Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,309)

Search Parameters:
Keywords = NDVI’

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 (registering DOI) - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

20 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

25 pages, 9834 KiB  
Article
Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
by Dan Yang, Naiang Wang, Xiao Liu, Xiaoyang Zhao, Rongzhu Lu, Hao Ye, Xiaojun Liu and Jinqiao Liu
Forests 2025, 16(8), 1277; https://doi.org/10.3390/f16081277 - 4 Aug 2025
Abstract
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been [...] Read more.
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai–Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986–2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land–shrub–tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous–broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous–broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators—including species composition, diversity, NDVI, soil depth, and soil moisture content—exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Graphical abstract

25 pages, 13119 KiB  
Article
Spatial and Temporal Variability of C Stocks and Fertility Levels After Repeated Compost Additions: A Case Study in a Converted Mediterranean Perennial Cropland
by Arleen Rodríguez-Declet, Maria Teresa Rodinò, Salvatore Praticò, Antonio Gelsomino, Adamo Domenico Rombolà, Giuseppe Modica and Gaetano Messina
Soil Syst. 2025, 9(3), 86; https://doi.org/10.3390/soilsystems9030086 (registering DOI) - 4 Aug 2025
Abstract
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil [...] Read more.
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil mapping revealed strong baseline heterogeneity in texture, CEC, and Si pools. Compost application markedly increased total organic C and N levels, aggregate stability, and pH with noticeable changes after the first amendment, whereas a limited C storage potential was found following further additions. NDVI values of tree canopies monitored over a 3-year period showed significant time-dependent changes not correlated with the soil fertility variables, thus suggesting that multiple interrelated factors affect plant responses. The non-crystalline amorphous Si/total amorphous Si (iSi:Siamor) ratio is here proposed as a novel indicator of pedogenic alteration in disturbed agroecosystems. These findings highlight the importance of tailoring organic farming strategies to site-specific conditions and reinforce the value to combine C and Si pool analysis for long-term soil fertility assessment. Full article
Show Figures

Figure 1

26 pages, 6698 KiB  
Article
Cumulative and Lagged Effects of Drought on the Phenology of Different Vegetation Types in East Asia, 2001–2020
by Kexin Deng, Mark Henderson, Binhui Liu, Weiwei Huang, Mingyang Chen, Pingping Zheng and Ruiting Gu
Remote Sens. 2025, 17(15), 2700; https://doi.org/10.3390/rs17152700 - 4 Aug 2025
Abstract
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on [...] Read more.
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on vegetation growth have mostly focused on a single vegetation type or the overall vegetation NDVI, overlooking the possible influence of different adaptation strategies of different vegetation types and differences in drought effects on different phenological nodes. This study investigates the cumulative and lagged effects of drought on vegetation phenology across a region of East Asia from 2001 to 2020 using NDVI data and the Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the start of growing season (SOS) and end of growing season (EOS) responses to drought across four vegetation types: deciduous needleleaf forests (DNFs), deciduous broadleaf forests (DBFs), shrublands, and grasslands. Results reveal contrasting phenological responses: drought delayed SOS in grasslands through a “drought escape” strategy but advanced SOS in forests and shrublands. All vegetation types showed earlier EOS under drought stress. Cumulative drought effects were strongest on DNFs, SOS, and shrubland SOS, while lagged effects dominated DBFs and grassland SOS. Drought impacts varied with moisture conditions: they were stronger in dry regions for SOS but more pronounced in humid areas for EOS. By confirming that drought effects vary by vegetation type and phenology node, these findings enhance our understanding of vegetation adaptation strategies and ecosystem responses to climate stress. Full article
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 227
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 217
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

16 pages, 3217 KiB  
Article
Application of an Orbital Remote Sensing Vegetation Index for Urban Tree Cover Mapping to Support the Tree Census
by Cássio Filipe Vieira Martins, Franciele Caroline Guerra, Anderson Targino da Silva Ferreira and Roger Dias Gonçalves
Earth 2025, 6(3), 87; https://doi.org/10.3390/earth6030087 (registering DOI) - 1 Aug 2025
Viewed by 218
Abstract
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a [...] Read more.
Urban vegetation monitoring is essential for sustainable city planning but is often constrained by the high cost and limited frequency of field-based inventories. This study evaluates the use of the Normalized Difference Vegetation Index (NDVI), derived from Sino-Brazilian CBERS-4A satellite imagery, as a spatially explicit and low-cost proxy for urban tree census data. CBERS-4A provides medium-resolution multispectral data freely accessible across South America, yet remains underutilized in urban environmental applications. Focusing on Aracaju, a metropolitan region in northeastern Brazil, we compared NDVI-based classification results with official municipal tree census data from 2022. The analysis revealed a strong spatial correlation, supporting the use of NDVI as a reliable indicator of canopy presence at the urban block scale. In addition to mapping vegetation distribution, the NDVI results identified areas with insufficient canopy coverage, directly informing urban greening priorities. By validating remote sensing data against field inventories, this study demonstrates how CBERS-4A imagery and vegetation indices can support municipal tree management and serve as scalable tools for environmental planning and policy. Full article
Show Figures

Graphical abstract

16 pages, 1258 KiB  
Article
Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato
by Carmen Iribar, Alba Alvarez-Morezuelas, Leire Barandalla and Jose Ignacio Ruiz de Galarreta
Horticulturae 2025, 11(8), 889; https://doi.org/10.3390/horticulturae11080889 (registering DOI) - 1 Aug 2025
Viewed by 193
Abstract
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and [...] Read more.
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and agronomic parameters. Physiological parameters included chlorophyll content and fluorescence, stomatal conductance, NDVI, leaf area, and perimeter, while agronomic characteristics such as yield, tuber fresh weight, tuber number, starch content, dry matter, and reducing sugars were evaluated. To genotype the population, the GGP V3 Potato array was used, generating 18,259 high-quality SNP markers. Marker–trait association analysis was conducted using the GWASpoly package in R, applying Q + K linear mixed models to enhance precision. This methodology enabled the identification of 18 SNP markers that exhibited statistically significant associations with the traits analyzed in both trials and periods, relating them to genes whose functional implication has already been described. Genetic loci associated with chlorophyll content and tuber number were detected across non-stress and stress treatments, while markers linked to leaf area and leaf perimeter were identified specifically under nitrogen deficiency stress. The genomic distribution of these markers revealed that genetic markers or single-nucleotide polymorphisms (SNPs) correlated with phenotypic traits under non-stress conditions were predominantly located on chromosome 11, whereas SNPs linked to stress responses were mainly identified on chromosomes 2 and 3. These findings contribute to understanding the genetic mechanisms underlying potato tolerance to nitrogen deficiency stress, offering valuable insights for the development of future marker-assisted selection programs aimed at improving nitrogen use efficiency and stress resilience in potato breeding. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

29 pages, 5503 KiB  
Article
Feature Selection Framework for Improved UAV-Based Detection of Solenopsis invicta Mounds in Agricultural Landscapes
by Chun-Han Shih, Cheng-En Song, Su-Fen Wang and Chung-Chi Lin
Insects 2025, 16(8), 793; https://doi.org/10.3390/insects16080793 - 31 Jul 2025
Viewed by 227
Abstract
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant [...] Read more.
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant mounds was evaluated in Fenlin Township, Hualien, Taiwan. A DJI Phantom 4 multispectral drone collected reflectance in five bands (blue, green, red, red-edge, and near-infrared), derived indices (normalized difference vegetation index, NDVI, soil-adjusted vegetation index, SAVI, and photochemical pigment reflectance index, PPR), and textural features. According to analysis of variance F-scores and random forest recursive feature elimination, vegetation indices and spectral features (e.g., NDVI, NIR, SAVI, and PPR) were the most significant predictors of ecological characteristics such as vegetation density and soil visibility. Texture features exhibited moderate importance and the potential to capture intricate spatial patterns in nonlinear models. Despite limitations in the analytics, including trade-offs related to flight height and environmental variability, the study findings suggest that UAVs are an inexpensive, high-precision means of obtaining multispectral data for RIFA monitoring. These findings can be used to develop efficient mass-detection protocols for integrated pest control, with broader implications for invasive species monitoring. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Viewed by 206
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Viewed by 293
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

12 pages, 1419 KiB  
Article
Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves
by Beijia Sang and Yuexuan Cao
Sustainability 2025, 17(15), 6945; https://doi.org/10.3390/su17156945 - 31 Jul 2025
Viewed by 356
Abstract
Carbon storage is a critical factor for ensuring the provision of ecosystem services such as biodiversity conservation, particularly in nature reserves. Understanding the spatial and temporal dynamics of carbon storage within China’s nature reserves (NRs) is essential for evaluating their role in ecosystem [...] Read more.
Carbon storage is a critical factor for ensuring the provision of ecosystem services such as biodiversity conservation, particularly in nature reserves. Understanding the spatial and temporal dynamics of carbon storage within China’s nature reserves (NRs) is essential for evaluating their role in ecosystem conservation. Using NDVI values, we assessed vegetation carbon storage in NRs across China from 2000 to 2015. The results revealed a 63.06% increase in carbon storage within NRs over the 15-year period, with forest vegetation and grassland vegetation carbon storage increasing by 60.05% and 86.33%, respectively. Approximately 90% of NRs exhibited positive growth rates, with higher increases observed in northeastern and western China compared to other regions. While the carbon density of forest vegetation in NRs exceeded that of areas outside reserves, grassland vegetation displayed the opposite trend. Overall, vegetation carbon storage in NRs demonstrated a significant upward trajectory over the study period. These findings highlight the importance of nature reserves in safeguarding forest carbon functions; however, their protective effect on grassland vegetation carbon function was less pronounced. Full article
Show Figures

Figure 1

30 pages, 12776 KiB  
Article
Multi-Source Data Integration for Sustainable Management Zone Delineation in Precision Agriculture
by Dušan Jovanović, Miro Govedarica, Milan Gavrilović, Ranko Čabilovski and Tamme van der Wal
Sustainability 2025, 17(15), 6931; https://doi.org/10.3390/su17156931 - 30 Jul 2025
Viewed by 218
Abstract
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, [...] Read more.
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, humus, P2O5, K2O, nitrogen), and vegetation/surface indices (NDVI, SAVI, LCI, BSI) derived from Sentinel-2 imagery. Using kriging, fuzzy k-means clustering, percentile-based classification, and Weighted Overlay Analysis (WOA), MZs were generated for a five-year period (2018–2022), with 2–8 zone classes. Stability and agreement were assessed using the Cohen Kappa, Jaccard, and Dice coefficients on systematic grid samples. Results showed that EM38-MK2 and humus-weighted BSP data produced the most consistent zones (Kappa > 0.90). Sentinel-2 indices demonstrated strong alignment with subsurface data (r > 0.85), offering a low-cost alternative in data-scarce settings. Optimal zoning was achieved with 3–4 classes, balancing spatial coherence and interpretability. These findings underscore the importance of multi-source data integration for robust and scalable MZ delineation and offer actionable guidelines for both data-rich and resource-limited farming systems. This approach promotes sustainable agriculture by improving input efficiency and allowing for targeted, site-specific field management. Full article
Show Figures

Figure 1

Back to TopTop