Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = Mindlin theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2316 KB  
Article
Theoretical and Experimental Study on the Control Effect of Isolation Piles on Soil Subsidence Induced by Excavation in Sandy Stratum
by Kunpeng Li, Shihai Chen and Zihua Zhang
Buildings 2025, 15(17), 3188; https://doi.org/10.3390/buildings15173188 - 4 Sep 2025
Viewed by 615
Abstract
To investigate the effect of isolation piles on surface subsidence induced by excavation and to explore the influence of isolation pile layout parameters on the subsidence behind the piles, this study employs a combined approach of theoretical calculation and model testing to systematically [...] Read more.
To investigate the effect of isolation piles on surface subsidence induced by excavation and to explore the influence of isolation pile layout parameters on the subsidence behind the piles, this study employs a combined approach of theoretical calculation and model testing to systematically analyze the control effect of isolation piles on excavation-induced deformation. Based on a three-stage analysis method, the Kerr three-parameter foundation model is first introduced to solve the deflection differential equation and calculate the lateral deformation of the underground continuous wall induced by excavation. The boundary element method is then used to compute the additional stress near the isolation piles caused by the wall displacement, considering the shielding effect of pile groups. The lateral deformation of the isolation piles due to excavation is calculated, and the boundary element method is applied again to determine the additional stress induced by the pile displacement. Finally, the Mindlin solution is employed to compute the surface subsidence behind the isolation piles. Laboratory-scale experiments on subsidence control using isolation piles are conducted, and the results are compared with theoretical calculations to verify the validity of the theory. The results show that, compared to the condition without isolation piles, the presence of isolation piles reduces the surface subsidence by 0.099 mm. Increasing the diameter, elastic modulus, or pile-to-wall distance of the isolation piles, as well as reducing the spacing between isolation piles, helps reduce both the lateral deformation of the isolation piles and the surface subsidence behind the piles. Under the parameters used in this study, the reduction in lateral deformation of the underground continuous wall reaches 0.112 mm, 0.054 mm, 0.147 mm, and 0.172 mm, while the reduction in subsidence reaches 0.07 mm, 0.027 mm, 0.094 mm, and 0.124 mm, demonstrating significant deformation control effects. The conclusions derived from this study can be directly applied to practical foundation pit engineering. They offer valuable insights for optimizing the selection and arrangement of isolation piles, thereby providing effective guidance for controlling ground subsidence induced by excavation activities on site. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 4194 KB  
Article
Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards
by Shao-Keng Liang and Zhi-Wei Wang
Appl. Sci. 2025, 15(14), 7868; https://doi.org/10.3390/app15147868 - 14 Jul 2025
Viewed by 610
Abstract
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element [...] Read more.
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element designed by expanding the deflection function to the quadratic term of the thickness coordinate, enabling a linearly varied transverse normal strain. Furthermore, an extension of the established homogenization method is developed to derive the constitutive matrix. The element is implemented via the Abaqus user subroutine UEL. Validation demonstrates that the proposed element effectively characterizes a linearly varied transverse normal strain and stress. Simulation results from the homogenized model applying the proposed element and extended homogenization method are compared with those from detailed models. The comparisons confirm the efficiency and accuracy of the proposed approach. Full article
Show Figures

Figure 1

12 pages, 1418 KB  
Communication
Bulk Acoustic Wave Resonance Characteristics of PMN-PT Orthorhombic Crystal Plates Excited by Lateral Electric Fields
by Boyue Su, Yujie Zhang, Feng Yu, Pengfei Kang, Tingfeng Ma, Peng Li, Zhenghua Qian, Iren Kuznetsova and Vladimir Kolesov
Micromachines 2025, 16(5), 600; https://doi.org/10.3390/mi16050600 - 21 May 2025
Viewed by 813
Abstract
For relaxor ferroelectric single crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT), through reasonable component regulation and electric field polarization, an orthogonal mm2 point group structure can be obtained, which has high piezoelectric constants and is, therefore, [...] Read more.
For relaxor ferroelectric single crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT), through reasonable component regulation and electric field polarization, an orthogonal mm2 point group structure can be obtained, which has high piezoelectric constants and is, therefore, a desired substrate material for lateral-field-excited (LFE) bulk acoustic wave (BAW) devices. In this work, acoustic wave resonance characteristics of (zxt) 45° PMN-PT BAW devices with LFE are investigated. Firstly, Mindlin first-order plate theory is used to obtain vibration governing equations of orthorhombic crystals excited by a lateral electric field. By analyzing the electrically forced vibrations of the finite plate, the basic vibration characteristics, such as motional capacitance, resonant frequency, and mode shape are obtained, and influences of different electrode parameters on resonance characteristics of the device are investigated. In addition, the effects of the structure parameters on the mass sensitivity of the devices are analyzed and further verified by FEM simulations. The model presented in this study can be conveniently used to optimize the structural parameters of LFE bulk acoustic wave devices based on orthorhombic crystals, which is crucial to obtain good resonance characteristics. The results provide an important basis for the design of LFE bulk acoustic wave resonators and sensors by using PMN-PT orthorhombic crystals. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

21 pages, 2930 KB  
Article
Comparison of Different Criteria and Analytical Models for the Analysis of Composite Cylinders Assisted by Online Software
by Eduardo A. W. de Menezes, Clara S. Theisen, Thiago V. P. Farias, Gabriel M. Dick, Maikson L. P. Tonatto and Sandro C. Amico
Appl. Mech. 2025, 6(2), 32; https://doi.org/10.3390/applmech6020032 - 27 Apr 2025
Viewed by 1212
Abstract
Due to their higher strength-to-weight ratio and ability to operate in harsh environments, the usage of fiber-reinforced cylindrical shells experienced a significant increase in the past decades. The key novelty of this study lies in implementing dual analytical approaches to address the complex [...] Read more.
Due to their higher strength-to-weight ratio and ability to operate in harsh environments, the usage of fiber-reinforced cylindrical shells experienced a significant increase in the past decades. The key novelty of this study lies in implementing dual analytical approaches to address the complex failure mechanisms and stress distributions in composites. Two distinct theoretical solutions were investigated, membrane theory and Mindlin–Reissner theory, for failure prediction in filament-wound structures, while uniquely providing a platform for easy comparison of theoretical approaches. Experimental data from different setups, materials, and winding angles were collected in the literature and compared using the developed online MECH-Gcomp software. Failure analysis was also carried out by applying five different failure criteria well-established for composite materials. The results from the Mindlin–Reissner theory showed 46.9% deviation and those for the membrane theory 36.2% deviation, considering more than 120 cases. Sobol sensitivity analysis identified pressure (P), transverse tensile strength, winding angle, and radius as the most influential parameters regarding the index of failure of composite cylinders. Full article
Show Figures

Figure 1

14 pages, 6531 KB  
Article
Integrate the Isogeometric Analysis Approach Based on the T-Splines Function for the Numerical Study of a Liquefied Petroleum Gas (LPG) Cylinder Subjected to a Static Load
by Said EL Fakkoussi, Mohammed Berrada Gouzi, Ahmed Elkhalfi, Sorin Vlase and Maria Luminita Scutaru
Appl. Sci. 2025, 15(6), 3102; https://doi.org/10.3390/app15063102 - 13 Mar 2025
Cited by 1 | Viewed by 1411
Abstract
LGP cylinders are necessary for fuel storage and home heating. To avoid material and human risk, it is essential to maintain their structural integrity. Extensive mechanical research studies and physical tests are necessary for its design. This paper investigates the mechanical performance of [...] Read more.
LGP cylinders are necessary for fuel storage and home heating. To avoid material and human risk, it is essential to maintain their structural integrity. Extensive mechanical research studies and physical tests are necessary for its design. This paper investigates the mechanical performance of the storage capacity of an LPG cylinder under static loading. The authors integrate and adapt IGA with the T-Splines function for geometry modeling and numerical analysis in the context of linear elasticity. The main focus is on the strains and stress numerical results. The obtained results are examined and verified with the FEM in Abaqus/Standard. The results found show that the storage capacity of a single cylinder is equivalent to 15 empty cylinders. This study also demonstrates that the T-Splines method is a promising alternative for numerically analyzing the mechanical structure performance of LPG cylinders, particularly in energy storage issues. Full article
Show Figures

Figure 1

35 pages, 760 KB  
Article
A Comparison of Three Theories for Vibration Analysis for Shell Models
by Maria Anna De Rosa, Isaac Elishakoff and Maria Lippiello
CivilEng 2025, 6(1), 13; https://doi.org/10.3390/civileng6010013 - 3 Mar 2025
Cited by 2 | Viewed by 1760
Abstract
Shells are significant structural components that are extensively utilized in numerous engineering fields, including architectural and infrastructural projects. These components are employed in the construction of domes, water tanks, stadiums and auditoriums, hangars, and cooling towers. Significant research efforts have been dedicated to [...] Read more.
Shells are significant structural components that are extensively utilized in numerous engineering fields, including architectural and infrastructural projects. These components are employed in the construction of domes, water tanks, stadiums and auditoriums, hangars, and cooling towers. Significant research efforts have been dedicated to the analysis of vibrations and dynamic behaviors of shells, due to their distinctive capacity to efficiently bear loads through their geometry rather than mass. Additionally, a vast array of shell theories and computational methods have been proposed and developed by researchers. This paper represents a continuation of research initiated begun in a 2009 paper by Elishakoff, wherein the suggestion was made to disregard an energetic term in the dynamic analysis of Timoshenko–Ehrenfest beams, wherein the suggestion was made to disregard an energetic term in the dynamic analysis of Timoshenko–Ehrenfest beams. The resulting reduced theory was found to be both more straightforward and more reliable than the complete, classical approach. While the original idea was heuristically justified, a more sound variationally consistent theory was proposed in the papers of De Rosa et al. concerning the dynamic analysis of the Timoshenko-Ehrenfest beams and later extended to the case of the Uflyand-Mindlin plates. In accordance with the proposal put forth in those works, we initially delineate the classical shell theory and subsequently propose two alternative hypotheses that give rise to two distinct aspects of the energy terms. By employing the variational approach, we derive two novel boundary problems, which are direct generalizations of those previously considered. Both theories can be readily specialized for beams and plates, and the theory can also be specialized for the case of cylindrical shells. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

23 pages, 14344 KB  
Article
Finite Element Analysis of Functionally Graded Mindlin–Reissner Plates for Aircraft Tapered and Interpolated Wing Defluxion and Modal Analysis
by Ali Hajjia, Mohammed Berrada Gouzi, Bilal Harras, Ahmed El Khalfi, Sorin Vlase and Maria Luminita
Mathematics 2025, 13(4), 620; https://doi.org/10.3390/math13040620 - 13 Feb 2025
Cited by 1 | Viewed by 1704
Abstract
This paper explores and discusses how wing structures vibrate by using the Mindlin–Reissner plate theory, which takes into consideration the effects of transverse shear deformation and rotary inertia. This theory works well for thicker structures, like aircraft wings, where it gives accuracy by [...] Read more.
This paper explores and discusses how wing structures vibrate by using the Mindlin–Reissner plate theory, which takes into consideration the effects of transverse shear deformation and rotary inertia. This theory works well for thicker structures, like aircraft wings, where it gives accuracy by detecting shear and rotation effects. FGMs, or functionally graded materials, are used in aviation to enhance structural patterns and reduce stress points by gradually changing material properties along the wing thickness based on the volume fraction index. Finite element method (FEM) simulations were conducted to compare the natural frequencies and mode shapes of tapered and interpolated wing geometries. The results indicate that interpolated meshes exhibit higher natural frequencies due to increased stiffness, whereas tapered meshes show lower frequencies due to their flexibility. Validation through ANSYS simulations confirms the accuracy of the FEM results, highlighting the influence of geometry and material gradation on vibrational behavior. The findings offer valuable insights for aerospace applications, supporting the development of lightweight and efficient wing designs. Full article
Show Figures

Figure 1

28 pages, 14134 KB  
Article
Optimization of Rotary Blade Wear and Tillage Resistance Based on DEM-MBD Coupling Model
by Zhiqiang Mao, Yang Zhang, Keping Zhang, Jiuxin Wang, Junqian Yang, Xiaobao Zheng, Shuaikang Chen, Zhongqing Yang and Biao Luo
Agriculture 2025, 15(3), 328; https://doi.org/10.3390/agriculture15030328 - 2 Feb 2025
Cited by 1 | Viewed by 2089
Abstract
To solve the problems of high tillage resistance and the rapid wear of the rotary blade during tillage, this study employed a coupled algorithm of the discrete element method (DEM) and multi-body dynamics (MBD) with Hertz–Mindlin with JKR particle contact theory to establish [...] Read more.
To solve the problems of high tillage resistance and the rapid wear of the rotary blade during tillage, this study employed a coupled algorithm of the discrete element method (DEM) and multi-body dynamics (MBD) with Hertz–Mindlin with JKR particle contact theory to establish a rotary blade–sandy soil model. The interaction between the rotary blade and sandy soil was analyzed. The results indicated that the lateral and horizontal resistances of the rotary blade reached the peak values near the maximum tilling depth, whereas the vertical resistance reached its peak earlier. Blade wear predominantly occurred on the side cutting edge, bending zone edge, and sidelong edge, with the most significant wear observed on the sidelong edge, followed by the bending zone edge and side cutting edge, which showed similar wear patterns. To reduce wear and tillage resistance, Box–Behnken optimization was applied to optimize the blade’s local parameters. The optimal parameters—the height of the tangent edge end face was 51 mm, the bending radius was 28 mm, and the bending angle was 116°—reduced wear by 22.4% and tillage resistance by 12%. A soil disturbance analysis demonstrated that the optimized blade performs better in terms of tillage width compared to the unoptimized blade. The optimized rotary blade achieves the effects of reduced resistance and wear, improves the lifespan of the blade, reducing material loss, and meeting the requirements of sustainable agricultural production. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 1458 KB  
Article
An Energy Approach to the Modal Identification of a Variable Thickness Quartz Crystal Plate
by Zhe Wang, Bin Huang, Yan Guo, Yanan Jiang and Asif Khan
Sensors 2024, 24(20), 6707; https://doi.org/10.3390/s24206707 - 18 Oct 2024
Cited by 1 | Viewed by 1524
Abstract
The primary objective of modal identification for variable thickness quartz plates is to ascertain their dominant operating mode, which is essential for examining the vibration of beveled quartz resonators. These beveled resonators are plate structures with varying thicknesses. While the beveling process mitigates [...] Read more.
The primary objective of modal identification for variable thickness quartz plates is to ascertain their dominant operating mode, which is essential for examining the vibration of beveled quartz resonators. These beveled resonators are plate structures with varying thicknesses. While the beveling process mitigates some spurious modes, it still presents challenges for modal identification. In this work, we introduce a modal identification technique based on the energy method. When a plate with variable thickness is in a resonant state of thickness–shear vibration, the proportions of strain energy and kinetic energy associated with the thickness–shear mode in the total energy reach their peak values. Near this frequency, their proportions are the highest, aiding in identifying the dominant mode. Our research was based on the Mindlin plate theory, and appropriate modal truncation were conducted by retaining three modes for the coupled vibration analysis. The governing equation of the coupled vibration was solved for eigenvalue problem, and the modal energy proportions were calculated based on the determined modal displacement and frequency. Finally, we computed the eigenvalue problems at different beveling time, as well as the modal energies associated with each mode. By calculating the energy proportions, we could clearly identify the dominant mode at each frequency. Our proposed method can effectively assist engineers in identifying vibration modes, facilitating the design and optimization of variable thickness quartz resonators for sensing applications. Full article
Show Figures

Figure 1

15 pages, 2442 KB  
Article
Accuracy of the Mindlin Model in A0 Lamb Mode Scattering from Partial Through-Thickness Damage
by Martin Lints and Madis Ratassepp
Appl. Sci. 2024, 14(20), 9351; https://doi.org/10.3390/app14209351 - 14 Oct 2024
Viewed by 1160
Abstract
Guided wave tomography is an effective non-destructive method for mapping corrosion damage in thin-walled metal structures. Its efficiency and accuracy depend on the choice of a suitable forward model and inversion method. Current techniques mainly use acoustic forward models that, while computationally efficient, [...] Read more.
Guided wave tomography is an effective non-destructive method for mapping corrosion damage in thin-walled metal structures. Its efficiency and accuracy depend on the choice of a suitable forward model and inversion method. Current techniques mainly use acoustic forward models that, while computationally efficient, are approximate and fail to accurately represent wave propagation in physical experiments, making them less suitable for inversion. This study investigates the performance of Mindlin plate theory, which accounts for through-thickness shear deformations, enabling the modeling of flexural modes in a two-dimensional (2-D) plane. The scattering of A0 mode Lamb waves from defects of varying depth, width, and shape is analyzed using finite difference and pseudospectral simulations for 2-D and three-dimensional (3-D) defects, respectively. Results from the Mindlin model are compared to finite element model simulations. It is found that Mindlin plate theory accurately represents smooth defect scattering, but is less accurate for sharp-edged defects. Full article
Show Figures

Figure 1

22 pages, 18029 KB  
Article
Numerical Analysis of the Cylindrical Shell Pipe with Preformed Holes Subjected to a Compressive Load Using Non-Uniform Rational B-Splines and T-Splines for an Isogeometric Analysis Approach
by Said EL Fakkoussi, Ouadie Koubaiti, Ahmed Elkhalfi, Sorin Vlase and Marin Marin
Axioms 2024, 13(8), 529; https://doi.org/10.3390/axioms13080529 - 3 Aug 2024
Cited by 2 | Viewed by 2661
Abstract
In this paper, we implement the finite detail technique primarily based on T-Splines for approximating solutions to the linear elasticity equations in the connected and bounded Lipschitz domain. Both theoretical and numerical analyses of the Dirichlet and Neumann boundary problems are presented. The [...] Read more.
In this paper, we implement the finite detail technique primarily based on T-Splines for approximating solutions to the linear elasticity equations in the connected and bounded Lipschitz domain. Both theoretical and numerical analyses of the Dirichlet and Neumann boundary problems are presented. The Reissner–Mindlin (RM) hypothesis is considered for the investigation of the mechanical performance of a 3D cylindrical shell pipe without and with preformed hole problems under concentrated and compression loading in the linear elastic behavior for trimmed and untrimmed surfaces in structural engineering problems. Bézier extraction from T-Splines is integrated for an isogeometric analysis (IGA) approach. The numerical results obtained, particularly for the displacement and von Mises stress, are compared with and validated against the literature results, particularly with those for Non-Uniform Rational B-Spline (NURBS) IGA and the finite element method (FEM) Abaqus methods. The obtained results show that the computation time of the IGA based on the T-Spline method is shorter than that of the IGA NURBS and FEM Abaqus/CAE (computer-aided engineering) methods. Furthermore, the highlighted results confirm that the IGA approach based on the T-Spline method shows more success than numerical reference methods. We observed that the NURBS IGA method is very limited for studying trimmed surfaces. The T-Spline method shows its power and capability in computing trimmed and untrimmed surfaces. Full article
(This article belongs to the Special Issue Advances in Classical and Applied Mathematics)
Show Figures

Figure 1

24 pages, 29004 KB  
Article
Two-Dimensional Linear Elasticity Equations of Thermo-Piezoelectric Semiconductor Thin-Film Devices and Their Application in Static Characteristic Analysis
by Hongyi He, Minjie Zhang, Wenjun Wang, Xudong Li, Miaomiao Li and Luke Zhao
Appl. Sci. 2024, 14(15), 6509; https://doi.org/10.3390/app14156509 - 25 Jul 2024
Cited by 1 | Viewed by 1496
Abstract
Based on the three-dimensional (3D) linear elasticity theory of piezoelectric semiconductor (PS) structures, inspired by the variational principle and the Mindlin plate theory, a two-dimensional (2D) higher-order theory and equations for thin-film devices are established for a rectangular coordinate system, in which Newton’s [...] Read more.
Based on the three-dimensional (3D) linear elasticity theory of piezoelectric semiconductor (PS) structures, inspired by the variational principle and the Mindlin plate theory, a two-dimensional (2D) higher-order theory and equations for thin-film devices are established for a rectangular coordinate system, in which Newton’s law (i.e., stress equation of motion), Gauss’s law (i.e., charge equation of electrostatics), Continuity equations (i.e., conservation of charge for holes and electrons), drift–diffusion theory for currents in semiconductors, and unavoidable thermo-deformation-polarization-carrier coupling response in external stimulus field environment are all considered. As a typical application of these equations, the static characteristic analysis of electromechanical fields for the extensional deformation of a PS thin-film device with thermal field excitations is carried out by utilizing established zeroth-order equations and the double trigonometric series solution method. It is revealed that the extensional deformations, electric potential, electron and hole concentration perturbations, and their current densities can be controlled actively via artificially tuning thermal fields of external stimuli. Especially, a higher temperature rise can induce a deeper potential well and a higher potential barrier, which can play a vital role in driving effectively motions and redistributions of electrons and holes. Overall, the derived 2D equations as well as the quantitative results provide us some useful guidelines for investigating the thermal regulation behavior of PS thin-film devices. Full article
Show Figures

Figure 1

13 pages, 2365 KB  
Article
Validation of the Physical and Mechanical Properties of Eucalyptus benthamii Maiden & Cambage Wood and Cross Laminated Timber Panels Using the Finite Element Method
by Matheus Zanghelini Teixeira, Rodrigo Figueiredo Terezo, Alexsandro Bayestorff da Cunha, Gustavo Faggiani Tomio, Hector Bovo Coelho and Camila Alves Corrêa
Forests 2024, 15(5), 881; https://doi.org/10.3390/f15050881 - 19 May 2024
Cited by 1 | Viewed by 2512
Abstract
Cross Laminated Timber (CLT) is a structurally complex panel that poses challenges in analysis due to the anisotropic nature of wood and the orthotropic characteristics of the composite. Numerical modeling using the Finite Element Method (FEM) offers a viable solution for analysis, particularly [...] Read more.
Cross Laminated Timber (CLT) is a structurally complex panel that poses challenges in analysis due to the anisotropic nature of wood and the orthotropic characteristics of the composite. Numerical modeling using the Finite Element Method (FEM) offers a viable solution for analysis, particularly for addressing boundary value problems that are analytically challenging. Therefore, it is crucial to validate the experimental properties to ensure accurate results. The objective of this study was to validate the physical and mechanical properties for structural modeling using FEM, based on the characterization of Eucalyptus benthamii Maiden & Cambage wood and CLT panels. For wood characterization, the basic and apparent density were determined, and mechanical tests, including static bending, parallel-to-grain compression, and shear tests, were conducted. Utilizing the same batch of wood, three-layer CLT panels were manufactured and subjected to a non-destructive three-point bending test. This test was simulated in RFEM finite element software, employing Mindlin’s theory, and the displacements obtained were compared with the experimental method. The results from a Student’s t-test at a 5% significance level indicated no significant difference between the experimental and numerical methods, suggesting that the properties of the experimental E. benthamii CLT panel can be accurately represented by FEM. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

35 pages, 4349 KB  
Article
Dynamics in Explicit Gradient Elasticity: Material Frame-Indifference, Boundary Conditions and Consistent Euler–Bernoulli Beam Theory
by Charalampos Tsakmakis, Carsten Broese and Stergios Alexandros Sideris
Materials 2024, 17(8), 1760; https://doi.org/10.3390/ma17081760 - 11 Apr 2024
Cited by 1 | Viewed by 1371
Abstract
The paper is concerned with the boundary conditions of explicit gradient elasticity of Mindlin’s type in dynamics. It has been argued in an earlier paper that acceleration terms should not be present in the boundary tractions because of objectivity arguments. This is discussed [...] Read more.
The paper is concerned with the boundary conditions of explicit gradient elasticity of Mindlin’s type in dynamics. It has been argued in an earlier paper that acceleration terms should not be present in the boundary tractions because of objectivity arguments. This is discussed in the present paper in more detail, and it is supplemented by assuming the validity of the principle of material frame indifference. Furthermore, new examples are discussed in order to illustrate that significant differences exist in the responses predicted by boundary tractions with and without acceleration terms. Full article
Show Figures

Figure 1

19 pages, 4169 KB  
Article
Rotating Sonotrode Design for Ultrasonic-Assisted Arc Welding of Metal Materials
by Xinyu Mao, Zhidong Yang, Qihao Chen, Mingzhu Hu and Tian Gan
Materials 2024, 17(7), 1599; https://doi.org/10.3390/ma17071599 - 31 Mar 2024
Viewed by 2311
Abstract
In the process of the ultrasonic-assisted arc welding of metal materials, traditional ultrasonic application methods, such as the low-frequency impact of ultrasonic horns on a base material, can easily cause the non-fusion defect. In order to solve this problem, a rotating sonotrode with [...] Read more.
In the process of the ultrasonic-assisted arc welding of metal materials, traditional ultrasonic application methods, such as the low-frequency impact of ultrasonic horns on a base material, can easily cause the non-fusion defect. In order to solve this problem, a rotating sonotrode with a groove and double thin ends was designed in this study. The ultrasonic vibration is transmitted into the weld pool by the rolling of the sonotrode on both sides of the weld. The resonant frequency was set at 50 kHz. Firstly, based on the Mindlin theory, a rotating sonotrode without a groove was designed by solving the frequency equation and by conducting a finite element simulation. Secondly, the effects of the groove, perforation, and transition mode on the resonant frequency, stress distribution, and amplification factor were investigated by finite element simulation. Finally, the optimum rotating sonotrode with a groove was obtained. The results show that the size of a rotating sonotrode that has a small frequency error can be obtained by using the discrete interval solver method combined with finite element simulation. The groove can significantly reduce the resonant frequency. The stress concentration can be effectively reduced by using the elliptical transition mode. The resonant frequency and amplification factor of a rotating sonotrode with a groove could be effectively adjusted by a method of double-position joint perforation. The final resonant frequency was 49.721 kHz and the amplification factor was 3.02. This study provides an effective design method for a sonotrode with double thin ends and a groove structure. Full article
Show Figures

Figure 1

Back to TopTop