Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = MvaT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1578 KiB  
Article
ISG15 as a Potent Immune Adjuvant in MVA-Based Vaccines Against Zika Virus and SARS-CoV-2
by Juan García-Arriaza, Michela Falqui, Patricia Pérez, Rocío Coloma, Beatriz Perdiguero, Enrique Álvarez, Laura Marcos-Villar, David Astorgano, Irene Campaña-Gómez, Carlos Óscar S. Sorzano, Mariano Esteban, Carmen Elena Gómez and Susana Guerra
Vaccines 2025, 13(7), 696; https://doi.org/10.3390/vaccines13070696 - 27 Jun 2025
Viewed by 458
Abstract
Background: Vaccines represent one of the most affordable and efficient tools for controlling infectious diseases; however, the development of efficacious vaccines against complex pathogens remains a major challenge. Adjuvants play a relevant role in enhancing vaccine-induced immune responses. One such molecule is interferon-stimulated [...] Read more.
Background: Vaccines represent one of the most affordable and efficient tools for controlling infectious diseases; however, the development of efficacious vaccines against complex pathogens remains a major challenge. Adjuvants play a relevant role in enhancing vaccine-induced immune responses. One such molecule is interferon-stimulated gene 15 (ISG15), a key modulator of antiviral immunity that acts both through ISGylation-dependent mechanisms and as a cytokine-like molecule. Methods: In this study, we assessed the immunostimulatory potential of ISG15 as an adjuvant in Modified Vaccinia virus Ankara (MVA)-based vaccine candidates targeting Zika virus (ZIKV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Early innate responses and immune cell infiltration were analyzed in immunized mice by flow cytometry and cytokine profiling. To elucidate the underlying mechanism of action of ISG15, in vitro co-infection studies were performed in macrophages. Finally, we evaluated the magnitude and functional quality of the elicited antigen-specific cellular immune responses in vivo. Results: Analysis of early innate responses revealed both platform- and variant-specific effects. ISG15AA preferentially promoted natural killer (NK) cell recruitment at the injection site, whereas ISG15GG enhanced myeloid cell infiltration in draining lymph nodes (DLNs), particularly when delivered via MVA. Moreover, in vitro co-infection of macrophages with MVA-based vaccine vectors and the ISG15AA mutant led to a marked increase in proinflammatory cytokine production, highlighting a dominant role for the extracellular, ISGylation-independent functions of ISG15 in shaping vaccine-induced immunity. Notably, co-infection of ISG15 with MVA-ZIKV and MVA-SARS-CoV-2 vaccine candidates enhanced the magnitude of antigen-specific immune responses in both vaccine models. Conclusions: ISG15, particularly in its ISGylation-deficient form, acts as a promising immunomodulatory adjuvant for viral vaccines, enhancing both innate and adaptive immune responses. Consistent with previous findings in the context of Human Immunodeficiency virus type 1 (HIV-1) vaccines, this study further supports the potential of ISG15 as an effective adjuvant for vaccines targeting viral infections such as ZIKV and SARS-CoV-2. Full article
(This article belongs to the Special Issue Protective Immunity and Adjuvant Vaccines)
Show Figures

Figure 1

23 pages, 788 KiB  
Review
Traumatic Spinal Cord Injury: Review of the Literature
by Lori Zarmer, Maaz Khan, Glenn Islat, Hanan Alameddin, Maria Massey and Rabail Chaudhry
J. Clin. Med. 2025, 14(11), 3649; https://doi.org/10.3390/jcm14113649 - 22 May 2025
Viewed by 2073
Abstract
Traumatic spinal cord injury (tSCI) is a devastating neurological disorder with profound effects on physical, psychological, and mental abilities. tSCI affects all age groups, with a higher incidence in elderly patients. There are many causes of tSCI, with motor vehicle accidents (MVA) and [...] Read more.
Traumatic spinal cord injury (tSCI) is a devastating neurological disorder with profound effects on physical, psychological, and mental abilities. tSCI affects all age groups, with a higher incidence in elderly patients. There are many causes of tSCI, with motor vehicle accidents (MVA) and falls being the most common. The pathophysiology of tSCI is quite complex and involves primary and secondary injury. The primary injury directly results from the mechanical forces that caused the injury. Secondary injury is caused by long-term changes caused by inflammation, immune changes, and the formation of free radicals. Numerous studies have explored various medical and surgical treatment options that help mitigate long-term damage caused by tSCI and help improve quality of life. Currently, there are no treatments for tSCI that can reverse spinal cord damage or fully restore motor and sensory functions. However, many pharmacological and non-pharmacological options are being studied in tSCI patients. This review will discuss the background, pathophysiology, and clinical presentation of tSCI while also providing a detailed analysis of the recent advancements in treatment options. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

13 pages, 1177 KiB  
Article
Differences in Mpox and Vaccinia Immunity Induced by Non-Replicating and Replicating Vaccinia-Based Vaccines
by Getahun Abate, Krystal Meza, Yinyi Yu, Chase Colbert, Anna Jaunarajs, Azra Blazevic, Daniel F. Hoft and Sharon E. Frey
Vaccines 2025, 13(5), 520; https://doi.org/10.3390/vaccines13050520 - 14 May 2025
Viewed by 604
Abstract
Background: The recent global outbreak with clade IIb and the concurrent emergence of clade I mpox virus in Africa show that mpox is a challenging problem. MVA-BN induces low-level mpox-neutralizing antibody responses that wane rapidly. This study was conducted to compare the [...] Read more.
Background: The recent global outbreak with clade IIb and the concurrent emergence of clade I mpox virus in Africa show that mpox is a challenging problem. MVA-BN induces low-level mpox-neutralizing antibody responses that wane rapidly. This study was conducted to compare the mpox immunity induced by a replication-competent smallpox vaccine and non-replicating MVA-BN. Methods: Stored sera (n = 302) and PBMCs (n = 244) collected pre-vaccination and at five post-vaccination time points in MVA-BN and six post-vaccination time points in Dryvax clinical trials were used. Antibody titers that neutralized at least 50% of mpox in cell culture were determined by the focus reduction neutralization test (FRNT) 50, and the mpox-specific T cell responses were measured using an IFN-γ ELISPOT assay. Results: The peak geometric fold rise (95% CI) (i.e., the maximum GMFR across all study visits) in the mpox FRNT50 for subcutaneous (SC) MVA-BN, intradermal (ID) MVA-BN, and Dryvax was 22.1 (8.3, 59.1), 18.5 (8.0, 43.1), and 245.8 (100.4, 601.6), respectively. The GMFR at day 180 post-vaccination for MVA-BN (SC), MVA-BN (ID), and Dryvax was 2.4, 2.7, and 64, respectively. The mean (95% CI) peak number of mpox-specific IFN-γ-producing SFCs was 127 (43.1, 238.3), 87.3 (46, 137), and 61.2 (44.3, 77.7) for MVA-BN (SC), MVA-BN (ID), and Dryvax, respectively. On day 180, the mean SFCs in the three groups decreased to 10.8 (−34.4, 3.8), 3.3 (−6.2, 18.6), and 2.2 (−9, 12.5), respectively. Conclusions: The peak mpox-neutralizing antibody titer was >10-fold lower in MVA-BN recipients compared to those who received a replication-competent smallpox vaccine, and the level at day 180 was >20 times lower in MVA-BN recipients. MVA-BN induced similar or higher T cell responses. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

18 pages, 15954 KiB  
Article
Multi-Antigen Viral-Vectored Vaccine Protects Against SARS-CoV-2 and Variants in a Lethal hACE2 Transgenic Mouse Model
by Shannon Stone, Amany Elsharkawy, J. D. Burleson, Mary Hauser, Arban Domi, Pratima Kumari, Zainab Nabi, Janhavi P. Natekar, Maciel Porto, Brian Backstedt, Mark Newman, Sreenivasa Rao Oruganti and Mukesh Kumar
Vaccines 2025, 13(4), 411; https://doi.org/10.3390/vaccines13040411 - 15 Apr 2025
Viewed by 1088
Abstract
Widespread and rapidly evolving SARS-CoV-2 posed an unprecedented challenge to vaccine developers. GeoVax has designed a multiantigen SARS-CoV-2 vaccine, designated GEO-CM02 based on a Modified Vaccinia Virus (MVA) vector that expresses spike (S), membrane (M), and envelope (E) antigens. This experimental vaccine was [...] Read more.
Widespread and rapidly evolving SARS-CoV-2 posed an unprecedented challenge to vaccine developers. GeoVax has designed a multiantigen SARS-CoV-2 vaccine, designated GEO-CM02 based on a Modified Vaccinia Virus (MVA) vector that expresses spike (S), membrane (M), and envelope (E) antigens. This experimental vaccine was tested in the hACE2 transgenic mouse model to assess immunogenicity and efficacy. Administration of the vaccine in a two-dose regimen elicited high levels of neutralizing antibodies and provided complete protection, effectively reducing lung, olfactory bulb, and brain viral load and reducing lung inflammation following infection with original B.1 virus and the B.1.1.529 variant. In addition, GEO-CM02 conferred 80% protection against a lethal infection with the B.1.351 variant. GEO-CM02 vaccine efficacy studies also demonstrated a complete level of vaccine-induced protection with a single dose against the original B.1 virus and B.1.1.529 variant. GEO-CM02 effectively elicited functional T-cell responses in both prime and prime–boost groups. These data indicate that vaccination with the GEO-CM02 vaccine can induce immune responses that protect against severe disease induced by SARS-CoV-2 and its variants in a highly relevant pre-clinical model. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

13 pages, 2715 KiB  
Article
Retinal Production by Precision Fermentation of Saccharomyces cerevisiae
by Hye-Seon Hwang, Kwang-Rim Baek and Seung-Oh Seo
Fermentation 2025, 11(4), 214; https://doi.org/10.3390/fermentation11040214 - 14 Apr 2025
Viewed by 822
Abstract
Retinoids, including retinol, retinal, and retinoic acid, are a group of vitamin A derivatives with skin-improving effects. Retinoic acid is highly effective for skin anti-aging but can cause irritation, requiring a prescription. Retinol, a less irritating alternative, needs conversion to retinal and then [...] Read more.
Retinoids, including retinol, retinal, and retinoic acid, are a group of vitamin A derivatives with skin-improving effects. Retinoic acid is highly effective for skin anti-aging but can cause irritation, requiring a prescription. Retinol, a less irritating alternative, needs conversion to retinal and then retinoic acid in the skin, whereas direct absorption of retinal enhances efficacy by bypassing this conversion process. This study aimed to produce retinal through precision fermentation using metabolically engineered Saccharomyces cerevisiae. The introduction of heterologous retinal biosynthetic genes and overexpression of the truncated HMG-CoA reductase (tHMG1) and acetyl-CoA acetyltransferase (ERG10) genes in the mevalonate (MVA) pathway increased retinal production up to 10.2 mg/L. At the same time, ethanol was produced as a major byproduct in S. cerevisiae. To address this, a pyruvate decarboxylase (Pdc)-deficient S. cerevisiae strain, incapable of producing ethanol, was employed. Overexpression of ERG10 and tHMG1 in the Pdc-deficient S. cerevisiae harboring the retinal biosynthetic plasmids achieved a retinal production up to 117.4 mg/L in the dodecane layer without ethanol through a two-phase in situ fermentation and extraction. This study demonstrates that eliminating pyruvate decarboxylase activity effectively redirects carbon flux toward retinal biosynthesis in the recombinant S. cerevisiae, offering a promising approach for sustainable retinal production through precision fermentation. Full article
Show Figures

Figure 1

17 pages, 3719 KiB  
Article
Decade-Long Sustained Cellular Immunity Induced by Sequential and Repeated Vaccination with Four Heterologous HIV Vaccines in Rhesus Macaques
by Xiaozhou He, Danying Chen, Qi Ma, Yanzhe Hao, Hongxia Li, Xiaoguang Zhang, Yuxi Cao and Xia Feng
Vaccines 2025, 13(4), 338; https://doi.org/10.3390/vaccines13040338 - 21 Mar 2025
Viewed by 671
Abstract
Background/Objectives: Developing durable cellular immunity remains a critical challenge for HIV vaccine development. Methods: We evaluated a sequential and repeated heterologous prime–boost vaccination regimen using four distinct vector-based vaccines (DNA, rAd5, rSeV, and rMVA) expressing HIV-1 gag in rhesus macaques over a decade-long [...] Read more.
Background/Objectives: Developing durable cellular immunity remains a critical challenge for HIV vaccine development. Methods: We evaluated a sequential and repeated heterologous prime–boost vaccination regimen using four distinct vector-based vaccines (DNA, rAd5, rSeV, and rMVA) expressing HIV-1 gag in rhesus macaques over a decade-long observation period. Results: Compared to the two-vector and control groups, the four-vector regimen elicited potent gag-specific cellular immune responses, as evidenced by IFN-γ ELISPOT assays showing sustained responses exceeding 500 SFCs/106 PBMCs for up to 52 or 69 weeks post-vaccination. Intracellular cytokine staining revealed multifunctional CD4+ and CD8+ T-cell responses, while humoral immunity against Ad5 vectors remained manageable despite repeated administrations. Conclusions: These findings demonstrate that sequential and repeated heterologous vaccination effectively induces and maintains durable cellular immunity, providing a strategic framework for HIV vaccine design. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

11 pages, 224 KiB  
Review
New Trends in Uniportal Video-Assisted Thoracoscopic Surgery for Primary Spontaneous Pneumothorax: A Narrative Review
by Kenji Tsuboshima, Masatoshi Kurihara and Kota Ohashi
J. Clin. Med. 2025, 14(6), 1849; https://doi.org/10.3390/jcm14061849 - 9 Mar 2025
Viewed by 1129
Abstract
Background: Minimally invasive thoracic surgery has advanced since the introduction of multiportal video-assisted thoracoscopic surgery (mVATS) in 1991. Primary spontaneous pneumothorax (PSP) is an ideal condition for refining minimally invasive techniques owing to its straightforward procedures and predictable bullae distributions. Methods: Uniportal VATS [...] Read more.
Background: Minimally invasive thoracic surgery has advanced since the introduction of multiportal video-assisted thoracoscopic surgery (mVATS) in 1991. Primary spontaneous pneumothorax (PSP) is an ideal condition for refining minimally invasive techniques owing to its straightforward procedures and predictable bullae distributions. Methods: Uniportal VATS (uVATS), which involves a single incision, is an alternative to mVATS, offering reduced postoperative pain, lower paresthesia rates, and comparable recurrence outcomes. This review explores two main uVATS approaches: intercostal and subxiphoid. Results: The intercostal approach is common to surgeons trained in mVATS, easier to adopt, and provides excellent cosmetic outcomes. Innovations such as the chest wall pulley method and anchoring sutures further enhance its operability and prevent recurrence. Subxiphoid uVATS minimizes intercostal nerve damage and postoperative pain, making it advantageous for bilateral PSP surgeries. However, it poses challenges such as longer operative times and limited dorsal visualization. Emerging strategies, including drainless postoperative management and two-lung ventilation with CO2 insufflation, have reduced surgical invasiveness. Additionally, cosmetic techniques such as subaxillary incisions enhance patient satisfaction. Conclusions: uVATS continues to redefine PSP surgery, prioritize patient-centered outcomes, and integrate novel strategies to achieve superior results. Full article
(This article belongs to the Special Issue New Trends in Minimally Invasive Thoracic Surgery)
21 pages, 2128 KiB  
Article
Heterologous Immunization with Improved HIV-1 Subtype C Vaccines Elicit Autologous Tier 2 Neutralizing Antibodies with Rapid Viral Replication Control After SHIV Challenge
by Gerald K. Chege, Rosamund E. Chapman, Alana T. Keyser, Craig H. Adams, Kealan Benn, Michiel T. van Diepen, Nicola Douglass, Bronwen Lambson, Tandile Hermanus, Penny L. Moore and Anna-Lise Williamson
Viruses 2025, 17(2), 277; https://doi.org/10.3390/v17020277 - 17 Feb 2025
Viewed by 848
Abstract
We previously reported on HIV vaccines that elicited autologous Tier 2 neutralizing antibodies (nAbs) in rabbits. In the current study, we sought to establish a proof of concept that HIV vaccines using identical designs elicit Tier 2 nAbs in arhesus macaque (RM) model. [...] Read more.
We previously reported on HIV vaccines that elicited autologous Tier 2 neutralizing antibodies (nAbs) in rabbits. In the current study, we sought to establish a proof of concept that HIV vaccines using identical designs elicit Tier 2 nAbs in arhesus macaque (RM) model. DNA and MVA vaccines expressing SIV Gag and HIV-1 Env antigens were constructed, and in vitro expression was confirmed. A soluble envelope protein (gp140 Env) was expressed from a stable HEK293 cell line and purified using lectin affinity and size exclusion chromatography. The expression and secretion of SIV Gag and HIV-1 Env by the DNA and MVA vaccines was verified in vitro. Five RMs were inoculated with two DNA, followed by two MVA, and finally with two gp140 Env vaccines at weeks 0, 4, 8, 12, 20 and 28. Vaccine-induced T cell immunity was measured by IFN-γ ELISpot while nAbs were evaluated against MW965 (Tier 1A), 6644 (Tier 1B), autologous ZM109.5A and a closely-related ZM109.B4 (Tier 2) pseudovirions. Vaccinated RMs were challenged intrarectally with simian-human immunodeficiency virus (SHIV), four weeks after the final vaccination, as was an unvaccinated control group (n = 4). Following vaccination, all the animals developed moderate IFN-γ ELISpot responses after the DNA vaccinations which were boosted by the MVA vaccine. After the gp140 Env boost, all animals developed nAbs with peak median titres at 762 (MW965) and 263 (ZM109.5A). The vaccinated animals became infected after a similar number of challenges to the unvaccinated controls, and the resultant number of viral copies in the blood and the lymphoid tissues were similar. However, the duration of detectable viraemia in the vaccinated animals (median: 2 weeks) was shorter than the controls (median: 8.5 weeks). These data show that the vaccines elicited robust cellular and functional humoral immune responses that resulted in a quicker control of viraemia. Full article
Show Figures

Figure 1

15 pages, 6062 KiB  
Article
Specific Immune Responses and Oncolytic Effects Induced by EBV LMP2A-Armed Modified Ankara-Vaccinia Virus Vectored Vaccines in Nasopharyngeal Cancer
by Liying Sun, Chao Liu and Junping Peng
Pharmaceutics 2025, 17(1), 52; https://doi.org/10.3390/pharmaceutics17010052 - 3 Jan 2025
Cited by 1 | Viewed by 1284
Abstract
Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC). Methods: The modified vaccinia virus Ankara [...] Read more.
Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC). Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect. Results: An immunization dose of 2 × 107 PFU induced the highest specific immune response, which was no longer increased by boost injections after four doses. Three weeks post-final immunization, the specific immune response reached its peak. The MVA-LMP2A vaccine-induced LMP2A-specific cytotoxic T lymphocytes (CTLs), which exhibited substantial efficacy against target cells and effectively inhibited tumor growth. Conclusions: Thus, the MVA-LMP2A recombinant virus effectively induces strong LMP2A-specific cellular and humoral immune responses and anti-tumor activity. This work provides a promising therapeutic strategy for developing NPC candidate vaccines, as well as a reference for the treatment of EBV LMP2-associated malignancies. Full article
Show Figures

Figure 1

19 pages, 682 KiB  
Article
Reactogenicity and Immunogenicity Against MPXV of the Intradermal Administration of Modified Vaccinia Ankara Compared to the Standard Subcutaneous Route
by Valentina Mazzotta, Pierluca Piselli, Alessandro Cozzi Lepri, Giulia Matusali, Eleonora Cimini, Rozenn Esvan, Francesca Colavita, Roberta Gagliardini, Stefania Notari, Alessandra Oliva, Silvia Meschi, Rita Casetti, Giulia Micheli, Licia Bordi, Alessandro Giacinta, Germana Grassi, Saba Gebremeskel Tekle, Claudia Cimaglia, Jessica Paulicelli, Alessandro Caioli, Paola Gallì, Giulia Del Duca, Miriam Lichtner, Loredana Sarmati, Enrica Tamburrini, Claudio Mastroianni, Alessandra Latini, Paolo Faccendini, Carla Fontana, Emanuele Nicastri, Andrea Siddu, Alessandra Barca, Francesco Vaia, Enrico Girardi, Fabrizio Maggi and Andrea Antinoriadd Show full author list remove Hide full author list
Vaccines 2025, 13(1), 32; https://doi.org/10.3390/vaccines13010032 - 31 Dec 2024
Cited by 1 | Viewed by 1375
Abstract
Background: The recent resurgence of mpox in central Africa has been declared a new public health emergency of international concern (PHEIC) requiring coordinated international responses. Vaccination is a priority to expand protection and enhance control strategies, but the vaccine’s need exceeds the currently [...] Read more.
Background: The recent resurgence of mpox in central Africa has been declared a new public health emergency of international concern (PHEIC) requiring coordinated international responses. Vaccination is a priority to expand protection and enhance control strategies, but the vaccine’s need exceeds the currently available doses. Intradermal (ID) administration of one-fifth of the standard modified vaccinia Ankara (MVA-BN) dose was temporarily authorized during the 2022 PHEIC. Studies conducted before 2022 provided evidence about the humoral response against the vaccinia virus (VACV) after vaccination but not against the mpox virus (MPXV). Moreover, no data are available on the T-cell response elicited by MVA-BN administered subcutaneously or intradermally. Methods: We compare the two vaccine administration routes according to reactogenicity (n = 943) and immunogenicity (n = 225) of vaccine recipients attending INMI Spallanzani hospital during the 2022 vaccination campaign in Rome, Italy. Results: We found that the ID route elicited higher titers of MPXV-specific IgG (mean difference of 0.26 log2, p = 0.05) and nAbs (0.24 log2, p = 0.08) than the subcutaneous (SC) route one month after the complete vaccination cycle. At the same time, no evidence for a difference in cellular response was found. Conclusions: MVA-BN was globally well tolerated despite higher reactogenicity for the ID than the SC route, especially for the reactions at the local injection site. The ID dose-sparing strategy was proven safe and immunogenic and would make vaccination available to more people. Our data support the current WHO recommendation of using the ID route in low–medium-income countries (LMIC), although response data in people infected with the new 1b clade are urgently needed. Full article
Show Figures

Figure 1

14 pages, 1723 KiB  
Protocol
Optimizing Microneutralization and IFN-γ ELISPOT Assays to Evaluate Mpox Immunity
by Yinyi Yu, Krystal Meza, Chase Colbert, Daniel F. Hoft, Anna Jaunarajs, Azra Blazevic, Sharon E. Frey and Getahun Abate
Vaccines 2025, 13(1), 27; https://doi.org/10.3390/vaccines13010027 - 31 Dec 2024
Cited by 1 | Viewed by 1003
Abstract
Background: Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This [...] Read more.
Background: Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This study reports the development of robust assays for the measurement of mpox-specific neutralizing antibodies and IFN-γ-producing T-cell responses. Methods: Fourteen samples from 7 volunteers who received Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) were used. The focused reduction neutralization test (FRNT) was performed using the mpox-specific A29 monoclonal antibody. Optimization and further development of FRNT were conducted using the plaque reduction neutralization test (PRNT) as the gold standard. The mpox-specific IFN-γ ELISPOT assay was optimized using different mpox antigen preparations. Results with pre-vaccination samples were compared with post-vaccination samples using the Wilcoxon matched-pairs test. Results: Pre-vaccination and post-vaccination sera (n = 7) had FRNT50 (i.e., titers that inhibited at least 50% of the virus) of 109.1 ± 161.8 and 303.7 ± 402.8 (mean ± SD), respectively. Regression analysis of fold changes in FRNT50 and PRNT50 showed that the two assays closely agree (n = 25 tests on paired samples, R2 of 0.787). Using UV-inactivated mpox as an antigen, the number of IFN-γ spot-forming T cells (SFC) in pre-vaccination samples (16.13 ± 15.86, mean ± SD) was significantly lower than SFC in post-vaccination samples (172.9 ± 313.3, mean ± SD) with p = 0.0078. Conclusions: Our newly developed microneutralization test has a good correlation with PRNT. UV-inactivated mpox is an appropriate antigen for the ELISPOT assay that measures mpox cross-reactive T cells. These assays will be useful in future mpox vaccine studies. Full article
Show Figures

Figure 1

19 pages, 6480 KiB  
Article
Measurement Method of Deeply Saturated Excitation Characteristics of Converter Transformer Under AC-DC Hybrid Excitation
by Jinzhuang Lv, Mingchun Hou, Zhicheng Pan, Jun Deng, Xichen Pei, Yu Yang and Zhanlong Zhang
Electronics 2024, 13(23), 4691; https://doi.org/10.3390/electronics13234691 - 27 Nov 2024
Cited by 3 | Viewed by 909
Abstract
During operation, converter transformers enter a saturation state, leading to phenomena such as magnetising inrush currents. Accurately measuring the excitation characteristic curve of an iron core under deep-saturation conditions is essential for analysing low-frequency transient phenomena in transformers. This paper presents a method [...] Read more.
During operation, converter transformers enter a saturation state, leading to phenomena such as magnetising inrush currents. Accurately measuring the excitation characteristic curve of an iron core under deep-saturation conditions is essential for analysing low-frequency transient phenomena in transformers. This paper presents a method for calculating the excitation characteristics of a converter transformer under deep iron core saturation. The method involves establishing an improved T model for the converter transformer and conducting open-circuit experiments in the linear working region to obtain the excitation characteristic curve and knee point parameters. AC-DC hybrid excitation is used to achieve deep saturation, and measurements of saturated inductance at different levels of saturation at the transformer terminals are taken. The mathematical relationship between saturated inductance and magnetic impedance is derived, allowing deduction of the magnetising characteristic curve of the converter transformer under deep-saturation conditions based on measured saturated inductance values. A finite element simulation analysis was performed on a single-phase four-column converter transformer with a capacity of 250 MVA. Additionally, a test platform for toroidal transformers and dry-type transformers has been set up to carry out excitation characteristic measurement and verification. Experimental results demonstrate that errors are maintained within 10% or less, validating this approach’s effectiveness. Full article
Show Figures

Figure 1

24 pages, 5421 KiB  
Article
Rapid Development of Modified Vaccinia Virus Ankara (MVA)-Based Vaccine Candidates Against Marburg Virus Suitable for Clinical Use in Humans
by Alina Tscherne, Georgia Kalodimou, Alexandra Kupke, Cornelius Rohde, Astrid Freudenstein, Sylvia Jany, Satendra Kumar, Gerd Sutter, Verena Krähling, Stephan Becker and Asisa Volz
Vaccines 2024, 12(12), 1316; https://doi.org/10.3390/vaccines12121316 - 24 Nov 2024
Cited by 1 | Viewed by 2243
Abstract
Background/Objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and [...] Read more.
Background/Objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics. Although MARV-specific vaccines are evaluated in preclinical and clinical research, none have been approved for human use. Modified Vaccinia virus Ankara (MVA), a well-established viral vector used to generate vaccines against emerging pathogens, can deliver multiple antigens and has a remarkable clinical safety and immunogenicity record, further supporting its evaluation as a vaccine against MARV. The rapid availability of safe and effective MVA-MARV vaccine candidates would expand the possibilities of multi-factored intervention strategies in endemic countries. Methods: We have used an optimized methodology to rapidly generate and characterize recombinant MVA candidate vaccines that meet the quality requirements to proceed to human clinical trials. As a proof-of-concept for the optimized methodology, we generated two recombinant MVAs that deliver either the MARV glycoprotein (MVA-MARV-GP) or the MARV nucleoprotein (MVA-MARV-NP). Results: Infections of human cell cultures with recombinant MVA-MARV-GP and MVA-MARV-NP confirmed the efficient synthesis of MARV-GP and MARV-NP proteins in mammalian cells, which are non-permissive for MVA replication. Prime-boost immunizations in C57BL/6J mice readily induced circulating serum antibodies binding to recombinant MARV-GP and MARV-NP proteins. Moreover, the MVA-MARV-candidate vaccines elicited MARV-specific T-cell responses in C57BL/6J mice. Conclusions: We confirmed the suitability of our two backbone viruses MVA-mCherry and MVA-GFP in a proof-of-concept study to rapidly generate candidate vaccines against MARV. However, further studies are warranted to characterize the protective efficacy of these recombinant MVA-MARV vaccines in other preclinical models and to evaluate them as vaccine candidates in humans. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

30 pages, 5323 KiB  
Article
B and T Cell Bi-Cistronic Multiepitopic Vaccine Induces Broad Immunogenicity and Provides Protection Against SARS-CoV-2
by Beatriz Perdiguero, Enrique Álvarez, Laura Marcos-Villar, Laura Sin, María López-Bravo, José Ramón Valverde, Carlos Óscar S. Sorzano, Michela Falqui, Rocío Coloma, Mariano Esteban, Susana Guerra and Carmen Elena Gómez
Vaccines 2024, 12(11), 1213; https://doi.org/10.3390/vaccines12111213 - 25 Oct 2024
Cited by 1 | Viewed by 1260
Abstract
Background: The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for vaccines targeting both neutralizing antibodies (NAbs) and long-lasting cross-reactive T cells covering multiple viral proteins to provide broad and durable protection against emerging variants. Methods: To address this, here we developed [...] Read more.
Background: The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for vaccines targeting both neutralizing antibodies (NAbs) and long-lasting cross-reactive T cells covering multiple viral proteins to provide broad and durable protection against emerging variants. Methods: To address this, here we developed two vaccine candidates, namely (i) DNA-CoV2-TMEP, expressing the multiepitopic CoV2-TMEP protein containing immunodominant and conserved T cell regions from SARS-CoV-2 structural proteins, and (ii) MVA-CoV2-B2AT, encoding a bi-cistronic multiepitopic construct that combines conserved B and T cell overlapping regions from SARS-CoV-2 structural proteins. Results: Both candidates were assessed in vitro and in vivo demonstrating their ability to induce robust immune responses. In C57BL/6 mice, DNA-CoV2-TMEP enhanced the recruitment of innate immune cells and stimulated SARS-CoV-2-specific polyfunctional T cells targeting multiple viral proteins. MVA-CoV2-B2AT elicited NAbs against various SARS-CoV-2 variants of concern (VoCs) and reduced viral replication and viral yields against the Beta variant in susceptible K18-hACE2 mice. The combination of MVA-CoV2-B2AT with a mutated ISG15 form as an adjuvant further increased the magnitude, breadth and polyfunctional profile of the response. Conclusion: These findings underscore the potential of these multiepitopic proteins when expressed from DNA or MVA vectors to provide protection against SARS-CoV-2 and its variants, supporting their further development as next-generation COVID-19 vaccines. Full article
(This article belongs to the Special Issue Antiviral T and B Cell Immunity)
Show Figures

Figure 1

20 pages, 4410 KiB  
Article
Implementation of an Immunoassay Based on the MVA-T7pol-Expression System for Rapid Identification of Immunogenic SARS-CoV-2 Antigens: A Proof-of-Concept Study
by Satendra Kumar, Liangliang Nan, Georgia Kalodimou, Sylvia Jany, Astrid Freudenstein, Christine Brandmüller, Katharina Müller, Philipp Girl, Rosina Ehmann, Wolfgang Guggemos, Michael Seilmaier, Clemens-Martin Wendtner, Asisa Volz, Gerd Sutter, Robert Fux and Alina Tscherne
Int. J. Mol. Sci. 2024, 25(20), 10898; https://doi.org/10.3390/ijms252010898 - 10 Oct 2024
Cited by 1 | Viewed by 1655
Abstract
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods [...] Read more.
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines. Full article
(This article belongs to the Special Issue Viral Infection and Virology Methods)
Show Figures

Figure 1

Back to TopTop