Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (608)

Search Parameters:
Keywords = Mir128a (rs11888095)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2476 KiB  
Article
Fucoidan Modulates Osteoarthritis Progression Through miR-22/HO-1 Pathway
by Tsung-Hsun Hsieh, Jar-Yi Ho, Chih-Chien Wang, Feng-Cheng Liu, Chian-Her Lee, Herng-Sheng Lee and Yi-Jen Peng
Cells 2025, 14(15), 1208; https://doi.org/10.3390/cells14151208 - 6 Aug 2025
Abstract
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. [...] Read more.
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. Methods: Human primary chondrocytes and synovial fibroblasts were pre-treated with 100 μg/mL fucoidan before stimulation with 1 ng/mL of IL-1β. The protective effects of fucoidan were assessed by measuring oxidative stress markers and catabolic enzyme levels. These in vitro findings were corroborated using a rat anterior cruciate ligament transection-induced OA model. To explore the underlying mechanisms, particularly the interaction between microRNAs (miRs) and heme oxygenase-1 (HO-1), five candidate miRs were identified in silico and experimentally validated. Luciferase reporter assays were used to confirm direct interactions. Results: Fucoidan exhibited protective effects against IL-1β-induced oxidative stress and catabolic processes in both chondrocytes and synovial fibroblasts, consistent with in vivo observations. Fucoidan treatment restored HO-1 expression while reducing inducible nitric oxide synthase and matrix metalloproteinase levels in IL-1β-stimulated cells. Notably, this study revealed that fucoidan modulates the miR-22/HO-1 pathway, a previously uncharacterized mechanism in OA. Specifically, miR-22 was upregulated by IL-1β and subsequently attenuated by fucoidan. Luciferase reporter assays confirmed a direct interaction between miR-22 and HO-1. Conclusion: The results demonstrate that fucoidan mitigates OA-related oxidative stress in chondrocytes and synovial fibroblasts through the novel modulation of the miR-22/HO-1 axis. The miR-22/HO-1 pathway represents a crucial therapeutic target for OA, and fucoidan may offer a promising therapeutic intervention. Full article
Show Figures

Figure 1

16 pages, 1298 KiB  
Article
Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities
by Jianzhou Shi, Jinbing Zhao, Bingxue Dong, Na Li, Lunguang Yao and Guirong Sun
Animals 2025, 15(15), 2300; https://doi.org/10.3390/ani15152300 - 6 Aug 2025
Abstract
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), [...] Read more.
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), we screened and validated miRNA SNPs. A SNP mutation in the miR-3528 precursor region was identified. Specific primers were designed to amplify the polymorphic fragment. Genotyping was performed for this individual SNP across the population, using the MassArray system. Association analyses were conducted between this SNP and chicken growth and body measurement traits, carcass traits, meat quality traits, and serum enzyme activities. (3) The rs14098602 (+12 bp A > G) was identified within the precursor region of gga-miR-3528. Significant associations (p < 0.05) were observed between this SNP and chicken growth traits (body weight at the age of 0 day, body weight at the age of 2 weeks, and body weight at the age of 4 weeks), carcass traits (evisceration weight), meat quality traits (subcutaneous fat rate and pectoral muscle density), and serum enzyme activities (total protein, albumin, globulin, cholinesterase, and lactate dehydrogenase). (4) These findings suggest that the polymorphism at rs14098602 may influence chicken growth, meat quality, and serum biochemical indices, through specific mechanisms. The gga-miR-3528 gene likely plays an important role in chicken development. Therefore, this SNP can serve as a molecular marker for genetic breeding and auxiliary selection of growth-related traits, facilitating the rapid establishment of elite chicken populations with superior genetic resources. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

47 pages, 1032 KiB  
Review
mTOR Signaling in Macrophages: All Depends on the Context
by Angelika Fedor, Krzysztof Bryniarski and Katarzyna Nazimek
Int. J. Mol. Sci. 2025, 26(15), 7598; https://doi.org/10.3390/ijms26157598 - 6 Aug 2025
Abstract
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. [...] Read more.
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. At the same time, mammalian target of rapamycin (mTOR) is attracting increasing research attention because the pathways dependent on this kinase are activated by a variety of signals, including cytokines and proinflammatory mediators, mediate essential processes for cell survival and metabolism, and can be regulated epigenetically via microRNAs. Therefore, our narrative review aimed to summarize and discuss recent advances in the knowledge of the activation of mTOR signaling in macrophages, with a special focus on autoimmune disorders and the possibility of mTOR control by microRNAs. The summarized research observations allowed us to conclude that the effects of activity and/or inhibition of individual mTOR complexes in macrophages are largely context dependent, and therefore, these broad immunological contexts and other specific conditions should always be taken into account when attempting to modulate these pathways for therapeutic purposes. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
Show Figures

Figure 1

26 pages, 2478 KiB  
Article
Clinical Relevance of FOXP3, PD-L1, PD-1, and miR-155 Gene Expression and Genetic Variants in HPV-Negative Oral Carcinomas
by Nemanja Ivkovic, Debora Misic, Ruzica Kozomara, Sasa Jovic, Ahmad Sami, Gordana Velikic, Srboljub Stosic and Gordana Supic
Int. J. Mol. Sci. 2025, 26(15), 7218; https://doi.org/10.3390/ijms26157218 - 25 Jul 2025
Viewed by 318
Abstract
PD-L1, PD-1, FOXP3, and miR-155 are emerging as key modulators of immune evasion and progression of oral squamous cell carcinoma (OSCC). This study investigated the clinical relevance of their gene expression and variants in HPV-negative OSCC. Bulk-tissue mRNA expression was evaluated in 70 [...] Read more.
PD-L1, PD-1, FOXP3, and miR-155 are emerging as key modulators of immune evasion and progression of oral squamous cell carcinoma (OSCC). This study investigated the clinical relevance of their gene expression and variants in HPV-negative OSCC. Bulk-tissue mRNA expression was evaluated in 70 patients, while variants in PD-1 (rs36084323), PD-L1 (rs822336, rs4143815, copy number variation), FOXP3 (rs3761548, rs2232365), and miR-155 (rs767649) were assessed in 134 patients. Expression data were validated using the TCGA cohort of 222 HPV-negative OSCC cases. Low FOXP3 expression was significantly associated with tumor stage (MMA: p = 0.028, TCGA: p = 0.025) and poor overall survival (MMA: p = 0.0004, TCGA: p = 0.019) in both cohorts. Declining FOXP3 expression correlated with advancing tumor stages, and low FOXP3 expression was significantly associated with poor survival in advanced stage III–IV tumors (MMA: p = 0.001, TCGA: p = 0.015), but not early-stage tumors. High miR-155 expression was associated with recurrence (p = 0.002) and poor survival in the MMA (p = 0.007), but not TCGA cohort. MiR-155 rs767649 was associated with alcohol consumption (p = 0.018). These findings point to FOXP3 and miR-155 as potential prognostic biomarkers for HPV-negative OSCC. Stage-specific FOXP3 expression suggests a dynamic immunoregulatory role, with implications for optimizing immunotherapy timing. Further studies are warranted to resolve cellular context and stage-adapted immune interventions in HPV-negative OSCC. Full article
(This article belongs to the Special Issue Oral Cancer and Disease in Humans and Animals)
Show Figures

Figure 1

19 pages, 1277 KiB  
Review
What a Modern Physician Should Know About microRNAs in the Diagnosis and Treatment of Diabetic Kidney Disease
by Małgorzata Rodzoń-Norwicz, Patryk Kogut, Magdalena Sowa-Kućma and Agnieszka Gala-Błądzińska
Int. J. Mol. Sci. 2025, 26(14), 6662; https://doi.org/10.3390/ijms26146662 - 11 Jul 2025
Viewed by 384
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene [...] Read more.
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene regulation—have emerged as critical modulators of key pathogenic mechanisms in DKD, including fibrosis, inflammation, oxidative stress, and apoptosis. Numerous studies have identified specific miRNAs that either exacerbate or mitigate renal injury in DKD. Among them, miR-21, miR-192, miR-155, and miR-34a are associated with disease progression, while miR-126-3p, miR-29, miR-146a, and miR-215 demonstrate protective effects. These molecules are also detectable in plasma, urine, and renal tissue, making them attractive candidates for diagnostic and prognostic biomarkers. Advances in therapeutic technologies such as antagomiRs, mimics, locked nucleic acids, and nanoparticle-based delivery systems have opened new possibilities for targeting miRNAs in DKD. Additionally, conventional drugs, including SGLT2 inhibitors, metformin, and GLP-1 receptor agonists, as well as dietary compounds like polyphenols and sulforaphane, may exert nephroprotective effects by modulating miRNA expression. Recent evidence also highlights the role of gut microbiota in regulating miRNA activity, linking metabolic and immune pathways relevant to DKD progression. Further research is needed to define stage-specific miRNA signatures, improve delivery systems, and develop personalized therapeutic approaches. Modulation of miRNA expression represents a promising strategy to slow DKD progression and improve patient outcomes. Full article
Show Figures

Figure 1

32 pages, 5019 KiB  
Article
Syzygium aromaticum Phytoconstituents Target SARS-CoV-2: Integrating Molecular Docking, Dynamics, Pharmacokinetics, and miR-21 rs1292037 Genotyping
by Mustafa Ahmed Muhmood, Faiza Safi, Mohammed Mukhles Ahmed and Safaa Abed Latef Almeani
Viruses 2025, 17(7), 951; https://doi.org/10.3390/v17070951 - 5 Jul 2025
Viewed by 1610
Abstract
Background and aim: The COVID-19 pandemic, caused by SARS-CoV-2, remains a global health crisis despite vaccination efforts, necessitating novel therapeutic strategies. Natural compounds from Syzygium aromaticum (clove), such as eugenol and β-caryophyllene, exhibit antiviral and anti-inflammatory properties, while host genetic factors, including miR-21 [...] Read more.
Background and aim: The COVID-19 pandemic, caused by SARS-CoV-2, remains a global health crisis despite vaccination efforts, necessitating novel therapeutic strategies. Natural compounds from Syzygium aromaticum (clove), such as eugenol and β-caryophyllene, exhibit antiviral and anti-inflammatory properties, while host genetic factors, including miR-21 rs1292037 polymorphism, may influence disease susceptibility and severity. This study investigates the dual approach of targeting SARS-CoV-2 via Syzygium aromaticum phytoconstituents while assessing the role of miR-21 rs1292037 in COVID-19 pathogenesis. Methods: Firstly, molecular docking and molecular dynamics simulations were employed to assess the binding affinities of eugenol and caryophyllene against seven key SARS-CoV-2 proteins—including Spike-RBD, 3CLpro, and RdRp—using SwissDock (AutoDock Vina) and the Desmond software package, respectively. Secondly, GC-MS was used to characterize the composition of clove extract. Thirdly, pharmacokinetic profiles were predicted using in silico models. Finally, miR-21 rs1292037 genotyping was performed in 100 COVID-19 patients and 100 controls, with cytokine and coagulation markers analyzed. Results: Docking revealed strong binding of eugenol to viral Envelope Protein (−5.267 kcal/mol) and caryophyllene to RdRp (−6.200 kcal/mol). ADMET profiling indicated favorable absorption and low toxicity. Molecular dynamics simulations confirmed stable binding of methyl eugenol and caryophyllene to SARS-CoV-2 proteins, with caryophyllene–7Z4S showing the highest structural stability, highlighting its strong antiviral potential. Genotyping identified the TC genotype as prevalent in patients (52%), correlating with elevated IL-6 and D-dimer levels (p ≤ 0.01), suggesting a hyperinflammatory phenotype. Males exhibited higher ferritin and D-dimer (p < 0.0001), underscoring sex-based disparities. Conclusion: The bioactive constituents of Syzygium aromaticum exhibit strong potential as multi-target antivirals, with molecular simulations highlighting caryophyllene’s particularly stable interaction with the 7Z4S protein. Methyl eugenol also maintained consistent binding across several SARS-CoV-2 targets. Additionally, the miR-21 rs1292037 polymorphism may influence COVID-19 severity through its role in inflammatory regulation. Together, these results support the combined application of phytochemicals and genetic insights in antiviral research, pending further clinical verification. Full article
(This article belongs to the Special Issue Recent Advances in Antiviral Natural Products 2025)
Show Figures

Graphical abstract

15 pages, 2877 KiB  
Article
Role of Compensatory miRNA Networks in Cognitive Recovery from Heart Failure
by Verena Gisa, Md Rezaul Islam, Dawid Lbik, Raoul Maximilian Hofmann, Tonatiuh Pena, Dennis Manfred Krüger, Susanne Burkhardt, Anna-Lena Schütz, Farahnaz Sananbenesi, Karl Toischer and Andre Fischer
Non-Coding RNA 2025, 11(3), 45; https://doi.org/10.3390/ncrna11030045 - 12 Jun 2025
Viewed by 704
Abstract
Background: Heart failure (HF) is associated with an increased risk of cognitive impairment and hippocampal dysfunction, yet the underlying molecular mechanisms remain poorly understood. This study aims to investigate the role of microRNA (miRNA) networks in hippocampus-dependent memory recovery in a mouse model [...] Read more.
Background: Heart failure (HF) is associated with an increased risk of cognitive impairment and hippocampal dysfunction, yet the underlying molecular mechanisms remain poorly understood. This study aims to investigate the role of microRNA (miRNA) networks in hippocampus-dependent memory recovery in a mouse model of HF. Methods: CaMKIIδC transgenic (TG) mice, a model for HF, were used to assess hippocampal function at 3 and 6 months of age. Memory performance was evaluated using hippocampus-dependent behavioral tasks. Small RNA sequencing was performed to analyze hippocampal miRNA expression profiles across both time points. Bioinformatic analyses identified miRNAs that potentially regulate genes previously implicated in HF-induced cognitive impairment. Results: We have previously shown that at 3 months of age, CaMKIIδC TG mice exhibited significant memory deficits associated with dysregulated hippocampal gene expression. In this study, we showed that these impairments, memory impairment and hippocampal gene expression, were no longer detectable at 6 months, despite persistent cardiac dysfunction. However, small RNA sequencing revealed a dynamic shift in hippocampal miRNA expression, identifying 27 miRNAs as “compensatory miRs” that targeted 73% of the transcripts dysregulated at 3 months but reinstated by 6 months. Notably, miR-181a-5p emerged as a central regulatory hub, with its downregulation coinciding with restored memory function. Conclusions: These findings suggest that miRNA networks contribute to the restoration of hippocampal function in HF despite continued cardiac pathology and provide an important compensatory mechanism towards memory impairment. A better understanding of these compensatory miRNA mechanisms may provide novel therapeutic targets for managing HF-related cognitive dysfunction. Full article
(This article belongs to the Section Clinical Applications of Non-Coding RNA)
Show Figures

Figure 1

20 pages, 1740 KiB  
Article
Regulation of Myogenesis by MechanomiR-200c/FoxO3 Axis
by Junaith S. Mohamed and Aladin M. Boriek
Cells 2025, 14(12), 868; https://doi.org/10.3390/cells14120868 - 9 Jun 2025
Viewed by 538
Abstract
Cyclic mechanical stretch has been shown to inhibit myoblast differentiation while promoting proliferation. However, the underlying molecular mechanisms are not well understood. Here, we report that mechanical stretch inhibits the differentiation of mouse primary myoblasts by promoting the cell cycle program and by [...] Read more.
Cyclic mechanical stretch has been shown to inhibit myoblast differentiation while promoting proliferation. However, the underlying molecular mechanisms are not well understood. Here, we report that mechanical stretch inhibits the differentiation of mouse primary myoblasts by promoting the cell cycle program and by inhibiting the expression of the myogenic regulator MyoD. Stretch alters the miRNA expression profile as evidenced by miRNA microarray analysis. We identified miR-200c as one of the highly downregulated mechanosensitive miRNAs (mechanomiRs) whose expression level was increased during differentiation. This suggests that mechanomiRs-200c is a myogenic miRNA. Overexpression of mechanomiR-200c revoked the effect of stretch on myoblast differentiation, and the introduction of the mechanomiR-200c antagomir restored the stretch effect. This suggests that stretch blocks differentiation, in part, through mechanomiR-200c. The gene encoding the transcription factor FoxO3 is a known direct target of mechanomiR-200c. Interestingly, MyoD binds to the mechanomiR-200c promoter in differentiating myoblasts, whereas stretch appears to reverse such binding. Our data further demonstrate that the levels of mechanomiR-200c are robustly elevated during the early stage of the muscle repair process in young mice, but not in the injured muscle of aged mice. Overall, we identified a novel pathway, MyoD/mechanomiR-200c/FoxO3a, and the potential mechanism by which stretch inhibits myoblast differentiation. Full article
Show Figures

Figure 1

29 pages, 539 KiB  
Review
Exosomal Communication Between Cumulus–Oocyte Complexes and Granulosa Cells: A New Molecular Axis for Oocyte Competence in Human-Assisted Reproduction
by Charalampos Voros, Diamantis Athanasiou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Ioannis Papapanagiotou, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Dimitris Mazis Kourakos, Sofia Ivanidou, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakis
Int. J. Mol. Sci. 2025, 26(11), 5363; https://doi.org/10.3390/ijms26115363 - 3 Jun 2025
Cited by 2 | Viewed by 964
Abstract
Exosomal microRNAs (ex-miRs), encapsulated in extracellular vesicles (EVs), play a vital role in facilitating paracrine communication among granulosa cells (GCs), cumulus cells (CCs), and the oocyte inside follicular fluid (FF). These small non-coding RNAs are crucial for regulating folliculogenesis, oocyte maturation, and early [...] Read more.
Exosomal microRNAs (ex-miRs), encapsulated in extracellular vesicles (EVs), play a vital role in facilitating paracrine communication among granulosa cells (GCs), cumulus cells (CCs), and the oocyte inside follicular fluid (FF). These small non-coding RNAs are crucial for regulating folliculogenesis, oocyte maturation, and early embryonic development via modulating intracellular signaling networks. Dysregulation o has been associated with reproductive disorders such as polycystic ovarian syndrome (PCOS), diminished ovarian reserve (DOR), and inadequate ovarian response (POR), impacting oocyte quality and fertility outcomes. This narrative review consolidates molecular data from current human and animal studies regarding ex-miR expression patterns, functional targets, and pathway involvement within the context of assisted reproductive technologies (ARTs). A literature-based analysis was undertaken, focusing on signaling pathways, pathogenic processes, and clinical implications. Specifically, ex-miRs—such as miR-21, miR-34c, miR-143-3p, miR-155-5p, miR-339-5p, and miR-424-5p—were identified as regulators of critical pathways including phosphoinositide 3-kinase (PI3K)–AKT, ERK1/2, TGF-β/SMAD, and Rb–E2F1. These ex-miRs regulate apoptosis, glycolysis, mitochondrial function, and cell cycle expansion to influence oocyte competence. Pathological patterns in PCOS and POR are associated with altered ex-miR expression that disrupts metabolic and developmental signaling. Research utilizing animal models confirmed that modifications in EV-associated miRNA influence in vitro maturation (IVM) efficiency and blastocyst quality. Ex-miRs serve as intriguing non-invasive biomarkers and potential therapeutic targets for ARTs. Their mechanical involvement in oocyte and follicular physiology positions them for integration into forthcoming precision-based infertility therapies. For its implementation in reproductive medicine, EV profiling requires standardization and further functional validation in clinical environments. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Show Figures

Figure 1

19 pages, 1772 KiB  
Systematic Review
Circulating MicroRNAs Associated with Changes in the Placenta and Their Possible Role in the Fetus During Gestational Diabetes Mellitus: A Review
by Ninna Leslie Trejo-Gonzalez, Martin Palomar-Morales, Luis Arturo Baiza-Gutman, Guadalupe Diaz-Rosas, Clara Ortega-Camarillo and Alejandra Contreras-Ramos
Metabolites 2025, 15(6), 367; https://doi.org/10.3390/metabo15060367 - 3 Jun 2025
Viewed by 678
Abstract
MicroRNAs (miRs) are epigenetic regulators of several metabolic diseases, including gestational diabetes mellitus (GDM). Objectives: Following a systematic review, we propose a pattern of key circulating miRs associated with placental changes and their potential role in the fetus. Methods: A systematic investigation of [...] Read more.
MicroRNAs (miRs) are epigenetic regulators of several metabolic diseases, including gestational diabetes mellitus (GDM). Objectives: Following a systematic review, we propose a pattern of key circulating miRs associated with placental changes and their potential role in the fetus. Methods: A systematic investigation of studies published between January 2011 and July 2024 was conducted in the PubMed, ScienceDirect, Trip Database, and Wiley databases. A total of 90 articles were analyzed. Results: Two hundred twenty-six circulating microRNAs were identified in women with GDM, and fifty miRs were validated by PCR, with miRs-16-5p, -29a-5p, and -195-5p being the most frequently reported. Interestingly, miR-16-5p was also expressed in the placenta but not in umbilical cord blood or amniotic fluid. Conversely, miR-126-3p was expressed in circulation, the placenta, umbilical cord blood, and amniotic fluid. Several reports describe high expression levels of miR-518d in maternal circulation, umbilical cord blood, and placenta. Controversial results regarding the expression of miR-29a-3p, -137, and -148a-3p were identified when comparing umbilical cord blood and the placenta. Conclusions: In silico analyses suggest that the miR-29 family, as well as miRs-16-5p, -126-3p, -195-5p, and -518b, may be involved in alterations in the heart, brain, and kidneys in the embryo when exposed to a hyperglycemic environment. Full article
(This article belongs to the Special Issue Adipose Tissue, Reproduction and Metabolic Health in Women)
Show Figures

Figure 1

20 pages, 15276 KiB  
Article
In Silico Prioritization of STAT1 3′ UTR SNPs Identifies rs190542524 as a miRNA-Linked Variant with Potential Oncogenic Impact
by Ebtihal Kamal
Non-Coding RNA 2025, 11(3), 32; https://doi.org/10.3390/ncrna11030032 - 29 Apr 2025
Cited by 1 | Viewed by 622
Abstract
Background: Single-nucleotide polymorphisms (SNPs) are associated with multiple disorders and various cancer types. In the context of cancer, alterations within non-coding regions, specifically 3′ untranslated regions (3′ UTR), have proven substantially important. Methods: In this study, we utilized various bioinformatics tools to examine [...] Read more.
Background: Single-nucleotide polymorphisms (SNPs) are associated with multiple disorders and various cancer types. In the context of cancer, alterations within non-coding regions, specifically 3′ untranslated regions (3′ UTR), have proven substantially important. Methods: In this study, we utilized various bioinformatics tools to examine the effect of SNPs in the 3′ UTR. We retrieved the 3′ UTR SNPs of the Signal Transducer and Activator of Transcription 1 (STAT1) gene from the National Centre for Biotechnology Information (NCBI) website. Next, we employed the Polymorphism in miRNAs and their corresponding target sites (PolymiRTS) database to predict the 3′ UTR SNPs that create new microRNA (miRNA) binding sites and their respective miRNAs. The effect of the 3′ UTR SNPs on the messenger RNA structure was studied using RNAfold server. We used Cscape tool to predict the oncogenic 3′ UTR SNPs. Then, we submitted the miRNAs to the miRNet database to visualize the miRNA-miRNAs’ target genes interaction, for which gene enrichment analysis was performed using ShinyGO. Protein–protein interactions were conducted using the STRING database. We conducted miRNA enrichment analysis utilizing miRPathDB, subsequently performing miRNA differential expression analysis through oncoMIR, and the StarBase database. The survival analysis of the upregulated miRNAs in cancer was investigated using the Kaplan–Meier Plotter. Result: Twelve SNPs were predicted to create new miRNA binding sites. Two of them, rs188557905 and rs190542524, were predicted to destabilize the mRNA structures. We predicted rs190542524, rs11305, rs186033487, and rs188557905 to be oncogenic 3′ UTR SNPs, with high-confidence predictions and scores > 0.5. Using miRNAs’ target genes enrichment analysis, this study indicated that the miRNA target genes were more likely to be involved in cancer-related pathways. Our comprehensive analysis of miRNAs, their functional enrichment, their expression in various types of cancer, and the correlation between miRNA expression and survival outcome yielded these results. Our research shows that the oncogenic 3′ UTR SNP rs190542524 creates a new binding site for the oncogenic miRNA hsa-miR-136-5p. This miRNA is significantly upregulated in BLCA, LUSC, and STAD and is linked to poor survival. Additionally, rs114360225 creates a new binding site for hsa-miR-362-3p, influencing LIHC. Conclusions: These analyses suggest that these 3′ UTR SNPs may have a functional impact on the STAT1 gene’s regulation through their predicted effect on miRNA binding sites. Future experimental validation could establish their potential role in the diagnosis and treatment of various diseases, including cancer. Full article
Show Figures

Figure 1

14 pages, 3340 KiB  
Article
Let-7 Family microRNAs Regulate the Expression of the Urokinase-Receptor in Acute Myeloid Leukemia Cells
by Anna Li Santi, Mariaevelina Alfieri, Luigia Meo and Pia Ragno
Cells 2025, 14(9), 623; https://doi.org/10.3390/cells14090623 - 22 Apr 2025
Viewed by 728
Abstract
The urokinase-receptor (uPAR) exerts multiple functions supporting most cancer hallmarks. Increased uPAR expression is associated with an unfavorable prognosis in several cancer types, including hematologic malignancies. We previously reported that three oncosuppressor microRNAs (miRNAs) can target the 3′untranslated region (3′UTR) of the uPAR [...] Read more.
The urokinase-receptor (uPAR) exerts multiple functions supporting most cancer hallmarks. Increased uPAR expression is associated with an unfavorable prognosis in several cancer types, including hematologic malignancies. We previously reported that three oncosuppressor microRNAs (miRNAs) can target the 3′untranslated region (3′UTR) of the uPAR mRNA and that uPAR mRNA is a competitive endogenous RNA (ceRNA) able to recruit oncosuppressor miRs, thus impairing their activity. We now show that uPAR mRNA can also be targeted by oncosuppressor members of the let-7 miRNA family in acute myeloid leukemia (AML) cell lines. Indeed, let-7a, let7d and let-7g directly target the 3′UTR of uPAR mRNA, thus down-regulating uPAR expression. These let-7 miRNAs are expressed in KG1 and U937 AML cells; their levels are high in KG1 cells, which express low uPAR levels, and low in the U937 cell line, expressing high levels of uPAR. Overexpression of these miRNAs down-regulates uPAR expression and impairs the adhesion to fibronectin and migration of U937 cells, without affecting their proliferation. Accordingly, the overexpression of specific inhibitors targeting these let-7 miRNAs efficiently increases uPAR expression in KG1 cells. These results indicate that selected let-7 miRNAs regulate uPAR expression and impair the adhesion and migration of AML cells. Full article
(This article belongs to the Special Issue Non-Coding and Coding RNAs in Targeted Cancer Therapy)
Show Figures

Figure 1

14 pages, 1878 KiB  
Article
The miR-146a Single Nucleotide Polymorphism rs2910164 Promotes Proliferation, Chemoresistance, Migration, Invasion, and Apoptosis Suppression in Breast Cancer Cells
by Sarai Morales-González, Gloria M. Calaf, Mónica Acuña, Julio C. Tapia and Lilian Jara
Cells 2025, 14(8), 612; https://doi.org/10.3390/cells14080612 - 18 Apr 2025
Viewed by 581
Abstract
Breast cancer (BC) is the most common malignant disease in women worldwide. Several studies have reported that microRNA-146a (miR-146a) dysregulation plays a role in multiple cancers, including BC. However, the mechanism underlying this association is controversial, possibly reflecting diverse roles for this miR [...] Read more.
Breast cancer (BC) is the most common malignant disease in women worldwide. Several studies have reported that microRNA-146a (miR-146a) dysregulation plays a role in multiple cancers, including BC. However, the mechanism underlying this association is controversial, possibly reflecting diverse roles for this miR in different types of cancer. The SNP rs2910164:G>C, located within the miR-146a precursor, has been linked to a BC risk. Our group previously showed a specific association between rs2910164:G>C and an increased BC risk in patients with early-onset sporadic BC. There are no studies in the literature that evaluate the functional consequences of the rs2910164 polymorphism in the BC process. Therefore, the goal of the present study was to evaluate in vitro the effect of the SNP rs2910164:G>C on BC progression in luminal A and triple-negative cell lines. We found that rs2910164:G>C upregulated the expression of two mature miR-146a sequences, 3p and 5p. Furthermore, pre-miR-146a-C enhanced proliferation, migration, and invasion in luminal A and triple-negative breast cells, as well as decreasing cisplatin-induced apoptosis. Interestingly, the pre-miR-146a C allele decreased cisplatin resistance in MCF-7 cells but increased cisplatin resistance in MDA-MB-231 cells. We propose that the rs2910164 C allele promotes miR-146a overexpression, which is causally involved in proliferation, migration, invasion, apoptosis, and cisplatin resistance. Full article
Show Figures

Figure 1

43 pages, 1190 KiB  
Review
The Role of microRNAs in Lung Cancer: Mechanisms, Diagnostics and Therapeutic Potential
by Elżbieta Bartoszewska, Piotr Misiąg, Melania Czapla, Katarzyna Rakoczy, Paulina Tomecka, Michał Filipski, Elżbieta Wawrzyniak-Dzierżek and Anna Choromańska
Int. J. Mol. Sci. 2025, 26(8), 3736; https://doi.org/10.3390/ijms26083736 - 15 Apr 2025
Cited by 1 | Viewed by 1958
Abstract
MicroRNAs (miRNAs) are small RNA molecules that do not have coding functions but play essential roles in various biological processes. In lung cancer, miRNAs affect the processes of tumor initiation, progression, metastasis, and resistance to treatment by regulating gene expression. Tumor-suppressive miRNAs inhibit [...] Read more.
MicroRNAs (miRNAs) are small RNA molecules that do not have coding functions but play essential roles in various biological processes. In lung cancer, miRNAs affect the processes of tumor initiation, progression, metastasis, and resistance to treatment by regulating gene expression. Tumor-suppressive miRNAs inhibit oncogenic pathways, while oncogenic miRNAs, known as oncomiRs, promote malignant transformation and tumor growth. These dual roles position miRNAs as critical players in lung cancer biology. Studies in recent years have shown the significant potential of miRNAs as both prognostic and diagnostic biomarkers. Circulating miRNAs in plasma or sputum demonstrate specificity and sensitivity in detecting early-stage lung cancer. Liquid biopsy-based miRNA panels distinguish malignant from benign lesions, and specific miRNA expression patterns correlate with disease progression, response to treatment, and overall survival. Therapeutically, miRNAs hold promise for targeted interventions. Strategies such as miRNA replacement therapy using mimics for tumor-suppressive miRNAs and inhibition of oncomiRs with antagomiRs or miRNA sponges have shown preclinical success. Key miRNAs, including the let-7 family, miR-34a, and miR-21, are under investigation for their therapeutic potential. It should be emphasized that delivery difficulties, side effects, and limited stability of therapeutic miRNA molecules remain obstacles to their clinical use. This article examines the roles of miRNAs in lung cancer by indicating their mechanisms of action, diagnostic significance, and therapeutic potential. By addressing current limitations, miRNA-based approaches could revolutionize lung cancer management, offering precise, personalized, and minimally invasive solutions for diagnosis and treatment. Full article
(This article belongs to the Special Issue Novel Combination Therapies for the Solid Cancers Treatment)
Show Figures

Figure 1

10 pages, 579 KiB  
Article
miR-27a rs895819 Polymorphism and Recurrent Pregnancy Loss in Caucasian Women: A Novel Genetic Risk Factor in a Challenging Fertility Dilemma
by Georgia Panagou, Anastasios Potiris, Dimitra Dedousi, Despoina Mavrogianni, Ioanna Vassilaki, Athanasios Zikopoulos, Efthalia Moustakli, Antonios Sfakianakis, Nikolaos Kathopoulis, Angeliki Gerede, Periklis Panagopoulos, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Curr. Issues Mol. Biol. 2025, 47(4), 271; https://doi.org/10.3390/cimb47040271 - 11 Apr 2025
Viewed by 466
Abstract
Background: This case–control study investigates whether miR-27a rs895819 A>G polymorphism is associated with an increased risk of recurrent pregnancy loss (RPL) in Caucasian Greek women. Methods: This study included 93 women with at least two unexplained miscarriages before the 24th week of gestation [...] Read more.
Background: This case–control study investigates whether miR-27a rs895819 A>G polymorphism is associated with an increased risk of recurrent pregnancy loss (RPL) in Caucasian Greek women. Methods: This study included 93 women with at least two unexplained miscarriages before the 24th week of gestation (RPL group) and 107 women with no pregnancy loss history (control group). The miR-27a rs895819 A>G polymorphism was detected using PCR amplification, followed by DraIII-HF restriction enzyme digestion. Results: The GG genotype was linked to a significantly higher risk of RPL (p-value = 0.00005), whereas the AA genotype was associated with a significantly lower risk (p-value = 0.00036). The AG genotype appeared more frequently in women with RPL (49.5% vs. 44.9% in controls), but the difference was not statistically significant (p-value = 0.5139). Conclusions: To our knowledge, this is the first study demonstrating that the miR-27a A>G polymorphism was significantly associated with a higher risk of recurrent miscarriage in Caucasian women. These findings provide evidence that the GG genotype may serve as a potential genetic marker for identifying women at higher risk of recurrent miscarriage, offering valuable insights for genetic counseling and reproductive medicine. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop