Interaction Between the UCP2 rs659366 Polymorphism and Dietary Capsaicin Intake in Relation to the Inflammatory State in Mexican Adults
Abstract
1. Introduction
2. Results
2.1. Distribution of the UCP2 rs659366 Polymorphism and Characteristics of the Studied Population
2.2. Capsaicin Intake According to Genotypes of the UCP2 rs659366 Polymorphism
2.3. Biochemical Profile by Genotypes of the UCP2 rs659366 Polymorphism
2.4. Inflammatory Profile by Alleles of the UCP2 rs659366 Polymorphism
2.5. Interaction Between UCP2 rs659366 Polymorphism, Dietary Capsaicin Intake and NLR
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Anthropometric Measurements and Arterial Measurement
4.3. Dietary Intake and Appetite
4.4. Laboratory Tests
4.5. UCP2 Genotyping
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barton, G.M. A calculated response: Control of inflammation by the innate immune system. J. Clin. Investig. 2008, 118, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Akhtar, M.A. Anti-Inflammatory Medicinal Plants of Bangladesh-A Pharmacological Evaluation. Front. Pharmacol. 2022, 13, 809324. [Google Scholar] [CrossRef]
- Pérez, L.M.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Emanuele, E.; Lucia, A.; Gálvez, B.G. ‘Adipaging’: Ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J. Physiol. 2016, 594, 3187–3207. [Google Scholar] [CrossRef]
- Canale, M.P.; Manca di Villahermosa, S.; Martino, G.; Rovella, V.; Noce, A.; De Lorenzo, A.; Di Daniele, N. Obesity-related metabolic syndrome: Mechanisms of sympathetic overactivity. Int. J. Endocrinol. 2013, 2013, 865965. [Google Scholar] [CrossRef]
- Gasmi, A.; Noor, S.; Menzel, A.; Doşa, A.; Pivina, L.; Bjørklund, G. Obesity and Insulin Resistance: Associations with Chronic Inflammation, Genetic and Epigenetic Factors. Curr. Med. Chem. 2021, 28, 800–826. [Google Scholar] [CrossRef]
- Ramos-Lopez, O. Personalizing Dietary Polyphenols for Health Maintenance and Disease Management: A Nutrigenetic Approach. Curr. Nutr. Rep. 2025, 14, 29. [Google Scholar] [CrossRef]
- Martínez-Aceviz, Y.; Sobrevilla-Navarro, A.A.; Ramos-Lopez, O. Dietary Intake of Capsaicin and Its Association with Markers of Body Adiposity and Fatty Liver in a Mexican Adult Population of Tijuana. Healthcare 2023, 11, 3001. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; et al. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. [Google Scholar] [CrossRef] [PubMed]
- Al Othman, Z.A.; Ahmed, Y.B.; Habila, M.A.; Ghafar, A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef]
- Bhave, G.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Gereau, R.W., 4th. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 2002, 35, 721–731. [Google Scholar] [CrossRef]
- Sun, J.; Pu, Y.; Wang, P.; Chen, S.; Zhao, Y.; Liu, C.; Shang, Q.; Zhu, Z.; Liu, D. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc. Diabetol. 2013, 12, 69. [Google Scholar] [CrossRef]
- Dalgaard, L.T.; Hansen, T.; Urhammer, S.A.; Drivsholm, T.; Borch-Johnsen, K.; Pedersen, O. The uncoupling protein 3 -55 C -->T variant is not associated with Type II diabetes mellitus in Danish subjects. Diabetologia 2001, 44, 1065–1067. [Google Scholar] [CrossRef]
- Saleh, M.C.; Wheeler, M.B.; Chan, C.B. Uncoupling protein-2: Evidence for its function as a metabolic regulator. Diabetologia 2002, 45, 174–187. [Google Scholar] [CrossRef]
- Snitker, S.; Fujishima, Y.; Shen, H.; Ott, S.; Pi-Sunyer, X.; Furuhata, Y.; Sato, H.; Takahashi, M. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: Possible pharmacogenetic implications. Am. J. Clin. Nutr. 2009, 89, 45–50. [Google Scholar] [CrossRef]
- Fleury, C.; Neverova, M.; Collins, S.; Raimbault, S.; Champigny, O.; Levi-Meyrueis, C.; Bouillaud, F.; Seldin, M.F.; Surwit, R.S.; Ricquier, D.; et al. Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 1997, 15, 269–272. [Google Scholar] [CrossRef]
- Panchal, S.K.; Bliss, E.; Brown, L. Capsaicin in Metabolic Syndrome. Nutrients 2018, 10, 630. [Google Scholar] [CrossRef]
- McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart 2015, 2, e000262. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, R.; Huesca-Gómez, C.; López-Pérez, V.; Posadas-Sánchez, R.; Cardoso-Saldaña, G.; Medina-Urrutia, A.; Juárez-Rojas, J.G.; Soto, M.E.; Posadas-Romero, C.; Vargas-Alarcón, G. The UCP2 -866G/A, Ala55Val and UCP3 -55C/T polymorphisms are associated with premature coronary artery disease and cardiovascular risk factors in Mexican population. Genet. Mol. Biol. 2018, 41, 371–378. [Google Scholar] [CrossRef] [PubMed]
- International HapMap Consortium. The International HapMap Project. Nature 2003, 426, 789–796. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Dieter, C.; Assmann, T.S.; Lemos, N.E.; Massignam, E.T.; Souza, B.M.; Bauer, A.C.; Crispim, D. -866G/A and Ins/Del polymorphisms in the UCP2 gene and diabetic kidney disease: Case-control study and meta-analysis. Genet. Mol. Biol. 2020, 43, e20180374. [Google Scholar] [CrossRef] [PubMed]
- Donadelli, M.; Dando, I.; Fiorini, C.; Palmieri, M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol. Life Sci. 2014, 71, 1171–1190. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Prakash, J.; Lakhan, R.; Agarwal, C.G.; Pant, D.C.; Mittal, B. A common polymorphism in the promoter of UCP2 is associated with obesity and hyperinsulenemia in northern Indians. Mol. Cell Biochem. 2010, 337, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Lapice, E.; Pinelli, M.; Pisu, E.; Monticelli, A.; Gambino, R.; Pagano, G.; Valsecchi, S.; Cocozza, S.; Riccardi, G.; Vaccaro, O. Uncoupling protein 2 G(-866)A polymorphism: A new gene polymorphism associated with C-reactive protein in type 2 diabetic patients. Cardiovasc. Diabetol. 2010, 9, 68. [Google Scholar] [CrossRef]
- Oktavianthi, S.; Trimarsanto, H.; Febinia, C.A.; Suastika, K.; Saraswati, M.R.; Dwipayana, P.; Arindrarto, W.; Sudoyo, H.; Malik, S.G. Uncoupling protein 2 gene polymorphisms are associated with obesity. Cardiovasc. Diabetol. 2012, 11, 41. [Google Scholar] [CrossRef]
- da Fonseca, A.C.P.; Assis, I.S.D.S.; Salum, K.C.R.; Palhinha, L.; Abreu, G.M.; Zembrzuski, V.M.; Campos Junior, M.; Nogueira-Neto, J.F.; Cambraia, A.; Souza Junior, M.L.F.; et al. Genetic variants in DBC1, SIRT1, UCP2 and ADRB2 as potential biomarkers for severe obesity and metabolic complications. Front. Genet. 2024, 15, 1363417. [Google Scholar] [CrossRef]
- Ohnuki, K.; Haramizu, S.; Oki, K.; Watanabe, T.; Yazawa, S.; Fushiki, T. Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci. Biotechnol. Biochem. 2001, 65, 2735–2740. [Google Scholar] [CrossRef]
- Leung, F.W. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sci. 2008, 83, 1–5. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, C.T.; Kim, I.H.; Kim, Y. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother. Res. 2011, 25, 935–939. [Google Scholar] [CrossRef]
- Joo, J.I.; Kim, D.H.; Choi, J.W.; Yun, J.W. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome Res. 2010, 9, 2977–2987. [Google Scholar] [CrossRef]
- Cheurfa, N.; Dubois-Laforgue, D.; Ferrarezi, D.A.; Reis, A.F.; Brenner, G.M.; Bouché, C.; Le Feuvre, C.; Fumeron, F.; Timsit, J.; Marre, M.; et al. The common -866G>A variant in the promoter of UCP2 is associated with decreased risk of coronary artery disease in type 2 diabetic men. Diabetes 2008, 57, 1063–1068. [Google Scholar] [CrossRef]
- Poynter, M.E.; Mank, M.M.; Ather, J.L. Obesity-associated inflammatory macrophage polarization is inhibited by capsaicin and phytolignans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2024, 326, R370–R382. [Google Scholar] [CrossRef]
- Shin, K.O.; Moritani, T. Capsaicin supplementation fails to modulate autonomic and cardiac electrophysiologic activity during exercise in the obese: With variants of UCP2 and UCP3 polymorphism. J. Sports Sci. Med. 2008, 7, 365–370. [Google Scholar]
- Rodríguez-Rodríguez, E.; López-Sobaler, A.M.; Ortega, R.M.; Delgado-Losada, M.L.; López-Parra, A.M.; Aparicio, A. Association between Neutrophil-to-Lymphocyte Ratio with Abdominal Obesity and Healthy Eating Index in a Representative Older Spanish Population. Nutrients 2020, 12, 855. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Liu, H.; Huang, Y.; Ju, W.; Xing, Y.; Zhang, X.; Yang, J. Inhibition of pyroptosis and apoptosis by capsaicin protects against LPS-induced acute kidney injury through TRPV1/UCP2 axis in vitro. Open Life Sci. 2023, 18, 20220647. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Martinez-Aceviz, Y.; Sobrevilla-Navarro, A.A.; Chavez-Mendez, J.R. Genetic Influence on Capsaicin Tolerance: Precision Nutrition Implications for Obesity Handling. Lifestyle Genom. 2024, 17, 57–63. [Google Scholar] [CrossRef] [PubMed]
- López-Carrillo, L.; López-Cervantes, M.; Robles-Díaz, G.; Ramírez-Espitia, A.; Mohar-Betancourt, A.; Meneses-García, A.; López-Vidal, Y.; Blair, A. Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int. J. Cancer 2003, 106, 277–282. [Google Scholar] [CrossRef] [PubMed]
- López-Carrillo, L.; Camargo, M.C.; Schneider, B.G.; Sicinschi, L.A.; Hernández-Ramírez, R.U.; Correa, P.; Cebrian, M.E. Capsaicin consumption, Helicobacter pylori CagA status and IL1B-31C>T genotypes: A host and environment interaction in gastric cancer. Food Chem. Toxicol. 2012, 50, 2118–2122. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.; Pek, K.; Chew, J.; Lim, J.P.; Ismail, N.H.; Ding, Y.Y.; Cesari, M.; Lim, W.S. The Simplified Nutritional Appetite Questionnaire (SNAQ) as a Screening Tool for Risk of Malnutrition: Optimal Cutoff, Factor Structure, and Validation in Healthy Community-Dwelling Older Adults. Nutrients 2020, 12, 2885. [Google Scholar] [CrossRef] [PubMed]
- Araújo, S.P.; Juvanhol, L.L.; Bressan, J.; Hermsdorff, H.H.M. Triglyceride glucose index: A new biomarker in predicting cardiovascular risk. Prev. Med. Rep. 2022, 29, 101941. [Google Scholar] [CrossRef] [PubMed]
- Man, M.A.; Rajnoveanu, R.M.; Motoc, N.S.; Bondor, C.I.; Chis, A.F.; Lesan, A.; Puiu, R.; Lucaciu, S.R.; Dantes, E.; Gergely-Domokos, B.; et al. Neutrophil-to-lymphocyte ratio, platelets-to-lymphocyte ratio, and eosinophils correlation with high-resolution computer tomography severity score in COVID-19 patients. PLoS ONE 2021, 16, e0252599. [Google Scholar] [CrossRef]
- Gawiński, C.; Michalski, W.; Mróz, A.; Wyrwicz, L. Correlation between Lymphocyte-to-Monocyte Ratio (LMR), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Tumor-Infiltrating Lymphocytes (TILs) in Left-Sided Colorectal Cancer Patients. Biology 2022, 11, 385. [Google Scholar] [CrossRef]

| Variables | GG + GA n = 166 | AA n = 46 | p Value |
|---|---|---|---|
| Age (years) | 37.84 ± 12.7 | 37.15 ± 11.1 | 0.741 |
| Sex (F/M) | 102/64 | 27/19 | 0.431 |
| Normal weight, n (%) | 51 (30.7) | 8 (17.4) | 0.088 |
| Overweight, n (%) | 60 (36.1) | 16 (34.7) | |
| Obesity, n (%) | 53 (31.9) | 22 (47.8) | |
| BMI (kg/m2) | 26.9 ± 4.4 | 29.0 ± 1.4 | 0.557 |
| Total body fat (%) | 34.7 ± 9.0 | 35.9 ± 9.3 | 0.588 |
| WC (cm) | 89.6 ± 14.6 | 93.0 ± 13.9 | 0.155 |
| HC (cm) | 104.8 ± 10.6 | 108.5 ± 10.1 | 0.040 |
| WHR | 0.85 ± 0.05 | 0.85 ± 0.09 | 0.992 |
| SBP (mmHg) | 121.1 ± 15.8 | 119.1 ± 24.8 | 0.551 |
| DBP (mmHg) | 78.6 ± 9.7 | 78.5 ± 10.8 | 0.962 |
| Variables | GG + GA n = 166 | AA n = 46 | p Value |
|---|---|---|---|
| CAP (mg/d) | 666.4 ± 6699.4 | 162.2 ± 195.6 | 0.615 |
| Appetite score | 11.3 ± 2.7 | 11.4 ± 2.7 | 0.908 |
| Total calories/d | 2018.1 ± 685.3 | 2149.4 ± 941.9 | 0.329 |
| Total proteins (%) | 20.2 ± 15.7 | 18.8 ± 4.0 | 0.581 |
| Total fat (%) | 37.7 ± 7.8 | 37.4 ± 9.5 | 0.823 |
| Total carbohydrates (%) | 42.2 ± 9.6 | 43.3 ± 9.7 | 0.560 |
| Variable | GG + GA n = 166 | AA n = 46 | p Value |
|---|---|---|---|
| Fasting glucose (mg/dL) | 93.8 ± 12.6 | 99.19 ± 17.5 | 0.020 |
| Total cholesterol (mg/dL) | 192.7 ± 38.9 | 186.4 ± 32.4 | 0.321 |
| HDL-c (mg/dL) | 45.97 ± 13.1 | 42.5 ± 10.8 | 0.101 |
| Non-HDL-c (mg/dL) | 146.7 ± 37.9 | 143.9 ± 34.13 | 0.656 |
| LDL-c (mg/dL) | 125.6 ± 35.2 | 122.7 ± 27.3 | 0.608 |
| Triglycerides (mg/dL) | 105.1 ± 59.7 | 115.5 ± 69.2 | 0.315 |
| TyG | 4.52 ± 0.28 | 4.58 ± 0.30 | 0.182 |
| Uric acid (mg/dL) | 5.4 ± 1.8 | 5.7 ± 1.9 | 0.247 |
| Total proteins (g/dL) | 7.48 ± 0.4 | 7.3 ± 0.5 | 0.039 |
| Albumin (g/dL) | 4.0 ± 0.1 | 3.9 ± 0.1 | 0.112 |
| Globulins | 3.4 ± 0.4 | 3.3 ± 0.5 | 0.441 |
| LDH (U/L) | 213.5 ± 123.4 | 223.3 ± 115.5 | 0.627 |
| AST (U/L) | 38.3 ± 20.8 | 37.6 ± 17.7 | 0.845 |
| ALT (U/L) | 29.4 ± 32.1 | 31.3 ± 23.8 | 0.700 |
| GGT (U/L) | 18.4 ± 13.0 | 21.0 ± 17.7 | 0.276 |
| TB (umol/L) | 1.2 ± 0.5 | 0.9 ± 0.3 | 0.001 |
| DB (umol/L) | 0.17 ± 0.08 | 0.14 ± 0.10 | 0.128 |
| ALP (U/L) | 161.0 ± 64.1 | 148.0 ± 58.7 | 0.218 |
| Urea (mg/dL) | 24.9 ± 13.2 | 22.5 ± 12.1 | 0.266 |
| Creatinine (mg/dL) | 0.66 ± 0.18 | 0.75 ± 0.20 | 0.006 |
| Creatine kinase | 234.8 ± 234.5 | 396.8 ± 779.1 | 0.035 |
| Variable | GG + GA n = 166 | AA n = 46 | p Value |
|---|---|---|---|
| NLR | 1.96 ± 1.10 | 2.04 ± 1.09 | 0.665 |
| PLR | 133.89 ± 54.48 | 154.44 ± 73.06 | 0.036 |
| EBR | 4.84 ± 9.77 | 5.31 ± 8.30 | 0.762 |
| ELR | 0.091 ± 0.08 | 0.08 ± 0.07 | 0.635 |
| LMR | 6.08 ± 2.43 | 5.847 ± 2.33 | 0.549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobrevilla-Navarro, A.A.; Landeros-Sanchez, B.; Chavez-Mendez, J.R.; Rodriguez-Uribe, G.; Ramos-Lopez, O. Interaction Between the UCP2 rs659366 Polymorphism and Dietary Capsaicin Intake in Relation to the Inflammatory State in Mexican Adults. Int. J. Mol. Sci. 2025, 26, 10419. https://doi.org/10.3390/ijms262110419
Sobrevilla-Navarro AA, Landeros-Sanchez B, Chavez-Mendez JR, Rodriguez-Uribe G, Ramos-Lopez O. Interaction Between the UCP2 rs659366 Polymorphism and Dietary Capsaicin Intake in Relation to the Inflammatory State in Mexican Adults. International Journal of Molecular Sciences. 2025; 26(21):10419. https://doi.org/10.3390/ijms262110419
Chicago/Turabian StyleSobrevilla-Navarro, Ana Alondra, Bertha Landeros-Sanchez, Jose Roman Chavez-Mendez, Genaro Rodriguez-Uribe, and Omar Ramos-Lopez. 2025. "Interaction Between the UCP2 rs659366 Polymorphism and Dietary Capsaicin Intake in Relation to the Inflammatory State in Mexican Adults" International Journal of Molecular Sciences 26, no. 21: 10419. https://doi.org/10.3390/ijms262110419
APA StyleSobrevilla-Navarro, A. A., Landeros-Sanchez, B., Chavez-Mendez, J. R., Rodriguez-Uribe, G., & Ramos-Lopez, O. (2025). Interaction Between the UCP2 rs659366 Polymorphism and Dietary Capsaicin Intake in Relation to the Inflammatory State in Mexican Adults. International Journal of Molecular Sciences, 26(21), 10419. https://doi.org/10.3390/ijms262110419

