ligands and DNA Damage Activate the Integrated Stress Response, Stress Granule Formation, and Cytokine Production
by Trupti Devale, Lekhana Katuri, Gauri Mishra, Aditya Acharya, Praveen Manivannan, Brian R. Hibbard and Krishnamurthy Malathi
Cells 2026, 15(2), 139; https://doi.org/10.3390/cells15020139 - 13 Jan 2026
Abstract
The presence of aberrant double-stranded DNA (dsDNA) in the cytoplasm of cells is sensed by unique pattern recognition receptors (PRRs) to trigger innate immune response. The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway is activated by the presence of non-self [...] Read more.
The presence of aberrant double-stranded DNA (dsDNA) in the cytoplasm of cells is sensed by unique pattern recognition receptors (PRRs) to trigger innate immune response. The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway is activated by the presence of non-self or mislocalized self-dsDNA from nucleus or mitochondria released in response to DNA damage or cellular stress in the cytoplasm. Activation of cGAS leads to the synthesis of the second messenger cyclic GMP–AMP (cGAMP), which binds and activates STING, triggering downstream signaling cascades that result in the production of type I interferons (IFNs) and proinflammatory cytokines. Here, we show that diverse immunostimulatory dsDNA ligands and chemotherapy agents like Doxorubicin and Taxol trigger the integrated stress response (ISR) by activating endoplasmic reticulum (ER) stress kinase, protein kinase RNA-like ER kinase (PERK), in addition to the canonical IFN pathways. PERK-mediated phosphorylation and inactivation of the alpha subunit of eukaryotic translation initiation factor-2 (eIF2α) result in the formation of stress granules (SGs). SG formation by dsDNA was significantly reduced in PERK knockout cells or by inhibiting PERK activity. Transcriptional induction of IFNβ and cytokines, ISR signaling, and SG formation by dsDNA was dampened in cells lacking PERK activity, STING, or key stress-granule nucleating protein, Ras-GAP SH3 domain-binding protein 1 (G3BP1), demonstrating an important role of the signal transduction pathway mediated by STING and SG assembly. Lastly, STING regulates reactive oxygen species (ROS) production in response to DNA damage, highlighting the crosstalk between DNA sensing and oxidative stress pathways. Together, our data identify STING–PERK–G3BP1 signaling axis that couples cytosolic DNA sensing to stress response pathways in maintaining cellular homeostasis. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress Signaling Pathway: From Bench to Bedside)
Show Figures

Figure 1

19 pages, 2143 KB  
Article
Modulating One-Carbon Metabolism with B-Vitamins to Protect the Retinal Barrier and Prevent Retinal Degeneration
by Hossameldin Abouhish, Lamiaa Shalaby, Omar Elzayat, Neelesh Peddireddy and Amany Tawfik
Nutrients 2026, 18(2), 236; https://doi.org/10.3390/nu18020236 - 12 Jan 2026
Abstract
Background/Objectives: Vitamin B12 deficiency is increasingly recognized as a contributor in both vascular and neurodegenerative aging-related disorders. Its deficiency disrupts one-carbon metabolism, leading to impaired homocysteine (Hcy) cycling. Elevated Hcy is a well-established risk factor for vascular dysfunction. Previously, we established that [...] Read more.
Background/Objectives: Vitamin B12 deficiency is increasingly recognized as a contributor in both vascular and neurodegenerative aging-related disorders. Its deficiency disrupts one-carbon metabolism, leading to impaired homocysteine (Hcy) cycling. Elevated Hcy is a well-established risk factor for vascular dysfunction. Previously, we established that elevated Hcy contributes to aging retinal diseases and plays a central role in blood retinal barrier (BRB) dysfunction. Building on this foundation, the present study examines how B-vitamin deficiency disrupts one-carbon metabolism and whether restoring these vitamins can serve as a preventive or therapeutic strategy. Since B-vitamins (B6, B9, and B12) are crucial cofactors in the metabolism of Hcy, we investigated how dietary changes in these vitamins affect serum Hcy levels and retinal vascular integrity in mice. Methods: C57BL/6- Wild-type (WT) and cbs+/− mice (Cystathionine Beta-Synthase heterozygotes, common mouse model for elevated Hcy) were fed specially formulated diets, which contained different levels of B-vitamins (normal, deficient (B-Vit (−)) or enriched (B-Vit (+)). Initially, two groups of mice were placed on either a normal or a deficient diet. After 12–16 weeks, the success of the diet regimes was confirmed by observing serum B12 deficiency in the B-Vit (−) group, along with elevated Hcy levels. Subsequently, a subgroup of the B-Vit (−) mice was switched to an enriched diet. The BRB integrity was evaluated in living mice using fluorescein angiography (FA), optical coherence tomography (OCT), and in the perfused mice retinas with Western blot analysis of leaked retinal albumin and tight junction proteins (occludin and ZO-1) levels. Results: The B-vitamin deficiency caused significant drop in serum vitamin B12 and an increase in plasma Hcy, leading to vascular leakage, altered retinal thickness, choroidal neovascular changes, increased retinal albumin leak, and decreased tight junction protein expression, indicating BRB disruption, which was restored with B-vitamin supplementation. Conclusions: a long-term deficiency of vitamins B6, B9, and B12 can lead to disruptions in the BRB. However, supplementation with these B-vitamins has the potential to reverse these effects and help maintain the integrity of BRB. This under-score the significance of one-carbon metabolism for retinal health and suggests that ensuring adequate levels of B-vitamins may aid in preventing aging retinal diseases with BRB disruption such as diabetic retinopathy and age-related macular degeneration. Full article
24 pages, 4743 KB  
Article
Antifungal Potential of Diaporthe sp. Endophytes from Antillean Avocado Against Fusarium spp.: From Organic Extracts to In Silico Chitin Synthase Inhibition
by Angie T. Robayo-Medina, Katheryn Michell Camargo-Jimenez, Felipe Victoria-Muñoz, Wilman Delgado-Avila, Luis Enrique Cuca and Mónica Ávila-Murillo
J. Fungi 2026, 12(1), 52; https://doi.org/10.3390/jof12010052 - 11 Jan 2026
Viewed by 47
Abstract
Fungal endophytes have emerged as a promising source of bioactive compounds with potent antifungal properties for plant disease management. This study aimed to isolate and characterize fungal endophytes from Antillean avocado (Persea americana var. americana) trees in the Colombian Caribbean, capable [...] Read more.
Fungal endophytes have emerged as a promising source of bioactive compounds with potent antifungal properties for plant disease management. This study aimed to isolate and characterize fungal endophytes from Antillean avocado (Persea americana var. americana) trees in the Colombian Caribbean, capable of producing bio-fungicide metabolites against Fusarium solani and Fusarium equiseti. For this, dual culture assays, liquid-state fermentation of endophytic isolates, and metabolite extractions were conducted. From 88 isolates recovered from leaves and roots, those classified within the Diaporthe genus exhibited the most significant antifungal activity. Some of their organic extracts displayed median inhibitory concentrations (IC50) approaching 200 μg/mL. To investigate the mechanism of action, in silico studies targeting chitin synthase (CS) were performed, including homology models of the pathogens’ CS generated using Robetta, followed by molecular docking with Vina and interaction fingerprint similarity analysis of 15 antifungal metabolites produced by Diaporthe species using PROLIF. A consensus scoring strategy identified diaporxanthone A (12) and diaporxanthone B (13) as the most promising candidates, achieving scores up to 0.73 against F. equiseti, comparable to the control Nikkomycin Z (0.82). These results suggest that Antillean avocado endophytes produce bioactive metabolites that may inhibit fungal cell wall synthesis, offering a sustainable alternative for disease management. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

21 pages, 3814 KB  
Article
Genome-Wide Identification of the AdSPS Gene Family and Light Quality Response in Kiwifruit (Actinidia deliciosa)
by Yanzong Zhang, Meng Li, Ming Li, Panqiao Wang, Dawei Cheng, Xiaoxu Sun, Hong Gu, Lan Li and Jinyong Chen
Horticulturae 2026, 12(1), 83; https://doi.org/10.3390/horticulturae12010083 - 10 Jan 2026
Viewed by 101
Abstract
Actinidia deliciosa is a globally important economic fruit crop, and its fruit quality and yield are profoundly influenced by light and environmental conditions. Sucrose phosphate synthase (SPS), a key rate-limiting enzyme in the sucrose biosynthesis pathway, plays a central role in regulating carbon [...] Read more.
Actinidia deliciosa is a globally important economic fruit crop, and its fruit quality and yield are profoundly influenced by light and environmental conditions. Sucrose phosphate synthase (SPS), a key rate-limiting enzyme in the sucrose biosynthesis pathway, plays a central role in regulating carbon metabolism and sucrose accumulation in plants. However, comprehensive studies of the SPS gene family in A. deliciosa are still lacking, particularly regarding its expression in response to different light qualities. In this study, genome-wide identification of the SPS gene family in A. deliciosa was conducted using bioinformatics approaches. A total of 31 SPS genes were identified and named AdSPS1 to AdSPS31 on the basis of their chromosomal positions. The encoded proteins were predicted to be acidic, hydrophilic, and primarily localized in the chloroplast. All the AdSPS proteins contained the conserved domains Sucrose_synth, Glyco_trans_1, and S6PP, indicating potential roles in sucrose metabolism. Phylogenetic analysis classified the 31 AdSPS members into three subfamilies, A, B, and C, comprising 20, 5, and 6 members, respectively. Collinearity analysis revealed extensive syntenic relationships among AdSPS genes across different chromosomes, suggesting that gene duplication events contributed to the expansion of this gene family. Promoter cis-acting element analysis revealed that light-responsive elements were the most abundant among all the detected elements in the upstream regions of the AdSPS genes, implying potential regulation by light signals. Different light qualities significantly affected the contents of sucrose, glucose, and fructose, as well as SPS activity in kiwifruit leaves, with the highest activity observed under the R3B1 (red–blue light 3:1) treatment. Spearman’s correlation analysis indicated that AdSPS3 was significantly negatively correlated with sucrose, fructose, glucose, and SPS activity, suggesting a potential role in negatively regulating sugar accumulation in kiwifruit leaves, whereas AdSPS12 showed positive correlations with these parameters, implying a role in promoting sucrose synthesis. To further explore the light response of the AdSPS genes, eight representative members were selected for qRT‒PCR analysis under red light, blue light, and combined red‒blue light treatments. These results demonstrated that light quality significantly influenced SPS gene expression. Specifically, AdSPS6 and AdSPS24 were highly responsive to R1B1 (1:1 red‒blue light), AdSPS9 was significantly upregulated under R6B1 (6:1 red‒blue light), AdSPS21 was strongly induced by blue light, and AdSPS12 expression was suppressed. This study systematically identified and analyzed the SPS gene family in A. deliciosa, revealing its structural characteristics and light-responsive expression patterns. These findings suggest that AdSPS genes may play important roles in light-regulated carbon metabolism. These results provide a theoretical foundation and valuable genetic resources for further elucidating the molecular mechanisms of sucrose metabolism and light signal transduction in kiwifruit. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

20 pages, 42623 KB  
Article
The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall
by Ludan Hou, Tonglou Li, Baosheng Zhang, Zehua Zhang, Bing Deng, Lijing Xu, Xueran Geng, Yanfen Cheng, Mingchang Chang and Junlong Meng
J. Fungi 2026, 12(1), 48; https://doi.org/10.3390/jof12010048 - 10 Jan 2026
Viewed by 172
Abstract
In recent years, the response mechanism of Pleurotus ostreatus to abiotic stress has received widespread attention. MnSOD is an important antioxidant enzyme that has been widely studied in animals and plants because of its functions. However, there is little research on the function [...] Read more.
In recent years, the response mechanism of Pleurotus ostreatus to abiotic stress has received widespread attention. MnSOD is an important antioxidant enzyme that has been widely studied in animals and plants because of its functions. However, there is little research on the function and regulatory mechanism of MnSOD in the growth and development of edible fungi. This study investigated the role of Mnsod3 in the growth and development of P. ostreatus. The results showed that during the nutritional growth stage, heat stress can cause the cell wall of mycelia to shrink and the cells to exhibit cytoplasmic wall separation. RNA-seq revealed that Mnsod3 interference is strongly correlated with increased transcript levels of cell wall synthase genes and with increased tolerance to cell wall disruptors. During the primordium formation stage, the mycelial cell wall also significantly wrinkled under cold and light stresses. RNAi of Mnsod3 alleviated the cell wall wrinkling caused by cold and light stress, restored the smoothness of the cell walls, and increased mycelial tolerance to abiotic stress. This may be related to the slower formation rate of primordia, but the specific molecular mechanism still needs further research. and slowed the rate of primordium formation. In summary, Mnsod3 plays an important role in the growth and development of P. ostreatus under abiotic stress and plays a critical regulatory role in cell wall remodeling under abiotic stress. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

15 pages, 3040 KB  
Article
Towards Simplification of Ketogenic Diet in Epilepsy: Effect of Caprylic (C8) and Capric (C10) Acid on the Mitochondrial Respiratory Chain in Murine Hippocampal Neurons In Vitro
by Miriam Rebekka Rühling, Hans Hartmann and Anibh Martin Das
Nutrients 2026, 18(2), 216; https://doi.org/10.3390/nu18020216 - 9 Jan 2026
Viewed by 176
Abstract
Background: Pharmacotherapy is the therapeutic mainstay in epilepsy, but in about 30% of patients, the epilepsy is pharmacoresistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of KD are not fully understood. An enhanced energy metabolism [...] Read more.
Background: Pharmacotherapy is the therapeutic mainstay in epilepsy, but in about 30% of patients, the epilepsy is pharmacoresistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of KD are not fully understood. An enhanced energy metabolism may have a protective effect; C8 and C10 fatty acids were previously shown to activate mitochondrial function in vitro. In the present study, we investigated whether ß-hydroxybutyrate (HOB), C8, C10 or a combination of C8 and C10 fatty acids, which all increase under KD, could activate mitochondrial respiratory chain enzymes in murine hippocampal neurons (HT22). Methods: Cells were incubated for one week in the presence of the different metabolites. Respiratory chain enzyme activities as well as citrate synthase as a mitochondrial marker enzyme were determined spectrophotometrically in these cells. We observed that enzyme activities of complexes I and III, II and III, and IV (cytochrome c-oxidase) and V (ATP synthase) significantly increased in response to incubation with C8 and C10 fatty acids and a combination of both. Results: This activation of the respiratory chain enzymes was not inferior to an incubation with HOB, the key metabolite in KD. The activity of the mitochondrial marker enzyme citrate synthase increased under incubation with the fatty acids, showing that the mitochondrial content increased. Conclusions: In murine hippocampal cells, C8, C10 and combined C8 and C10 fatty acids led to variable increases in activities of mitochondrial respiratory chain enzymes and citrate synthase. This indicates that both C8 and C10 fatty acids may be important for the antiepileptic effect of KD, as they enhance energy production. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

12 pages, 1903 KB  
Article
Chemical Investigation of the Global Regulator veA-Overexpressed Mutant of an Arctic Strain Aspergillus sydowii MNP-2
by Qing Gong, Wei Wang, Yujie Zhao, Xiaoying Wang, Xuelian Bai and Huawei Zhang
Mar. Drugs 2026, 24(1), 34; https://doi.org/10.3390/md24010034 - 9 Jan 2026
Viewed by 119
Abstract
A growing body of evidence indicates that artificial manipulation of transcriptional regulation is a powerful approach to activate cryptic biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) in fungi. In this study, one mutant strain MNP-2-OE::veA was constructed by overexpressing the global [...] Read more.
A growing body of evidence indicates that artificial manipulation of transcriptional regulation is a powerful approach to activate cryptic biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) in fungi. In this study, one mutant strain MNP-2-OE::veA was constructed by overexpressing the global transcription regulator veA in an Arctic-derived strain Aspergillus sydowii MNP-2. Chemical investigation of the mutant OE::veA resulted in the isolation of one novel polyhydroxy anthraquinone (1) together with nine known metabolites (210), which were unambiguously characterized by various spectroscopic methods including 1D and 2D NMR and HR-ESI-MS as well as via comparison with literature data. Biosynthetically, compounds 1 and 10 as new arising chemicals were, respectively, formed by type II polyketide synthase (T2PK) and non-ribosomal peptide synthetase (NRPS), which were silent in the wild-type (WT) strain MNP-2. A bioassay showed that only compound 3 had weak inhibitory effect on human pathogen Candida albicans, with a MIC value of 64 ug/mL, and 4 displayed in vitro weak cytotoxic activity against HCT116 cells (IC50 = 44.47 μM). These results indicate that overexpression of veA effectively awakened the cryptic BGCs in fungal strains and enhanced their structural diversity in natural products. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Graphical abstract

16 pages, 4996 KB  
Article
Evolutionary Reprogramming of Acyltransferase Domains in Polyene Macrolide Pathways
by Liran Zhang, Jinwei Ren, Chengyu Zhang, Lixin Zhang, Bin Wang and Jingyu Zhang
Microorganisms 2026, 14(1), 141; https://doi.org/10.3390/microorganisms14010141 - 8 Jan 2026
Viewed by 123
Abstract
The evolution of type I polyketide synthase (T1PKS) assembly lines remains poorly understood. Through systematic mining of polyene biosynthetic gene clusters, we identified a novel eurocidin biosynthetic pathway capable of producing identical compounds with divergent loading module architectures, thereby capturing an evolutionary transitional [...] Read more.
The evolution of type I polyketide synthase (T1PKS) assembly lines remains poorly understood. Through systematic mining of polyene biosynthetic gene clusters, we identified a novel eurocidin biosynthetic pathway capable of producing identical compounds with divergent loading module architectures, thereby capturing an evolutionary transitional state. Biochemical analysis revealed unprecedented functional reprogramming of acyltransferase (AT) domains, shifting substrate specificity from extender units (malonyl-CoA) to starter units (acyl-CoA). This paradigm shift enables direct initiation of polyketide chain assembly via AT-mediated loading of starter units, thereby elucidating the origin of extant AT-initiated assembly lines and establishing AT functional plasticity as a novel mechanism for polyketide structural diversification. Parallel evolution of ketosynthase (KS) domains through KSS→KSQ mutations further diversified initiation strategies. Applying this evolutionary insight, we engineered the candicidin pathway by replacing its native aromatic-starting bimodule with a starter-selective monomodule from eurocidin, generating aliphatic-starting analogs. This demonstrates that evolution-inspired AT reprogramming provides a rational framework for modifying polyketide starter units, expanding structural diversity, and enhancing therapeutic potential. Full article
Show Figures

Figure 1

18 pages, 2948 KB  
Article
The Metabolic Regulatory Mechanisms of Umami Amino Acids in Stropharia rugosoannulata
by Mei Wang, Yingyue Shen, Qunli Jin, Lijun Fan, Zuofa Zhang, Ningtao Wei, Xin Huang, Yingmin Qu, Meng Shen, Tingting Song and Weiming Cai
Foods 2026, 15(2), 232; https://doi.org/10.3390/foods15020232 - 8 Jan 2026
Viewed by 219
Abstract
Stropharia rugosoannulata is a widely cultivated edible mushroom known for its nutritional value and umami flavour. Electronic tongue technology and metabolomics revealed that glutamic acid (Glu) and aspartic acid (Asp) levels were positively correlated with umami in the fruiting body developmental stages. Subsequent [...] Read more.
Stropharia rugosoannulata is a widely cultivated edible mushroom known for its nutritional value and umami flavour. Electronic tongue technology and metabolomics revealed that glutamic acid (Glu) and aspartic acid (Asp) levels were positively correlated with umami in the fruiting body developmental stages. Subsequent investigations found that overexpression of SrCS within the TCA cycle resulted in decreased levels of Glu and Asp. Integrating TF-gene-metabolite network modelling with experiments identified SrELT1 as a transcriptional regulator of SrCS. Different temperatures, cultivation substrates and genetics significantly impacted SrELT1 and SrCS expression, thereby affecting Glu and Asp synthesis. The findings suggest that increased Citrate synthase (CS) activity channelled citrate into glycolysis and oxidative phosphorylation without excessive accumulation; in contrast, decreased CS activity shifted metabolism toward the production of metabolites like Glu and Asp. This study provides insights for enhancing the umami of S. rugosoannulata, thereby substantially increasing its market competitiveness in the premium food segment. Full article
(This article belongs to the Special Issue Application of Metabolomics in Enhancing Food Texture and Flavor)
Show Figures

Figure 1

21 pages, 3421 KB  
Article
Bioactive-Rich Piper sarmentosum Aqueous Extract Mitigates Osteoarthritic Pathology by Enhancing Anabolic Activity and Attenuating NO-Driven Catabolism in Human Chondrocytes
by Yi Ting Lee, Mohd Heikal Mohd Yunus, Rizal Abdul Rani, Chiew Yong Ng, Muhammad Dain Yazid, Azizah Ugusman and Jia Xian Law
Biomedicines 2026, 14(1), 128; https://doi.org/10.3390/biomedicines14010128 - 8 Jan 2026
Viewed by 208
Abstract
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse [...] Read more.
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse effects. Piper sarmentosum (PS), a plant traditionally used for its medicinal properties, has demonstrated antioxidant and anti-inflammatory activities that may counteract OA-related degeneration. This study provides preliminary insight into the therapeutic potential of PS aqueous extract in human OA chondrocytes. Methods: Compounds in the PS aqueous extract were profiled using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Primary human OA chondrocytes (HOCs) were treated with 0.5, 2, and 4 µg/mL of PS aqueous extract for 72 h. Key OA-related parameters were assessed, including anabolic markers (sulfated glycosaminoglycan (sGAG), collagen type II (COL II), aggrecan core protein (ACP), SRY-box transcription factor 9 (SOX9)), catabolic markers (matrix metalloproteinase (MMP) 1, MMP13, cyclooxygenase 2 (COX2)), oxidative stress (nitric oxide (NO) production, inducible NO synthase (iNOS) expression), and inflammatory responses (interleukin (IL) 6). Gene expression was quantified using qPCR, and protein levels were evaluated using the colorimetric method, immunocytochemistry, and Western blot. Results: A total of 101 compounds were identified in the extract, including vitexin, pterostilbene, and glutathione—bioactives known for antioxidant, anti-inflammatory, and chondroprotective functions. PS-treated chondrocytes maintain healthy polygonal morphology. PS aqueous extract significantly enhanced anabolic gene expression (COL2A1, ACP, SOX9) and sGAG production, while concurrently suppressing COX2 expression and NO synthesis. Additionally, PS aqueous extract reduced COX2 and iNOS protein levels, indicating inhibition of the NO signaling pathway. Catabolic activity was attenuated, and inflammatory responses were partially reduced. Conclusions: PS aqueous extract exhibits promising chondroprotective, antioxidant, and anti-inflammatory effects in human OA chondrocytes, largely through the suppression of NO-mediated catabolic signaling. The presence of multiple bioactive compounds supports its mechanistic potential. These findings highlight PS aqueous extract as a potential therapeutic candidate for OA management. Further ex vivo and in vivo studies are warranted to validate its efficacy and clarify its mechanism in joint-tissue environments. Full article
Show Figures

Graphical abstract

17 pages, 1494 KB  
Article
Polysaccharide Utilization and Adhesion Enable the Genome-Streamlined Opacimonas immobilis to Adapt to the Diatom Phycosphere
by Xiaoyu Yang, Xuanru Lin, Jianmin Xie, Runlin Cai, Guanjing Cai and Hui Wang
Microorganisms 2026, 14(1), 139; https://doi.org/10.3390/microorganisms14010139 - 8 Jan 2026
Viewed by 158
Abstract
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus [...] Read more.
Heterotrophic bacteria and microalgae are key regulators of marine biogeochemical cycles. The phycosphere, a nutrient-rich microenvironment surrounding microalgae, serves as a crucial interface for bacterial–algal interactions. Our previous work identified Opacimonas immobilis LMIT016T, a phycosphere isolate from the diatom Actinocyclus curvatulus that possesses the smallest genome within the Alteromonadaceae family. However, its adaptation mechanisms to the phycosphere remain unclear, particularly given its extensive genome streamlining, a process involving the selective loss of non-essential and energetically costly genes to enhance fitness in nutrient-specific niches. Here, the co-cultivation experiments demonstrated significant mutual growth promotion between LMIT016T and its host microalgae, with the bacterium forming dense attachments on diatom surfaces. Genomic analysis revealed that in addition to loss of motility-related genes, the strain exhibits a substantial reduction in c-di-GMP signaling components, including both synthases and receptors. Conversely, LMIT016T harbors numerous genes essential for extracellular polysaccharide (EPS) biosynthesis and adhesion, supporting long-term attachment and biofilm formation. Other retained genes encode pathways for nutrient acquisition, stress response, and phosphate and nitrogen metabolism, reflecting its adaptations to the nutrient-rich phycosphere. Furthermore, the genome of LMIT016T encodes two polysaccharide utilization loci (PULs) targeting laminarin and α-1,4-glucans, whose functions were experimentally validated by the transcriptional induction of the corresponding carbohydrate-active enzyme genes. These findings indicate that this strain counterbalances genome reduction by enhancing its attachment capabilities and metabolic specialization on algal polysaccharides, potentially facilitating stable association with diatom cells. Our results suggest that genome streamlining may represent an alternative ecological strategy in the phycosphere, highlighting a potential evolutionary trade-off between metabolic efficiency and niche specialization. Full article
Show Figures

Figure 1

25 pages, 2932 KB  
Article
Pain Hypersensitivity in a Mouse Model of Marfan Syndrome
by Rebecca Kordikowski, Joana Coutinho, Ignacio Martínez-Martel, Clara Penas, Beatriz Martín-Mur, Belén Pérez, Francesc Jiménez-Altayó and Olga Pol
Antioxidants 2026, 15(1), 80; https://doi.org/10.3390/antiox15010080 - 8 Jan 2026
Viewed by 191
Abstract
Marfan syndrome (MFS) is a genetic disorder caused by mutations in the fibrillin-1 (Fbn1) gene, leading to structurally abnormal elastic fibers and diverse clinical manifestations. Aortic root dilation represents the most serious threat, often requiring prophylactic surgical repair. Emerging evidence suggests that MFS [...] Read more.
Marfan syndrome (MFS) is a genetic disorder caused by mutations in the fibrillin-1 (Fbn1) gene, leading to structurally abnormal elastic fibers and diverse clinical manifestations. Aortic root dilation represents the most serious threat, often requiring prophylactic surgical repair. Emerging evidence suggests that MFS patients experience increased pain sensitivity, contributing to functional impairment and reduced quality of life. Here, we used C57BL/6 wild-type and Fbn1C1041G/+ (MFS) mice to examine brain transcriptomics, aortic histology, nociceptive behaviors, grip strength, and spinal cord gene expression in both sexes at 2, 4, 6, 8, and 16 months of age. Transcriptomic analysis revealed reduced activation of pain-related pathways in young males and aged females, with a reversal in aged males, suggesting age- and sex-dependent differences in pain modulation. Behavioral testing showed progressive mechanical and thermal hypersensitivity in MFS mice, with cold allodynia as the earliest manifestation with late-onset muscle weakness. In the spinal cord of 16-month-old MFS mice, increased expression of key excitatory and nociceptive markers was observed, consistent with the pain hypersensitivity phenotype. In addition, aged female MFS mice exhibited elevated spinal expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and Nox4, whereas males showed increased transforming growth factor-β1 and Nox1, reflecting distinct inflammatory and oxidative stress profiles. These findings demonstrate that Fbn1C1041G/+ mice reproduce pain hypersensitivity and muscle deficits observed in MFS patients, supporting their use as a preclinical model. Our results suggest that enhanced spinal excitatory/nociceptive signaling, together with neuroinflammation and oxidative stress, contributes to sex- and age-specific pain mechanisms in MFS. Full article
(This article belongs to the Special Issue Chronic Pain and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop