Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (441)

Search Parameters:
Keywords = N-acetyl cysteine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1575 KiB  
Article
Cytotoxic Effects of Bifora testiculata (L.) Spreng. Essential Oil and Its Main Component on Cancer Cell Lines
by Alessandro Vaglica, Antonella Porrello, Natale Badalamenti, Vincenzo Ilardi, Maurizio Bruno, Filippo Maggi, Massimo Bramucci and Luana Quassinti
Plants 2025, 14(15), 2408; https://doi.org/10.3390/plants14152408 - 4 Aug 2025
Viewed by 187
Abstract
Bifora testiculata (L.) Spreng. (Apiaceae), an understudied species endemic to the Mediterranean and the only representative species of the genus Bifora in Sicily, was investigated for the first time for its essential oil (EO) chemical composition and cytotoxic properties. The EO was obtained [...] Read more.
Bifora testiculata (L.) Spreng. (Apiaceae), an understudied species endemic to the Mediterranean and the only representative species of the genus Bifora in Sicily, was investigated for the first time for its essential oil (EO) chemical composition and cytotoxic properties. The EO was obtained via hydrodistillation and analyzed using GC-MS, revealing an aldehyde-rich profile (86.10%), dominated by trans-2-dodecenal (67.49%). Comparative analysis with previous studies on B. testiculata from Greece confirmed a similar aldehyde-rich profile, although minor compositional differences suggest potential chemotype variation. Given the biological relevance of trans-2-dodecenal and related aldehydes, further investigations into the cytotoxic properties of the EO of B. testiculata (Bt) and its main constituent against cancer cell lines were undertaken. Three human tumor cell lines (MDA-MB 231, A375, and CaCo2) and a human non-tumor cell line (HEK293) were subjected to viability tests using the MTT assay. The EO and trans-2-dodecenal exhibited remarkable cytotoxic activity against all cell lines, with IC50 values ranging between 7.93 and 14.41 µg/mL for Bt and between 1.88 and 5.29 µg/mL for trans-2-dodecenal. AO/BE fluorescent staining and Hoechst nuclear staining showed the presence of apoptotic bodies in the treated cells. N-acetyl-L-cysteine was able to invert the effects of Bt and trans-2-dodecenal on cell lines, suggesting ROS involvement in cytotoxic activity. The results demonstrated that the Bt cytotoxic activity was mainly due to the presence of trans-2-dodecenal. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity: 3nd Edition)
Show Figures

Figure 1

13 pages, 612 KiB  
Article
Efficacy of N-Acetyl Cysteine in the Treatment of Burning Mouth Syndrome—A Randomized Controlled Trial
by Lorena Horvat Aleksijević, Božana Lončar Brzak, Miroslav Sikora, Ivana Škrinjar, Vlaho Brailo, Ana Andabak Rogulj, Marko Aleksijević and Danica Vidović Juras
Dent. J. 2025, 13(8), 336; https://doi.org/10.3390/dj13080336 - 23 Jul 2025
Viewed by 262
Abstract
Objectives: Burning mouth syndrome (BMS) is a chronic, painful, idiopathic condition of the oral cavity, characterized by the absence of visible pathological changes on the oral mucosa and normal laboratory findings. Recent evidence from the literature supports the classification of BMS as a [...] Read more.
Objectives: Burning mouth syndrome (BMS) is a chronic, painful, idiopathic condition of the oral cavity, characterized by the absence of visible pathological changes on the oral mucosa and normal laboratory findings. Recent evidence from the literature supports the classification of BMS as a neuropathic condition. It has been proposed that oxidative stress may contribute to neuropathic pain. N-acetylcysteine (NAC) is an antioxidant that exhibits neuroprotective properties. The aim of the study was to evaluate the efficacy of N-acetyl cysteine in the treatment of burning mouth syndrome (BMS). Methods: Eighty female patients with previously diagnosed BMS were randomly assigned to one out of two groups. One group received N-acetyl cysteine (600 mg/twice a day) and the other received placebo, for an eight-week period. The outcome was measured by the Oral Health Impact Profile-14 (OHIP-14) quality of life questionnaire and Numeric Pain Rating Scale, for burning and discomfort, both before and after completing the therapy. Results: Both groups experienced a significant reduction in burning and discomfort sensations, along with a significant improvement in oral health-related quality of life. However, the difference between the treatment and control group was not statistically significant. Conclusions: NAC does not significantly improve the oral health-related quality of life, burning sensations, and discomfort in BMS subjects compared to placebo. Full article
(This article belongs to the Special Issue Oral Pathology: Current Perspectives and Future Prospects)
Show Figures

Figure 1

35 pages, 8014 KiB  
Article
Chitosan Nanoparticles for Topical Drug Delivery in Chemotherapy-Induced Alopecia: A Comparative Study of Five Repurposed Pharmacological Agents
by Salma A. Fereig, John Youshia, Ghada M. El-Zaafarany, Mona G. Arafa and Mona M. A. Abdel-Mottaleb
Pharmaceuticals 2025, 18(7), 1071; https://doi.org/10.3390/ph18071071 - 21 Jul 2025
Viewed by 571
Abstract
Background/Objectives: Chemotherapy-induced alopecia is a common and distressing side effect of cancer treatment, significantly impacting patients’ psychological well-being. Nanocarriers offer a promising strategy for targeted drug delivery to hair follicles, while chitosan nanoparticles have demonstrated hair-growth-promoting properties. This study explores the potential [...] Read more.
Background/Objectives: Chemotherapy-induced alopecia is a common and distressing side effect of cancer treatment, significantly impacting patients’ psychological well-being. Nanocarriers offer a promising strategy for targeted drug delivery to hair follicles, while chitosan nanoparticles have demonstrated hair-growth-promoting properties. This study explores the potential of chitosan nanoparticles as a topical delivery system for five pharmacological agents—phenobarbital, pioglitazone, rifampicin, N-acetylcysteine, and tacrolimus—to prevent chemotherapy-induced alopecia. Methods: Drug-loaded chitosan nanoparticles were prepared using the ionic gelation technique and characterized by particle size, zeta potential, entrapment efficiency, FT-IR spectroscopy, and TEM imaging. Their efficacy was assessed in a cyclophosphamide-induced alopecia model in C57BL/6 mice through macroscopic observation, histopathological examination, and scanning electron microscopy of regrown hair. Results: The prepared particles were spherical, cationic, and between 205 and 536 nm in size. The entrapment efficiencies ranged from 8% to 63%. All five drugs mitigated follicular dystrophy, shifting the hair follicle response from dystrophic catagen to dystrophic anagen. Phenobarbital demonstrated the most significant hair regrowth and quality improvements, followed by N-acetyl cysteine and pioglitazone. Tacrolimus showed moderate efficacy, while rifampicin was the least effective. Conclusions: These findings suggest that phenobarbital-loaded chitosan nanoparticles represent a promising approach for the prevention and treatment of chemotherapy-induced alopecia, warranting further investigation for clinical applications. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Figure 1

37 pages, 911 KiB  
Review
Expression of Free Radicals and Reactive Oxygen Species in Endometriosis: Current Knowledge and Its Implications
by Jeongmin Lee, Seung Geun Yeo, Jae Min Lee, Sung Soo Kim, Jin-Woo Lee, Namhyun Chung and Dong Choon Park
Antioxidants 2025, 14(7), 877; https://doi.org/10.3390/antiox14070877 - 17 Jul 2025
Viewed by 439
Abstract
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we [...] Read more.
This review explores the dual role of reactive oxygen species (ROS) and free radicals in the pathogenesis of endometriosis, aiming to deepen our understanding of these processes through a systematic literature review. To assess the induction and involvement of ROS in endometriosis, we conducted a comprehensive literature review using Cochrane Libraries, EMBASE, Google Scholar, PubMed, and SCOPUS databases. Of 30 qualifying papers ultimately reviewed, 28 reported a significant contribution of ROS to the pathogenesis of endometriosis, while two found no association. The presence of ROS in endometriosis is associated with infertility, irregular menstrual cycles, painful menstruation, and chronic pelvic discomfort. Among individual ROS types studied, hydrogen peroxide was most frequently investigated, followed by lipid peroxides and superoxide radicals. Notable polymorphisms associated with ROS in endometriosis include those for AT-rich interactive domain 1A (ARID1A) and quinone oxidoreductase 1 (NQO1) isoforms. Key enzymes for ROS scavenging and detoxification include superoxide dismutase, glutathione, and glutathione peroxidase. Effective inhibitors of ROS related to endometriosis are vitamins C and E, astaxanthin, fatty acid-binding protein 4, cerium oxide nanoparticles (nanoceria), osteopontin, sphingosine 1-phosphate, N-acetyl-L-cysteine, catalase, and a high-antioxidant diet. Elevated levels of ROS and free radicals are involved in the pathogenesis of endometriosis, suggesting that targeting these molecules could offer potential therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 2374 KiB  
Article
Preclinical Evaluation of Repurposed Antimalarial Artemisinins for the Treatment of Malignant Peripheral Nerve Sheath Tumors
by Heather M. Duensing, Jalen M. Dixon, Owen R. Hunter, Nicolina C. Graves, Nickalus C. Smith, Andersen J. Tomes and Cale D. Fahrenholtz
Int. J. Mol. Sci. 2025, 26(14), 6628; https://doi.org/10.3390/ijms26146628 - 10 Jul 2025
Viewed by 468
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a rare type of soft tissue sarcoma associated with poor prognoses. The standard of care for non-resectable tumors consists of surgical excision followed by radiation and chemotherapy. MPNSTs are most common in patients with neurofibromatosis type [...] Read more.
Malignant peripheral nerve sheath tumors (MPNSTs) are a rare type of soft tissue sarcoma associated with poor prognoses. The standard of care for non-resectable tumors consists of surgical excision followed by radiation and chemotherapy. MPNSTs are most common in patients with neurofibromatosis type 1 but can also occur sporadically. Regardless of origin, MPNSTs most often rely on signaling pathways that increase basal oxidative stress. This provides the basis for developing therapeutics with mechanisms that can potentiate oxidative stress to selectively eradicate tumor cells at doses that are tolerable for normal cells. Artemisinin derivatives are a mainstay of malaria therapy worldwide, with a well-established safety profile. Artemisinin’s antimalarial effects are due to an endoperoxide bridge in its chemical structure that induces oxidative stress. We found that artesunate (ARS) and metabolite dihydroartemisinin (DHA) are selectively cytotoxic to MPNST cells relative to normal Schwann cells with the endoperoxide bridge required for activity. Mechanistically, DHA induced oxidative stress, lipid peroxidation, and DHA-mediated cytotoxicity could be prevented with co-administration of the antioxidant N-acetyl-cysteine. Furthermore, we found that DHA was able to selectively remove MPNST from co-culture with normal Schwann cells. These data supports the further development of artemisinins for the clinical management of MPNST. Full article
(This article belongs to the Special Issue Molecular Research in Bone and Soft Tissue Tumors)
Show Figures

Figure 1

26 pages, 1980 KiB  
Review
The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics
by Mia Teng, Tzong-Jin Wu, Kirkwood A. Pritchard, Billy W. Day, Stephen Naylor and Ru-Jeng Teng
Antioxidants 2025, 14(7), 844; https://doi.org/10.3390/antiox14070844 - 10 Jul 2025
Viewed by 541
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant complication of premature birth and neonatal intensive care. While much is known about the drivers of lung injury, few studies have addressed the interrelationships between oxidative stress, inflammation, and downstream events, such as endoplasmic reticulum (ER) stress. [...] Read more.
Bronchopulmonary dysplasia (BPD) remains a significant complication of premature birth and neonatal intensive care. While much is known about the drivers of lung injury, few studies have addressed the interrelationships between oxidative stress, inflammation, and downstream events, such as endoplasmic reticulum (ER) stress. In this review, we explore the concept of a “destructive cycle” in which these drivers self-amplify to push the lung into a state of maladaptive repair. Animal models, primarily the hyperoxic rat pup model, support a sequential progression from the generation of reactive oxygen species (ROS) and inflammation to endoplasmic reticulum (ER) stress and mitochondrial injury. We highlight how these intersecting pathways offer not just therapeutic targets but also opportunities for interventions that reprogram system-wide responses. Accordingly, we explore the potential of systems pharmacology therapeutics (SPTs) to address the multifactorial nature of BPD. As a prototype SPT, we describe the development of N-acetyl-L-lysyl-L-tyrosyl-L-cysteine amide (KYC), a systems chemico-pharmacology drug (SCPD), which is selectively activated in inflamed tissues and modulates key nodal targets such as high-mobility group box-1 (HMGB1) and Kelch-like ECH-associated protein-1 (Keap1). Collectively, the data suggest that future therapies may require a coordinated, network-level approach to break the destructive cycle and enable proper regeneration rather than partial repair. Full article
(This article belongs to the Special Issue Oxidative Stress in the Newborn)
Show Figures

Figure 1

12 pages, 305 KiB  
Article
Real-World Effectiveness of Different Nutraceutical Formulations on Pain Intensity of Subjects with Diabetic Peripheral Neuropathy: An Observational, Retrospective, Case–Control Study
by Laura Armeli Grigio, Denisa Boci, Giacoma Di Vieste, Gianluca Cassanelli, Oscar Massimiano Epis, Alessandro Viadana, Federico Bertuzzi and Basilio Pintaudi
Biomedicines 2025, 13(6), 1407; https://doi.org/10.3390/biomedicines13061407 - 8 Jun 2025
Viewed by 791
Abstract
Background/Objectives. Diabetic peripheral neuropathy is a debilitating disease-related complication with a significant impact on quality of life. Its management represents a therapeutic challenge. Antioxidant agents such as α-lipoic acid, N-acetyl cysteine, and glutatione may be useful treatment strategies. Methods. A real-world, [...] Read more.
Background/Objectives. Diabetic peripheral neuropathy is a debilitating disease-related complication with a significant impact on quality of life. Its management represents a therapeutic challenge. Antioxidant agents such as α-lipoic acid, N-acetyl cysteine, and glutatione may be useful treatment strategies. Methods. A real-world, observational, retrospective, case–control study involving consecutive subjects with type 2 diabetes with diabetic peripheral neuropathy was performed. Participants who were supplemented with three different formulations for 12 weeks (high-dose α-lipoic acid (800 mg); low-dose α-lipoic acid (100 mg) plus glutathione (200 mg) plus Vitamin D (800 IU); N-acetyl cysteine (600 mg) plus glutathione (200 mg) plus Vitamin D (800 IU)) were compared with a non-treated control group. Questionnaires aimed at investigating the degree of disability and quality of life were administered. The primary endpoint was the change in neuropathic pain intensity measured by the Numerical Rating Scale (NRS). Results. Among 750 consecutive screened subjects with type 2 diabetes, 98 (13%) had diabetic neuropathy (mean age 66.7 ± 7.6 years, diabetes duration 11.3 ± 6.7 years, HbA1c 8.1 ± 1.5%, 43.8% insulin-treated). When comparing the differences between treatment groups in the changes in individual questionnaire scores between baseline and follow-up, all three supplements showed significant reductions compared to the control group in the NRS scale scores. No side effects have been reported during the study. Conclusions. As well as lipoic acid, other substances with specific activity on the genesis of neuropathic pain, such as N-acetyl cysteine and glutathione, have proved effective in reducing the intensity of pain. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

25 pages, 3761 KiB  
Article
N-Acetylcysteine Attenuates Aβ-Mediated Oxidative Stress, Blood–Brain Barrier Leakage, and Renal Dysfunction in 5xFAD Mice
by Atcharaporn Ontawong, Geetika Nehra, Bryan J. Maloney, Chutima S. Vaddhanaphuti, Björn Bauer and Anika M. S. Hartz
Int. J. Mol. Sci. 2025, 26(9), 4352; https://doi.org/10.3390/ijms26094352 - 3 May 2025
Viewed by 1730
Abstract
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) pathology and is closely linked to oxidative stress, which contributes to blood–brain barrier leakage, renal dysfunction, and cognitive decline. We investigated the effects of N-acetyl cysteine (NAC), an FDA-approved antioxidant, on oxidative stress, brain Aβ [...] Read more.
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) pathology and is closely linked to oxidative stress, which contributes to blood–brain barrier leakage, renal dysfunction, and cognitive decline. We investigated the effects of N-acetyl cysteine (NAC), an FDA-approved antioxidant, on oxidative stress, brain Aβ levels, barrier leakage, renal function, and cognition in 5xFAD mice. Eight-week-old 5xFAD mice were fed a rodent diet supplemented with 600 mg/kgDiet NAC for 4 weeks; wild-type (WT) mice and control 5xFAD mice were fed a regular rodent diet. We detected elevated brain and renal 4-hydroxynonenal(4-HNE) levels, reduced creatinine clearance, and increased plasma S100β levels in untreated 5xFAD mice compared to WT controls. Untreated 5xFAD mice also had higher capillary leakage, reduced P-gp activity, and impaired cognition compared to WT. NAC treatment of 5xFAD mice reduced brain Aβ40 levels, normalized 4-HNE levels to control levels, improved creatinine clearance, decreased capillary leakage, and lowered S100β plasma levels. NAC improved cognitive performance in 5xFAD mice, as shown by Y-maze. Our findings indicate that Aβ-induced oxidative stress contributes to barrier dysfunction, renal impairment, and cognitive deficits in 5xFAD mice. Notably, NAC treatment mitigates these effects, suggesting its potential as an adjunct therapy for AD and other Aβ-related pathologies by reducing oxidative stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 3509 KiB  
Article
A Comparative Study of N-Acetyl Cysteine, Rosuvastatin, and Vitamin E in the Management of Patients with Non-Alcoholic Steatohepatitis: A Randomized Controlled Trial
by Amr Y. Zakaria, Rehab Badawi, Hasnaa Osama, Mona A. Abdelrahman and Asmaa M. El-Kalaawy
Pharmaceuticals 2025, 18(5), 650; https://doi.org/10.3390/ph18050650 - 29 Apr 2025
Viewed by 2607
Abstract
Background: Non-alcoholic steatohepatitis (NASH) is characterized by increased production of proinflammatory cytokines, fibrosis, and hepatocyte apoptosis. This study aimed to assess the efficacy of N-acetyl cysteine (NAC), rosuvastatin (RSV), and vitamin E (VE) in patients with NASH. Methods: A double-blinded, parallel, [...] Read more.
Background: Non-alcoholic steatohepatitis (NASH) is characterized by increased production of proinflammatory cytokines, fibrosis, and hepatocyte apoptosis. This study aimed to assess the efficacy of N-acetyl cysteine (NAC), rosuvastatin (RSV), and vitamin E (VE) in patients with NASH. Methods: A double-blinded, parallel, randomized, controlled study was conducted and registered on clinicaltrials.gov (Identifier: NCT06105060), involving 135 NASH participants, who were divided into three groups: the control group (group 1), consisting of patients receiving standard therapy VE at a dosage of 400 IU twice daily. In the treated group (group 2), patients were administered NAC at a dosage of 1200 mg twice daily, while treatment (group 3) received RSV at a dosage of 20 mg once daily. FibroScan® examination of liver tissue and fibrosis scores, along with tests for liver aminotransferases, lipid profile, glycemic parameters, and renal and hepatic functions, were assessed before and after six months of treatment. Results: The analyzed groups demonstrated a significant reduction in steatosis and lipid peroxidation (p < 0.05). The NAC group demonstrated greater anti-inflammatory and anti-apoptotic effects compared to the RSV group, although this difference was not significant in the control group. NAC is conceded as the only significant antifibrotic agent in liver stiffness measurement (LSM), biological marker findings, and non-invasive liver fibrosis scores (p < 0.05), in addition to its improvement of several metabolic parameters and health-related quality of life. Conclusions: Patients receiving NAC demonstrated safety and efficacy in enhancing steatosis, fibrosis, and metabolic parameters, representing a novel strategy in the management of NASH. Full article
(This article belongs to the Special Issue New and Emerging Treatment Strategies for Gastrointestinal Diseases)
Show Figures

Figure 1

15 pages, 4783 KiB  
Article
Sucralose Promotes Benzo(a)Pyrene-Induced Renal Toxicity in Mice by Regulating P-glycoprotein
by Jun Hu, Ji Feng, Yan Bai, Zhi-Sheng Yao, Xiao-Yu Wu, Xin-Yu Hong, Guo-Dong Lu and Kun Xue
Antioxidants 2025, 14(4), 474; https://doi.org/10.3390/antiox14040474 - 16 Apr 2025
Cited by 1 | Viewed by 806
Abstract
Background: Sucralose and benzo(a)pyrene (B[a]P) are widespread foodborne substances known to harm human health. However, the effects of their combined exposure on kidney function remain unclear. This study aimed to investigate the mechanisms by which sucralose and B[a]P induce [...] Read more.
Background: Sucralose and benzo(a)pyrene (B[a]P) are widespread foodborne substances known to harm human health. However, the effects of their combined exposure on kidney function remain unclear. This study aimed to investigate the mechanisms by which sucralose and B[a]P induce kidney injury through P-glycoprotein (PGP/ABCB1), a crucial protein involved in cellular detoxification. Methods: C57BL/6N mice were co-treated with sucralose and B[a]P for 90 days to evaluate their impact on kidney histopathology and function. In vitro experiments assessed cell viability, reactive oxygen species (ROS) levels, and B[a]P accumulation by flow cytometry. Molecular docking and cellular thermal shift assay (CETSA) were used to determine the binding affinity of sucralose to PGP. Furthermore, PCR, Western blotting, and immunohistochemistry were performed to analyze the expression of PGP and its upstream transcription factors. Results: Ninety days of co-exposure to sucralose and B[a]P significantly exacerbated renal dysfunction in mice, as evidenced by the elevated level of serum creatinine and urea nitrogen, which could be reverted by ROS scavenger N-acetyl cysteine (NAC). In vitro, sucralose promoted cellular accumulation of B[a]P, consequently enhancing B[a]P-induced cell growth inhibition and ROS production. Consistently, B[a]P accumulation was enhanced by PGP knockdown in both HK2 and HEK-293 cells. Mechanistically, sucralose can directly bind to PGP, competitively inhibiting its efflux capacity and increasing intracellular B[a]P retention. Prolonged co-exposure further downregulated PGP expression, possibly through the reductions of its transcriptional regulators (PXR, NRF2, and NF-κB). Conclusions: Co-exposure to sucralose and B[a]P exacerbates renal injury by impairing PGP function. Mechanistically, sucralose inhibits PGP activity, resulting in the accumulation of B[a]P within renal cells. This accumulation triggers oxidative stress and inhibits cell growth, which demonstrates that sucralose potentiates B[a]P-induced nephrotoxicity by directly inhibiting PGP-mediated detoxification pathways, thus underscoring the critical need to evaluate toxicity risks associated with combined exposure to these compounds. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 11497 KiB  
Article
Integration of Transcriptomic and Single-Cell Data to Uncover Senescence- and Ferroptosis-Associated Biomarkers in Sepsis
by Xiangqian Zhang, Yiran Zhou, Hang Li, Mengru Chen, Fang Peng and Ning Li
Biomedicines 2025, 13(4), 942; https://doi.org/10.3390/biomedicines13040942 - 11 Apr 2025
Viewed by 896
Abstract
Background: Sepsis is a life-threatening condition characterized by organ dysfunction due to an imbalanced immune response to infection, with high mortality. Ferroptosis, an iron-dependent cell death process, and cellular senescence, which exacerbates inflammation, have recently been implicated in sepsis pathophysiology. Methods: Weighted gene [...] Read more.
Background: Sepsis is a life-threatening condition characterized by organ dysfunction due to an imbalanced immune response to infection, with high mortality. Ferroptosis, an iron-dependent cell death process, and cellular senescence, which exacerbates inflammation, have recently been implicated in sepsis pathophysiology. Methods: Weighted gene co-expression network analysis (WGCNA) was used to identify ferroptosis- and senescence-related gene modules in sepsis. Differentially expressed genes (DEGs) were analyzed using public datasets (GSE57065, GSE65682, and GSE26378). Receiver operating characteristic (ROC) analysis was performed to evaluate their diagnostic potential, while single-cell RNA sequencing (scRNA-seq) was used to assess their immune-cell-specific expression. Molecular docking was conducted to predict drug interactions with key proteins. Results: Five key genes (CD82, MAPK14, NEDD4, TXN, and WIPI1) were significantly upregulated in sepsis patients and highly correlated with immune cell infiltration. MAPK14 and TXN exhibited strong diagnostic potential (AUC = 0.983, 0.978). Molecular docking suggested potential therapeutic interactions with diclofenac, flurbiprofen, and N-acetyl-L-cysteine. Conclusions: This study highlights ferroptosis and senescence as critical mechanisms in sepsis and identifies promising biomarkers for diagnosis and targeted therapy. Future studies should focus on clinical validation and precision medicine applications. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

13 pages, 737 KiB  
Article
Influence of N-Acetyl-L-Cysteine on the Pharmacokinetics and Antibacterial Activity of Marbofloxacin in Chickens
by Albena Roydeva, Nikolina Rusenova and Aneliya Milanova
Antibiotics 2025, 14(4), 393; https://doi.org/10.3390/antibiotics14040393 - 10 Apr 2025
Viewed by 751
Abstract
Background/Objectives: Marbofloxacin, a second-generation fluoroquinolone, is used to control economically significant poultry diseases caused by pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. Although synergistic antimicrobial activity between fluoroquinolones and N-acetyl-L-cysteine (NAC) has been observed in vitro, data on their [...] Read more.
Background/Objectives: Marbofloxacin, a second-generation fluoroquinolone, is used to control economically significant poultry diseases caused by pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. Although synergistic antimicrobial activity between fluoroquinolones and N-acetyl-L-cysteine (NAC) has been observed in vitro, data on their pharmacokinetic interactions in vivo remain limited. This study aimed to evaluate the effect of NAC on the oral pharmacokinetics of marbofloxacin in broiler chickens and its antibacterial activity against E. coli ATCC 25922 and S. aureus ATCC 25923, assessing the potential benefits of their combined administration. Methods: The pharmacokinetics of marbofloxacin was evaluated in broilers (5 mg/kg dose) after a single intravenous (n = 12) or single oral (n = 12) administration into the crop. The protocol for the co-administration of marbofloxacin and NAC (400 mg/kg via feed) was as follows: on the first day, the poultry (n = 12) received a single oral dose of marbofloxacin via the crop and over the next four days the fluoroquinolone drug was administered via their drinking water. The plasma levels of the drugs were determined using LC-MS/MS analyses, and minimum inhibitory concentrations were determined using the microbroth dilution method. Results: NAC significantly reduced the bioavailability of marbofloxacin after a single oral administration into the crop and decreased the elimination rate constant following the administration of both drugs. At a concentration of 20 μg/mL, NAC led to a 3.8-fold reduction in the MIC of marbofloxacin against E. coli ATCC 25922 and a 2-fold decrease at concentrations between 1 μg/mL and 6 μg/mL, while no change was observed in marbofloxacin’s effect on S. aureus ATCC 25923. Conclusions: Oral co-administration of NAC and marbofloxacin reduced the fluoroquinolone’s bioavailability by two-fold while enhancing its antibacterial activity against E. coli ATCC 25922. Full article
Show Figures

Figure 1

22 pages, 14905 KiB  
Article
Long-Term Administration of Antioxidant N-Acetyl-L-Cysteine Impacts Beta Cell Oxidative Stress, Insulin Secretion, and Intracellular Signaling Pathways in Aging Mice
by Meg Schuurman, Jonathan Nguyen, Rachel B. Wilson, Malina Barillaro, Madison Wallace, Nica Borradaile and Rennian Wang
Antioxidants 2025, 14(4), 417; https://doi.org/10.3390/antiox14040417 - 31 Mar 2025
Viewed by 971
Abstract
Research into the effects of long-term antioxidant supplementation on the islet microenvironment is limited. This study examined whether long-term N-acetyl-L-cysteine (NAC) supplementation can prevent changes in metabolic outcomes, beta cell function, and pancreatic stellate cell (PaSC) activation in aging mice. Male C57BL/6N mice [...] Read more.
Research into the effects of long-term antioxidant supplementation on the islet microenvironment is limited. This study examined whether long-term N-acetyl-L-cysteine (NAC) supplementation can prevent changes in metabolic outcomes, beta cell function, and pancreatic stellate cell (PaSC) activation in aging mice. Male C57BL/6N mice at 18 weeks were administered 50 mM NAC through their daily drinking water and treated for up to 60 weeks. Aging NAC mice displayed lower body weights and improved glucose tolerance but reduced insulin secretion and insulin signaling compared to control (ND) mice. When some 40-week-old ND and NAC mice were subjected to 8 weeks of a high-fat diet (HFD)-stress challenge, results showed that NAC reduced HFD-induced beta cell oxidative stress and preserved nuclear PDX-1 expression. The findings from this study suggest that while NAC can be beneficial for diet-induced stress during aging, the effects of long-term NAC on the islets of physiologically aging mice are more ambiguous. Further exploration is required to determine the effects of NAC-mediated lowering of beta cell oxidative stress on insulin secretion and signaling pathways. This study highlights the importance of investigating oxidative stress balance in aging islets under normal diet conditions to determine if antioxidative therapies can be utilized without interfering with essential physiological processes. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

11 pages, 1390 KiB  
Article
Promoting Dentin Bridge Formation Through N-Acetyl-L-Cysteine Application in Rat Molar Pulpotomy: An Experimental Study
by Kota Takagi, Koichi Nakamura, Yoshitaka Yoshimura and Yasutaka Yawaka
J. Funct. Biomater. 2025, 16(4), 117; https://doi.org/10.3390/jfb16040117 - 27 Mar 2025
Viewed by 755
Abstract
Pulpotomy is performed when tooth decay reaches the dental pulp or when the crown is fractured due to trauma. Mineral trioxide aggregate (MTA) is commonly used in pulpotomy, but its prognosis can be variable. N-acetyl-L-cysteine (NAC), an antioxidant amino acid, has garnered attention [...] Read more.
Pulpotomy is performed when tooth decay reaches the dental pulp or when the crown is fractured due to trauma. Mineral trioxide aggregate (MTA) is commonly used in pulpotomy, but its prognosis can be variable. N-acetyl-L-cysteine (NAC), an antioxidant amino acid, has garnered attention due to its potential benefits. This study aimed to investigate the effects of MTA and NAC on pulpotomy outcomes. We used Sprague Dawley rat maxillary molars to perform pulpotomy and employed Superbond C&B, MTA, and MTA mixed with NAC (MTA–NAC) for pulp capping. We obtained tissue sections 3 and 7 days postpulpotomy, conducting histological analysis by examining the morphology of pulp tissue and assessing dentin sialophosphoprotein (DSPP) and osteopontin expression levels. At 3 days postpulpotomy, MTA and MTA–NAC reduced the inflammatory response. At 7 days postpulpotomy, dentin bridge formation was observed following MTA–NAC application, and although MTA resulted in DSPP- and osteopontin-positive areas, these areas were more extensive following MTA–NAC application. Given that adding NAC to MTA enhanced dentin bridge formation, MTA–NAC appears to be a superior option for pulp capping. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

14 pages, 3075 KiB  
Article
Dynamic Interference Testing—Unexpected Results Obtained with the Abbott Libre 2 and Dexcom G6 Continuous Glucose Monitoring Devices
by Hendrick Jensch, Steven Setford, Nicole Thomé, Geethan Srikanthamoorthy, Lea Weingärtner, Mike Grady, Elizabeth Holt and Andreas Pfützner
Sensors 2025, 25(7), 1985; https://doi.org/10.3390/s25071985 - 22 Mar 2025
Viewed by 1580
Abstract
Background: Sensors for continuous glucose monitoring (CGM) are now commonly used by people with type 1 and type 2 diabetes. However, the response of these devices to potentially interfering nutritional, pharmaceutical, or endogenous substances is barely explored. We previously developed an in vitro [...] Read more.
Background: Sensors for continuous glucose monitoring (CGM) are now commonly used by people with type 1 and type 2 diabetes. However, the response of these devices to potentially interfering nutritional, pharmaceutical, or endogenous substances is barely explored. We previously developed an in vitro test method for continuous and dynamic CGM interference testing and herein explore the sensitivity of the Abbott Libre2 (L2) and Dexcom G6 (G6) sensors to a panel of 68 individual substances. Methods: In each interference experiment, L2 and G6 sensors were exposed in triplicate to substance gradients from zero to supraphysiological concentrations at a stable glucose concentration of 200 mg/dL. YSI Stat 2300 Plus was used as the glucose reference method. Interference was presumed if the CGM sensors showed a mean bias of at least ±10% from baseline with a tested substance at any given substance concentration. Results: Both L2 and G6 sensors showed interference with the following substances: dithiothreitol (maximal bias from baseline: L2/G6: +46%/−18%), galactose (>+100%/+17%), mannose (>+100%/+20%), and N-acetyl-cysteine (+11%/+18%). The following substances were found to interfere with L2 sensors only: ascorbic acid (+48%), ibuprofen (+14%), icodextrin (+10%), methyldopa (+16%), red wine (+12%), and xylose (>+100%). On the other hand, the following substances were found to interfere with G6 sensors only: acetaminophen (>+100%), ethyl alcohol (+12%), gentisic acid (+18%), hydroxyurea (>+100%), l-cysteine (−25%), l-Dopa (+11%), and uric acid (+33%). Additionally, G6 sensors could subsequently not be calibrated for use after exposure to dithiothreitol, gentisic acid, l-cysteine, and mesalazine (sensor fouling). Conclusions: Our standardized dynamic interference testing protocol identified several nutritional, pharmaceutical and endogenous substances that substantially influenced L2 and G6 sensor signals. Clinical trials are now necessary to investigate whether our findings are of relevance during routine care. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop