Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (193)

Search Parameters:
Keywords = NLR-genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17450 KB  
Article
Integrated Single-Cell and Bulk Transcriptomics Unveils Immune Profiles in Chick Erythroid Cells upon Avian Pathogenic Escherichia coli Infection
by Fujuan Cai, Xianjue Wang, Chunzhi Wang, Yuzhen Wang and Wenguang Zhang
Animals 2026, 16(2), 179; https://doi.org/10.3390/ani16020179 - 7 Jan 2026
Viewed by 205
Abstract
Nucleated erythroid cells (NECs) have emerged as active participants in immune responses in addition to their canonical oxygen transport function. The subpopulations and immune heterogeneity of chick erythroid cells (ch-ECs) upon infection have not been fully characterized. Single-cell RNA sequencing (scRNA-seq) was used [...] Read more.
Nucleated erythroid cells (NECs) have emerged as active participants in immune responses in addition to their canonical oxygen transport function. The subpopulations and immune heterogeneity of chick erythroid cells (ch-ECs) upon infection have not been fully characterized. Single-cell RNA sequencing (scRNA-seq) was used to profile ch-ECs in chicks infected with avian pathogenic Escherichia coli (APEC). Unsupervised clustering uncovered ten distinct ch-EC subpopulations (C1–C10), with significant compositional shifts between infected and control groups. Pseudotime analysis revealed a developmental continuum: C1, C3, C5, and C9 as early progenitors; C2, C4, C6, C7, and C10 as mature erythroid cells; and C8 as a naive population. We revealed 62 immune-related genes, including protein kinases and heat shock proteins, and subpopulation-specific differentially expressed genes (DEGs) linked to immune functions. SCENIC analysis revealed Fos, Srf, and Stat3 as key transcription factors with elevated regulon activity and specificity following infection. Subpopulations C2, C4, C6, and C7, which exhibited marked abundance changes, were scrutinized for immune relevance through integrated multi-omics analysis. Immune-related genes including FOS, AKAP9, HS6ST1, GAB3, TFRC, HSPA8, HSP90AA1, and DNAJB6 were identified. Enrichment analysis indicated activation of the MHC class I antigen presentation pathway, while pathways such as Mitogen-Activated Protein Kinase (MAPK) signaling, NOD-like receptor (NLR) signaling, and the heat shock response were found to be suppressed. In conclusion, this study delineates the immune gene repertoire and signaling networks of ch-ECs during APEC infection, offering new perspectives on NEC immunoregulatory functions. Full article
(This article belongs to the Special Issue Bacterial Disease Research in Livestock and Poultry)
Show Figures

Figure 1

19 pages, 5527 KB  
Article
The Landscape of Integrated Domains of Angiosperm NLR Genes Reveals Continuous Architecture Evolution of Plant Intracellular Immune Receptors
by Zhen Zeng, Sai-Xi Li, Wen-Shen Wu, Peng Zhao, Zhu-Qing Shao and Yang Liu
Plants 2026, 15(1), 81; https://doi.org/10.3390/plants15010081 - 26 Dec 2025
Viewed by 268
Abstract
Nucleotide-binding site-leucine-rich repeat (NLR) proteins are key intracellular immune receptors in plants. Integrated domains (IDs) can occasionally be fused with NLRs, contributing to their functional diversity. However, the diversity and evolutionary patterns of NLR-IDs across angiosperms remain poorly understood. In this study, we [...] Read more.
Nucleotide-binding site-leucine-rich repeat (NLR) proteins are key intracellular immune receptors in plants. Integrated domains (IDs) can occasionally be fused with NLRs, contributing to their functional diversity. However, the diversity and evolutionary patterns of NLR-IDs across angiosperms remain poorly understood. In this study, we analyzed 305 angiosperm genomes and found that the proportion of NLR genes containing IDs (NLR-ID genes) ranges from 0% to 38.3%, with an average of 10.6%. A total of 1226 unique IDs were identified, some of which are widely distributed, while others are specific to particular taxa. Notably, 415 of these IDs are homologous to plant proteins targeted by pathogen effectors, suggesting their role as candidate decoys. Comparative analysis of NLR-IDs in two subfamilies—TIR-NLR (TNL) and CC-NLR (CNL)—revealed that TNL genes have a significantly higher frequency of IDs, with the C-JID and DUF3542 domains being most prevalent. N-terminal fusion of the DUF3542 domain in CNL genes correlates with the loss of the MADA motif. Our findings expand the understanding of NLR-ID diversity and provide insights into the dynamic evolution of NLR protein architecture in angiosperms. Full article
(This article belongs to the Special Issue Safety of Genetically Modified Crops and Plant Functional Genomics)
Show Figures

Figure 1

17 pages, 2645 KB  
Article
Interplay Between NLRP3 Activation by DENV-2 and Autophagy and Its Impact on Lipid Metabolism in HMEC-1 Cells
by Giovani Visoso-Carvajal, Julio García-Cordero, Yandy Ybalmea-Gómez, Margarita Diaz-Flores, Moisés León-Juárez, Rosaura Hernández-Rivas, Porfirio Nava, Nicolás Villegas-Sepúlveda and Leticia Cedillo-Barrón
Pathogens 2025, 14(12), 1292; https://doi.org/10.3390/pathogens14121292 - 16 Dec 2025
Viewed by 432
Abstract
Dengue Virus (DENV) induces assembly of the NOD-like receptor (NLR) family pyrin domain containing-3 (NLRP3) inflammasome and autophagy, which are closely interconnected processes playing crucial roles in lipid metabolism and DENV replication. However, the autophagy–NLRP3 activation interplay during DENV infection in human endothelial [...] Read more.
Dengue Virus (DENV) induces assembly of the NOD-like receptor (NLR) family pyrin domain containing-3 (NLRP3) inflammasome and autophagy, which are closely interconnected processes playing crucial roles in lipid metabolism and DENV replication. However, the autophagy–NLRP3 activation interplay during DENV infection in human endothelial cells remains incompletely understood. We aimed to elucidate effects of NLRP3 activation on autophagy during DENV-2 infection. We investigated how autophagy-related molecules are altered by NLRP3 inhibition and how this regulation affects lipid metabolism, through the master lipid transcription factors SREBP-1 and 2, which increase the expression of their target lipid-synthesizing genes such as fatty acid synthase (FAS) in a model of microvascular endothelial cells (HMEC-1). We demonstrated a dynamic interplay between inflammasome activity and autophagy in DENV-infected HMEC-1 cells: autophagy increases early during infection and decreases as inflammasome activity increases. NLRP3 inflammasome inhibition affects viral replication. Glyburide (an inflammasome inhibitor) treatment partially inhibited DENV-induced NLRP3 inflammasome activation. Non-structural viral protein expression (NS3 and NS5) and infectious viral-particle formation were significantly reduced. NLRP3 inhibition also downregulated SREBP-1 and SREBP-2 activation. These findings provide new insights into the modulation of the interconnected NLRP3 inflammasome, autophagy, and lipid metabolism pathways, presenting a promising therapeutic strategy for severe clinical forms of dengue. Full article
Show Figures

Graphical abstract

20 pages, 4900 KB  
Article
Molecular Evolution of the NLR Gene Family Reveals Diverse Innate Immune Strategies in Bats
by Gang Liu, Fujie Han, Xinya Guo, Liya Yang, Nishan Du, Xue Zhao, Chen Zhang, Jie Peng, Kangkang Zhang, Jiang Feng and Ying Liu
Biomolecules 2025, 15(12), 1715; https://doi.org/10.3390/biom15121715 - 10 Dec 2025
Viewed by 608
Abstract
Bats, as the world’s second-largest mammalian order, have garnered significant attention for their ability to harbor numerous viruses without exhibiting disease symptoms. Nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) are crucial components of the immune system. This study conducted an evolutionary analysis of [...] Read more.
Bats, as the world’s second-largest mammalian order, have garnered significant attention for their ability to harbor numerous viruses without exhibiting disease symptoms. Nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) are crucial components of the immune system. This study conducted an evolutionary analysis of the NLR gene family across 26 bat species to investigate the molecular mechanisms underlying their role in viral resistance under high viral load pressure. We identified gene duplication events in multiple genes. The NLR gene family exhibited high conservation throughout evolution, which may contribute to the occurrence of gene duplication. This conserved genomic structure also ensures functional stability, safeguarding bats’ antiviral resistance. Most NLR genes primarily function within the type I interferon (IFN) signaling pathway and the NF-κB signaling pathway. The NLR gene family enhances the innate immune capacity of bats through the adaptive evolution of some genes, combining enhanced gene functionality with the maintenance of gene conservation at a low evolutionary rate. Moreover, bats employ diverse innate immune strategies, where multiple immune pathways collectively establish the innate immune barrier. The molecular evolution of this gene family provides new insights into the molecular mechanisms and functional pathways involved in the innate immune response of bats. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

15 pages, 1439 KB  
Article
Resveratrol Mitigates High Glucose-Induced Inflammation in Astroglial Cells
by Vanessa Sovrani, Filipe Renato Pereira Dias, Rômulo Rodrigo de Souza Almeida, Krista Minéia Wartchow, Nícolas Manzke Glänzel, Ester Rezena, Carlos-Alberto Gonçalves, Guilhian Leipnitz, Larissa Daniele Bobermin and André Quincozes-Santos
Metabolites 2025, 15(12), 771; https://doi.org/10.3390/metabo15120771 - 28 Nov 2025
Viewed by 737
Abstract
Background/Objectives: Changes in glucose metabolism impact central nervous system (CNS) homeostasis and, consequently, can lead to cognitive impairment and an increased risk for neurodegenerative and neuropsychiatric disorders. Astrocytes are glial cells that act as key regulators of brain glucose metabolism, thus representing important [...] Read more.
Background/Objectives: Changes in glucose metabolism impact central nervous system (CNS) homeostasis and, consequently, can lead to cognitive impairment and an increased risk for neurodegenerative and neuropsychiatric disorders. Astrocytes are glial cells that act as key regulators of brain glucose metabolism, thus representing important cellular targets for studies of different pathophysiological conditions, including hyperglycemia. Resveratrol, a natural polyphenol, has emerged as a potential protective strategy against diabetes and its complications; however, its glioprotective effects remain unclear. Based on these observations, we evaluated whether resveratrol could modify the inflammatory response in astroglial cells exposed to experimental hyperglycemic conditions. Methods: After reaching confluence, C6 astroglial cells were pre-incubated with 10 µM resveratrol in serum-free DMEM with 6 mM glucose for 24 h. The medium was then replaced with serum-free DMEM containing 12 mM glucose and 10 µM resveratrol for another 24 h. Controls were maintained in 6 mM glucose. Analyses included cell viability, metabolic activity, glucose and glutamate uptake, cytokine quantification by ELISA, and gene expression by RT-qPCR. Results: We show that high glucose levels modulate glucose and glutamate metabolism, and increase neuroinflammation, through the modulation of inflammatory mediators. In addition, high glucose upregulated the gene expressions of inducible nitric oxide synthase (iNOS), nuclear factor κB (NFκB), cyclooxygenase 2 (COX2), and Toll-like receptor 4 (TLR4) while decreasing mRNA levels of NLR family pyrin domain containing 3 (NLRP3) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). However, resveratrol was able to prevent most of these effects, particularly the high glucose-triggered inflammatory response. Resveratrol also modulated heme oxygenase 1 (HO-1) and nuclear factor erythroid-derived 2-like 2 (Nrf2), important targets associated with cellular protection. Conclusions: Our findings reinforce resveratrol as a potential glioprotective strategy against diabetes-related brain toxicity. Full article
(This article belongs to the Special Issue Metabolic Profiling in Neurometabolisms)
Show Figures

Figure 1

23 pages, 4300 KB  
Article
Molecular Networks Underlying Wheat Resistance and Susceptibility to Pyrenophora tritici-repentis
by Larissa Carvalho Ferreira, Flavio Martins Santana and Luis A. J. Mur
Microbiol. Res. 2025, 16(11), 242; https://doi.org/10.3390/microbiolres16110242 - 15 Nov 2025
Viewed by 473
Abstract
Pyrenophora tritici-repentis (Ptr), the causal agent of tan spot, is a necrotrophic fungus that represents a significant threat to wheat production worldwide. The development of resistant cultivars is limited by an incomplete understanding of wheat defence responses against Ptr. Here, [...] Read more.
Pyrenophora tritici-repentis (Ptr), the causal agent of tan spot, is a necrotrophic fungus that represents a significant threat to wheat production worldwide. The development of resistant cultivars is limited by an incomplete understanding of wheat defence responses against Ptr. Here, weighted gene co-expression network analysis (WGCNA) was applied to RNA-seq data from resistant (Robigus) and susceptible (Hereward) wheat lines before and after Ptr infection to identify coordinated host responses. Eight co-expression modules were identified, three of which were linked to either resistance, susceptibility, or Ptr infection. The resistance-associated module was enriched with chloroplast ribosomal machinery genes (e.g., 50S ribosome-binding GTPase, L28, L6), and transcriptional regulators. This suggested that maintaining chloroplast function, coupled with large-scale transcriptional reprogramming, was important for resistance. The susceptibility-associated module indicated the high expression of post-transcriptional modifiers, including SGS3, RBX1, and SENPs. The Ptr-responsive module showed common responses in both genotypes and included several defence-related genes (nucleotide-binding domain leucine-rich repeat R-genes [NLRs], chitinases, beta-1,3-glucanases) and metabolic pathways, such as phenylpropanoid biosynthesis and nitrogen metabolism (phenylpropanoid ammonia lyase [PAL], cytochrome P450s, glutamine synthase, and ammonium transporters). These results define distinct and shared molecular networks that are linked to resistance and susceptibility, providing valuable candidate genes for functional validation that could ultimately be exploited to enhance wheat resilience against necrotrophic fungal pathogens. Full article
Show Figures

Figure 1

21 pages, 2723 KB  
Article
miRNA-Mediated Regulation of Meloidogyne arenaria Responses in Wild Arachis
by Patricia Messenberg Guimaraes, Andressa da Cunha Quintana Martins, Roberto Coiti Togawa, Mario Alfredo de Passos Saraiva, Ana Luiza Machado Lacerda, Ana Cristina Miranda Brasileiro and Priscila Grynberg
Int. J. Mol. Sci. 2025, 26(22), 10824; https://doi.org/10.3390/ijms262210824 - 7 Nov 2025
Viewed by 509
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of plant development and stress responses, with many being conserved across diverse plant lineages. In this study, we investigated the expression profiles of miRNAs and their corresponding target genes in Arachis stenosperma, a wild peanut relative [...] Read more.
MicroRNAs (miRNAs) are key post-transcriptional regulators of plant development and stress responses, with many being conserved across diverse plant lineages. In this study, we investigated the expression profiles of miRNAs and their corresponding target genes in Arachis stenosperma, a wild peanut relative that exhibits robust resistance to root-knot nematodes (RKN). Small RNA sequencing of nematode-infected roots identified 107 miRNA loci, of which 93 corresponded to conserved miRNA families and 14 represented novel candidates, designated as miRNOVO. Among these, 18 miRNAs belonging to 11 conserved families were identified as differentially expressed (DEMs). Notably, miR399 and miR319 showed the highest upregulation (logFC = 4.25 and 4.20), while miR393 and miR477 were the most downregulated (logFC = −0.83 and −0.79). Integrated analysis of miRNA and transcriptome data revealed several regulatory interactions involving key defense-related genes. These included NLR genes targeted by miR393 and miR477, hormone signaling components such as the auxin response factor ARF8 targeted by miR167, and the growth regulator GRF2 targeted by miR396. Additionally, miR408 was predicted to target laccase3, a gene involved in the oxidation of phenolic compounds, lignin biosynthesis, copper homeostasis and defense responses. Remarkably, four immune receptor genes belonging to the nucleotide-binding site leucine-rich repeat (NLR) family displayed inverse expression patterns relative to their regulatory miRNAs, suggesting miRNA-mediated post-transcriptional control during the early stages of nematode infection. These findings reveal both conserved and species-specific miRNA–mRNA modules associated with nematode resistance in A. stenosperma, highlighting promising targets for developing RKN-tolerant peanut cultivars through miRNA-based strategies. Full article
(This article belongs to the Special Issue Interactions between Plants and Nematodes)
Show Figures

Figure 1

20 pages, 4442 KB  
Article
Functional Analysis of the NLR Gene YPR1 from Common Wild Rice (Oryza rufipogon) for Bacterial Blight Resistance
by Wang Kan, Zaiquan Cheng, Yun Zhang, Bo Wang, Li Liu, Jiaxin Xing, Fuyou Yin, Qiaofang Zhong, Jinlu Li, Dunyu Zhang, Suqin Xiao, Cong Jiang, Tengqiong Yu, Yunyue Wang and Ling Chen
Genes 2025, 16(11), 1321; https://doi.org/10.3390/genes16111321 - 2 Nov 2025
Viewed by 597
Abstract
Background/Objectives: Bacterial blight (BB) represents one of the most devastating diseases threatening global rice production. Exploring and characterizing disease resistance (R) genes provides an effective strategy for controlling BB and enhancing rice resilience. Common wild rice (Oryza rufipogon) serves as a [...] Read more.
Background/Objectives: Bacterial blight (BB) represents one of the most devastating diseases threatening global rice production. Exploring and characterizing disease resistance (R) genes provides an effective strategy for controlling BB and enhancing rice resilience. Common wild rice (Oryza rufipogon) serves as a valuable reservoir of genetic diversity and disease resistance resources. In this study, we identified and functionally characterized a novel NLR gene, YPR1, from common wild rice (Oryza rufipogon), which exhibited significant spatial, temporal, and tissue-specific expression patterns. Methods: Using a combination of conventional PCR, RT-PCR, bioinformatics, transgenic analysis, and CRISPR/Cas9 gene-editing approaches, the full-length YPR1 sequence was successfully cloned. Results: The gene spans 4689 bp with a coding sequence (CDS) of 2979 bp, encoding a 992-amino acid protein. Protein domain prediction revealed that YPR1 is a typical CNL-type NLR protein, comprising RX-CC_like, NB-ARC, and LRR domains. The predicted molecular weight of the protein is 112.43 kDa, and the theoretical isoelectric point (pI) is 8.36. The absence of both signal peptide and transmembrane domains suggests that YPR1 functions intracellularly. Furthermore, the presence of multiple phosphorylation sites across diverse residues implies a potential role for post-translational regulation in its signal transduction function. Sequence alignment showed that YPR1 shared 94.02% similarity with Os09g34160 and up to 96.47% identity with its closest homolog in the NCBI database, confirming that YPR1 is a previously unreported gene. To verify its role in disease resistance, an overexpression vector (Ubi–YPR1) was constructed and introduced into the BB-susceptible rice cultivar JG30 via Agrobacterium tumefaciens-mediated transformation. T1 transgenic lines were subsequently inoculated with 15 highly virulent Xanthomonas oryzae pv. oryzae (Xoo) strains. The transgenic plants exhibited strong resistance to eight strains (YM1, YM187, C1, C5, C6, T7147, PB, and HZhj19), demonstrating a broad-spectrum resistance pattern. Conversely, CRISPR/Cas9-mediated knockout of YPR1 in common wild rice resulted in increased susceptibility to most Xoo strains. Although the resistance of knockout lines to strains C7 and YM187 was comparable to that of the wild type (YPWT), the majority of knockout plants exhibited more severe symptoms and significantly lower YPR1 expression levels compared with YPWT. Conclusions: Collectively, these findings demonstrate that YPR1 plays a crucial role in bacterial blight resistance in common wild rice. As a novel CNL-type NLR gene conferring specific resistance to multiple Xoo strains, YPR1 provides a promising genetic resource for the molecular breeding of BB-resistant rice varieties. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

12 pages, 385 KB  
Article
Interaction Between the UCP2 rs659366 Polymorphism and Dietary Capsaicin Intake in Relation to the Inflammatory State in Mexican Adults
by Ana Alondra Sobrevilla-Navarro, Bertha Landeros-Sanchez, Jose Roman Chavez-Mendez, Genaro Rodriguez-Uribe and Omar Ramos-Lopez
Int. J. Mol. Sci. 2025, 26(21), 10419; https://doi.org/10.3390/ijms262110419 - 27 Oct 2025
Viewed by 948
Abstract
Metabolic diseases such as obesity and related conditions have an inflammatory basis. Genetic and nutritional factors can influence the development of these diseases by altering the inflammatory state. This study aimed to analyse how the rs659366 (G/A) polymorphism in the UCP2 gene interacts [...] Read more.
Metabolic diseases such as obesity and related conditions have an inflammatory basis. Genetic and nutritional factors can influence the development of these diseases by altering the inflammatory state. This study aimed to analyse how the rs659366 (G/A) polymorphism in the UCP2 gene interacts with dietary capsaicin (CAP) consumption and affects inflammatory markers in Mexican adults. A cross-sectional, analytical study was conducted in 212 adult patients. The UCP2 rs659366 polymorphism was genotyped using an allelic discrimination assay. Dietary CAP intake was measured with a validated food frequency questionnaire. Multivariate linear regression analyses were performed for interaction analyses. The ancestral allele G accounted for 40.2% and the risk allele A accounted for 59.8% of samples. There was a significant interaction between CAP intake and the UCP2 rs659366 polymorphism for the inflammatory marker NLR (neutrophil-to-lymphocyte ratio) (p < 0.05). Among subjects with the G allele, higher CAP intake was associated with higher NLR scores (p < 0.001). Patients with the G allele of the UCP2 rs659366 polymorphism experienced increased inflammation with higher CAP intake. This finding highlights the need for future studies in personalised nutrition and could expand knowledge about the effects of CAP on obesity and inflammation. Full article
Show Figures

Figure 1

22 pages, 6539 KB  
Article
Long-Term Heat Stress Triggers Immune Activation and Cell Death Remodeling in the Brain of Largemouth Bass (Micropterus salmoides)
by Qinghui Meng, Yunye Tao, Yuhan Peng, Jie Guo, Chunfei Xun, Xiaoming Chen, Feixue Li, Huarong Huang, Fan Zhou and Jianying Li
Animals 2025, 15(21), 3067; https://doi.org/10.3390/ani15213067 - 22 Oct 2025
Viewed by 2756
Abstract
Heat stress typically suppresses systemic immunity in fish; however, its effects on the brain—an organ traditionally regarded as immune-privileged—remain unclear. In this study, we performed histopathological examination and RNA-seq analysis on the brains of juvenile largemouth bass (Micropterus salmoides) exposed to [...] Read more.
Heat stress typically suppresses systemic immunity in fish; however, its effects on the brain—an organ traditionally regarded as immune-privileged—remain unclear. In this study, we performed histopathological examination and RNA-seq analysis on the brains of juvenile largemouth bass (Micropterus salmoides) exposed to control (28 °C) and elevated (36.5 °C) water temperatures for 8 weeks. Histological analysis revealed distinct cytoarchitectural and pathological changes in specific brain regions. RNA-seq analysis identified a total of 1240 differentially expressed genes, with 22 heat shock protein genes notably showing significant up-regulation. The immune system-associated genes emerged as the most prominently affected category. Gene set enrichment analysis (GSEA) based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations revealed that up-regulated genes were enriched in immunity-related pathways, including the NOD-like receptor (NLR) signaling pathway, Toll-like receptor (TLR) signaling pathway, and cytosolic DNA-sensing pathway. Additionally, the levels of apoptosis and necroptosis were moderately increased. GSEA based on Gene Ontology (GO) terms indicated that down-regulated genes were primarily associated with cell division. Protein–protein interaction (PPI) and clustering analysis identified 41 core genes in the top three clusters, encompassing those related to nuclear chromosome segregation, ribosome biogenesis, and stress response. The inhibition of genes involved in nuclear chromosome segregation may disrupt cellular homeostasis by significantly impairing microtubule dynamics. In contrast, genes associated with ribosome biogenesis and stress response were up-regulated, which could counteract the adverse effects caused by long-term heat stress. We propose that brain-specific immune activation, particularly via the NLR and TLR signaling pathways, acts as a compensatory strategy to counterbalance heat-induced cell death, thereby revealing a novel neuro-immune adaptation axis. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

13 pages, 14057 KB  
Article
Genome-Wide Identification and Functional Evolution of NLR Gene Family in Capsicum annuum
by Chong Feng, Qi Chen, Wenhao Liu, Tengfei Li and Tuo Ji
Curr. Issues Mol. Biol. 2025, 47(10), 867; https://doi.org/10.3390/cimb47100867 - 21 Oct 2025
Cited by 2 | Viewed by 910
Abstract
Capsicum annuum (pepper) is a globally significant Solanaceous crop vulnerable to devastating pathogens such as Phytophthora capsici. Nucleotide-binding leucine-rich repeat (NLRs) proteins are crucial intracellular immune receptors mediating effector-triggered immunity (ETI). This study presents the comprehensive genome-wide identification and analysis of the [...] Read more.
Capsicum annuum (pepper) is a globally significant Solanaceous crop vulnerable to devastating pathogens such as Phytophthora capsici. Nucleotide-binding leucine-rich repeat (NLRs) proteins are crucial intracellular immune receptors mediating effector-triggered immunity (ETI). This study presents the comprehensive genome-wide identification and analysis of the NLR gene family in pepper using the high-quality ‘Zhangshugang’ reference genome. We identified 288 high-confidence canonical NLR genes. Chromosomal distribution analysis showed significant clustering, particularly near telomeric regions, with Chr09 harboring the highest density (63 NLRs). Evolutionary analysis demonstrated that tandem duplication is the primary driver of NLR family expansion, accounting for 18.4% of NLR genes (53/288), predominantly on Chr08 and Chr09. Analysis of promoter cis-regulatory elements (CREs) revealed enrichment in defense-related motifs, with 82.6% of promoters (238 genes) containing binding sites for salicylic acid (SA) and/or jasmonic acid (JA) signaling. Transcriptome profiling of Phytophthora capsici-infected resistant (C. annuum cv. CM334) and susceptible (C. annuum cv. NMCA10399) cultivars identified 44 significantly differentially expressed NLR genes, and protein–protein interaction (PPI) network analysis predicted key interactions among them, with Caz01g22900 and Caz09g03820 as potential hubs. This study elucidates the tandem-duplication-driven expansion, domain-specific functional implications, and expression dynamics of the pepper NLR family. It identifies conserved and lineage-specific candidate NLR genes, including Caz03g40070, Caz09g03770, Caz10g20900, and Caz10g21150. These findings provide valuable candidate gene targets for the development of molecular markers for pepper resistance to Phytophthora capsici. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 1473 KB  
Article
Regulation of DNA Methylation Through EBP1 Interaction with NLRP2 and NLRP7
by Nayeon Hannah Son, Matthew So and Christopher R. Lupfer
DNA 2025, 5(4), 49; https://doi.org/10.3390/dna5040049 - 17 Oct 2025
Viewed by 757
Abstract
Background/Objectives: Mutations in NACHT, LRR and PYD domain-containing protein 2 (NLRP2) and NLRP7 genes, members of the NOD-like receptor (NLR) family of innate immune sensors, result in recurrent miscarriages and reproductive wastage in women. These genes have been identified to be maternal [...] Read more.
Background/Objectives: Mutations in NACHT, LRR and PYD domain-containing protein 2 (NLRP2) and NLRP7 genes, members of the NOD-like receptor (NLR) family of innate immune sensors, result in recurrent miscarriages and reproductive wastage in women. These genes have been identified to be maternal effect genes in humans and mice regulating early embryo development. Previous research in vitro suggests that NLRP2 and NLRP7 regulate DNA methylation and/or immune signaling through inflammasome formation. However, the exact mechanisms underlying NLRP2 and NLRP7 function are not well defined. Methods: To determine the interacting proteins required for NLRP2/NLRP7-mediated regulation of DNA methylation, yeast 2-hybrid screens, coimmunoprecipitation, and FRET studies were performed and verified the ability of novel protein interactions to affect global DNA methylation by 5-methylcytosine-specific ELISA. Results: Various methodologies employed in this research demonstrate a novel protein interaction between human ErbB3-binding protein 1 (EBP1, also known as proliferation-associated protein 2G4 (PA2G4) and NLRP2 or NLRP7. In addition, NLRP2 and NLRP7 regulate EBP1 gene expression. Functionally, global DNA methylation levels appeared to decrease further when NLRP2 and NLRP7 were co-expressed with EBP1, although additional studies may need to confirm the significance of this effect. Conclusions: Since EBP1 is implicated in apoptosis, cell proliferation, DNA methylation, and differentiation, our discovery significantly advances our understanding of how mutations in NLRP2 or NLRP7 may contribute to reproductive wastage in women through EBP1. Full article
Show Figures

Graphical abstract

19 pages, 9104 KB  
Article
Integrated Analysis of Phenotypic and Hepatic Transcriptomic Profiles Reveals Enhanced Cold Tolerance in Triploid Crucian Carp
by Suifei Tao, Zexun Zhou, Shandong Chen, Jialin Cui, Yude Wang, Kaikun Luo, Wei Liu, Qingfeng Liu, Wuhui Li and Shaojun Liu
Fishes 2025, 10(10), 519; https://doi.org/10.3390/fishes10100519 - 12 Oct 2025
Viewed by 644
Abstract
Cold stress poses a critical threat to fish survival by triggering metabolic dysfunction, oxidative damage, immune suppression, and apoptosis. However, hybrid polyploid fish triploid crucian carp (3nRCR, 3n = 150) demonstrate superior stress tolerance. In this study, we investigated the cold adaptation mechanisms [...] Read more.
Cold stress poses a critical threat to fish survival by triggering metabolic dysfunction, oxidative damage, immune suppression, and apoptosis. However, hybrid polyploid fish triploid crucian carp (3nRCR, 3n = 150) demonstrate superior stress tolerance. In this study, we investigated the cold adaptation mechanisms in different ploidy cyprinid fishes: triploid crucian carp compared to its diploid improved red crucian carp (Carassius auratus red var., RCC, 2n = 100, ♀) and improved allotetraploid (4nAT, 4n = 200, ♂) progenitors. Under controlled cooling, 3nRCR lost equilibrium at a significantly lower temperature (3.2 °C) than RCC (4.0 °C) and 4nAT (4.5 °C), confirming its superior enhanced cold resistance. Histological examination revealed minimal tissue damage in 3nRCR, characterized by reduced gill inflammation and cellular apoptosis. Transcriptomics revealed triploid-specific molecular strategies: 3nRCR uniquely activated retinol metabolism and metabolic rewiring (arginine/proline metabolism, oxidative phosphorylation). Notably, in the immune-related NLR signaling pathway, both nlrp1 and nlrp3 (key inflammasome components) were significantly downregulated in 3nRCR (p < 0.01). In contrast, genes involved in endoplasmic reticulum (ER) stress response, including chop and nrf2, were markedly upregulated, indicating a reinforced cellular stress resolution mechanism absent in both RCC and 4nAT. Our results demonstrate that triploid cold adaptation is orchestrated through a balanced interaction among mitochondrial apoptosis, ER stress, and inflammasome pathways. These findings provide novel insights into hybrid polyploid adaptation mechanisms and targets for cold-resilient aquaculture breeding. Full article
(This article belongs to the Special Issue Genetics and Breeding of Fishes)
Show Figures

Figure 1

16 pages, 2514 KB  
Article
QTL Mapping for Leaf Rust Resistance in a Common Wheat Recombinant Inbred Line Population of Doumai/Shi4185
by Yamei Wang, Wenjing Li, Rui Wang, Nannan Zhao, Xinye Zhang, Shu Zhu and Jindong Liu
Plants 2025, 14(19), 3113; https://doi.org/10.3390/plants14193113 - 9 Oct 2025
Viewed by 720
Abstract
Leaf rust, a devastating fungal disease caused by Puccinia triticina (Pt), severely impacts wheat quality and yield. Identifying genetic loci for wheat leaf rust resistance, developing molecular markers, and breeding resistant varieties is the most environmentally friendly and economical strategy for disease control. [...] Read more.
Leaf rust, a devastating fungal disease caused by Puccinia triticina (Pt), severely impacts wheat quality and yield. Identifying genetic loci for wheat leaf rust resistance, developing molecular markers, and breeding resistant varieties is the most environmentally friendly and economical strategy for disease control. This study utilized a recombinant inbred line (RIL) population of Doumai and Shi4185, combined with the wheat 90 K single nucleotide polymorphisms (SNPs) chip data and maximum disease severity (MDS) of leaf rust from four environments, to identify adult plant resistance (APR) loci through linkage mapping. Additionally, kompetitive allele-specific PCR (KASP) markers suitable for breeding were developed, and genetic effects were validated in a natural population. In this study, 5 quantitative trait loci (QTL) on chromosomes 1B (2), 2A and 7B (2) were identified through inclusive composite interval mapping, and named as QLr.lfnu-1BL1, QLr.lfnu-1BL2, QLr.lfnu-2AL, QLr.lfnu-7BL1 and QLr.lfnu-7BL2, respectively, explaining 4.54–8.91% of the phenotypic variances. The resistance alleles of QLr.lfnu-1BL1 and QLr.lfnu-1BL2 originated from Doumai, while the resistance alleles of QLr.lfnu-2AL, QLr.lfnu-7BL1 and QLr.lfnu-7BL2 came from Shi4185. Among these, QLr.lfnu-1BL2, QLr.lfnu-7BL1 and QLr.lfnu-7BL2 overlapped with previously reported loci, whereas QLr.lfnu-1BL1 and QLr.lfnu-2AL are likely to be novel. Two KASP markers, QLr.lfnu-2AL and QLr.lfnu-7BL, were significantly associated with leaf rust resistance in a diverse panel of 150 wheat varieties mainly from China. Totally, 34 potential candidate genes encoded the NLR proteins, receptor-like kinases, signaling kinases and transcription factors were selected as candidate genes for the resistance loci. These findings will provide stable QTL, available breeding KASP markers and candidate genes, and will accelerate the progresses of wheat leaf rust resistance improvement through marker-assisted selection breeding. Full article
Show Figures

Figure 1

17 pages, 1932 KB  
Article
A Mycorrhiza-Associated Receptor-like Kinase Regulates Disease Resistance in Rice
by Zichao Zheng, Ke Zou, Guodong Lu, Zonghua Wang, Haitao Cui and Airong Wang
Agronomy 2025, 15(10), 2298; https://doi.org/10.3390/agronomy15102298 - 28 Sep 2025
Cited by 1 | Viewed by 791
Abstract
Most terrestrial plants establish symbiotic relationships with microorganisms to acquire nutrients and simultaneously restrict pathogen infection. In rice, the receptor-like kinase OsARK1 is essential for the colonization and development of arbuscular mycorrhizal (AM) fungi. However, whether OsARK1 participates in plant–pathogen interactions remain unknown. [...] Read more.
Most terrestrial plants establish symbiotic relationships with microorganisms to acquire nutrients and simultaneously restrict pathogen infection. In rice, the receptor-like kinase OsARK1 is essential for the colonization and development of arbuscular mycorrhizal (AM) fungi. However, whether OsARK1 participates in plant–pathogen interactions remain unknown. Here, we demonstrate that OsARK1 is involved in the transcriptional reprogramming of immune defense-related genes prior to and following AM colonization. Mutation of OsARK1 resulted in increased susceptibility to Magnaporthe oryzae (blast fungus) and Xanthomonas oryzae (bacterial blight). Transcriptomic profiling during blast infection demonstrated OsARK1 coordinates early immune responses; particularly, the upregulation of genes encoding lectin receptor-like kinases (LecRLKs), nucleotide-binding leucine-rich repeat (NLR) immune receptors and secondary metabolism-related genes was significantly impaired in Osark1 mutant. Collectively, OsARK1 acts as a positive regulator of rice immunity against pathogens while fine-tuning defense suppression during beneficial AM symbiosis. Full article
(This article belongs to the Special Issue Interaction Mechanisms Between Crops and Pathogens)
Show Figures

Figure 1

Back to TopTop