Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,405)

Search Parameters:
Keywords = Mg2Si

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3850 KB  
Article
The Influence of Electron Beam Treatment on the Structure and Properties of the Surface Layer of the Composite Material AlMg3-5SiC
by Shunqi Mei, Roman Mikheev, Pavel Bykov, Igor Kalashnikov, Lubov Kobeleva, Andrey Sliva and Egor Terentyev
Lubricants 2026, 14(2), 50; https://doi.org/10.3390/lubricants14020050 (registering DOI) - 25 Jan 2026
Abstract
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with [...] Read more.
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with 5 wt.% silicon carbide particles were manufactured via the stir casting process. Experimentally, processing modes with heat input from 120 to 240 J/mm yield a modified layer thickness from 74 to 1705 µm. Heat input should not exceed 150 J/mm to ensure a smooth and defect-free surface layer. The macro- and microstructure were examined using optical microscopy. Brinell hardness was measured. Friction and wear tests were performed under dry sliding friction conditions using the “bushing on plate” scheme. This evaluated the tribological properties of the composite material in its original cast state and after modifying treatment. Due to the matrix alloy structure refinement by 5–10 times, the surface layer’s hardness increases by 11% after treatment. The modified specimens have superior tribological properties to the initial ones. Wear rate reduces by 17.5%, the average friction coefficient reduces by 32%, and the root mean squared error of the friction coefficient, which measures friction process stability, reduces by 50% at a specific load of 2.5 MPa. Therefore, the electron beam treatment process is a useful method for producing high-quality and uniform wear-resistant aluminum matrix composite surface layers. Full article
Show Figures

Figure 1

16 pages, 2907 KB  
Article
Parallel Hybrid Modeling of Al–Mg–Si Tensile Properties Using Density-Based Weighting
by Christian Dalheim Øien, Ole Runar Myhr and Geir Ringen
Metals 2026, 16(2), 142; https://doi.org/10.3390/met16020142 (registering DOI) - 25 Jan 2026
Abstract
A hybrid modeling framework for predicting the mechanical properties of Al-Mg-Si alloys, that blends physics-based and machine-learning models, is developed and tested. Motivated by a demand for post-consumer material (PCM) content in wrought aluminium applications, this work proposes, analyses, and discusses a parallel [...] Read more.
A hybrid modeling framework for predicting the mechanical properties of Al-Mg-Si alloys, that blends physics-based and machine-learning models, is developed and tested. Motivated by a demand for post-consumer material (PCM) content in wrought aluminium applications, this work proposes, analyses, and discusses a parallel framework that applies an adaptive weighting coefficient derived from local observation density. Based on existing datasets from a range of Al-Mg-Si alloys, such a model is trained and tested in an iterative manner to study its robustness, by emulating a shift in observed alloy composition. The results indicate that the hybrid model is able to combine the interpolative strength of machine learning for cases similar to previous observations with the explorative strength of physics-based (Kampmann–Wagner Numerical) modeling for previously unobserved parameter combinations, as the hybrid model shows higher or similar accuracy than the best of its constituents across the majority of the sequence. The observed model characteristics are promising for predicting the effect of increased compositional variation inherent in PCM. Finally, possible future research is discussed. Full article
(This article belongs to the Special Issue Application of Machine Learning in Metallic Materials)
Show Figures

Figure 1

13 pages, 1862 KB  
Article
Experimental and Molecular Dynamics Simulation Study on Influencing Factors of Barium Sulfate Scaling in Low-Permeability Sandstone Reservoirs
by Haien Yang, Xuan Xie, Miao Dou, Ajing Wei, Ming Lei and Chao Ma
Appl. Sci. 2026, 16(3), 1204; https://doi.org/10.3390/app16031204 (registering DOI) - 24 Jan 2026
Abstract
This study aims to investigate the influencing factors and mechanisms of barium sulfate (BaSO4) scaling under low-permeability reservoir conditions, providing a scientific basis for water quality selection during water injection. The effects of key scaling ions and flow conditions on scaling [...] Read more.
This study aims to investigate the influencing factors and mechanisms of barium sulfate (BaSO4) scaling under low-permeability reservoir conditions, providing a scientific basis for water quality selection during water injection. The effects of key scaling ions and flow conditions on scaling behavior were examined through integrated experimental core flooding tests and molecular dynamics (MD) simulations. Experiments were conducted using synthetic cores simulating the ultra-low permeability Chang-8 Reservoir of the Jiyuan Oilfield, analyzing the impact of ion concentrations (Ba2+, SO42−, Na+, Ca2+, HCO3), flow velocity, and injection pressure. MD simulations were performed based on an interfacial SiO2(010)–BaSO4 solution model constructed in Materials Studio to elucidate the micro-mechanisms. Results indicate that increasing concentrations of Ba2+ and SO42− significantly promote scaling. High Ca2+ concentration (>8000 mg/L) inhibits BaSO4 deposition via competitive adsorption. High Na+ concentration (>70,000 mg/L) reduces Ba2+ activity due to ionic strength effects. When HCO3 concentration exceeds 600 mg/L, CaCO3 coprecipitation occurs, reducing effective SO42− concentration and thus inhibiting BaSO4 scaling. Increased flow velocity enhances scaling, whereas elevated injection pressure suppresses deposition. MD simulations reveal that increased ion concentrations decrease the mean square displacement (MSD) of Ba2+ and SO42−, weakening diffusion and enhancing scaling tendency. Elevated temperature promotes ion diffusion and inhibits scaling, while pressure shows negligible effect on ion diffusion at the molecular scale. This study provides theoretical insights for scaling prevention in low-permeability sandstone reservoirs. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity, 2nd Edition)
Show Figures

Figure 1

16 pages, 6513 KB  
Article
Comparative Analysis of Industrial Fused Magnesia from Natural and Flotation-Processed Magnesite: Associations Among CaO/SiO2 Ratio, Silicate Phase Formation, and Microcracking
by Chunyan Wang, Jian Luan, Zhitao Yang, Qigang Ma, Gang Wang and Ximin Zang
Materials 2026, 19(3), 463; https://doi.org/10.3390/ma19030463 - 23 Jan 2026
Abstract
In view of the depletion of high-grade magnesite resources in China, this study presents a comparative analysis of two industrial fused magnesia products produced via a flotation–fusion route. A low-grade magnesite (DSQLM-3, MgO 41.48 wt.%) was upgraded by reverse flotation to a concentrate [...] Read more.
In view of the depletion of high-grade magnesite resources in China, this study presents a comparative analysis of two industrial fused magnesia products produced via a flotation–fusion route. A low-grade magnesite (DSQLM-3, MgO 41.48 wt.%) was upgraded by reverse flotation to a concentrate (FDSQLM-3, MgO 47.55 wt.%) with >97% SiO2 removal. Two fused magnesia samples (FM-1 from natural high-grade ore DSQLM-1; FFM-3 from concentrate FDSQLM-3) were produced under identical arc-furnace melting (2800 °C, 4 h), followed by natural cooling. Although FFM-3 showed higher MgO (97.61 vs. 97.25 wt.%), its bulk density was comparable to FM-1 (3.45 vs. 3.46 g/cm3). XRD/Rietveld refinement and SEM-EDS indicated that CMS dominated the Ca–silicate assemblage in FM-1, whereas β/γ-C2S was observed in FFM-3, coinciding with a higher CaO/SiO2 (C/S) ratio (2.85 vs. 0.68). Image analysis further showed higher grain boundary microcrack metrics in FFM-3. These observations are consistent with reports in the literature stating that the β → γ transformation of C2S during cooling involves ~12% volume expansion that can contribute to cracking; however, cooling history and composition were not independently controlled in this industrial comparison, so the relationships are interpreted as data-supported associations rather than isolated causality. The results suggest that beneficiation strategies may benefit from managing residual oxide balance (especially C/S ratio) in addition to reducing total impurities. Mechanical and thermomechanical properties were not measured and should be evaluated in future work. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Graphical abstract

18 pages, 9224 KB  
Article
Coupled Effects of Mg/Si Ratio and Recrystallization on Strength and Electrical Conductivity in Al-xMg-0.5Si Alloys
by Shanquan Deng, Xingsen Zhang, Junwei Zhu, Meihua Bian and Heng Chen
Crystals 2026, 16(1), 78; https://doi.org/10.3390/cryst16010078 (registering DOI) - 22 Jan 2026
Viewed by 16
Abstract
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model [...] Read more.
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model alloys with Mg/Si ratios ranging from 1.0 to 2.0. A multi-faceted experimental approach was employed, combining tailored thermo-mechanical treatments (solution treatment, cold drawing, and isothermal annealing) with comprehensive microstructural characterization techniques, including electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The results elucidate a fundamental competitive mechanism governing property optimization: excess Mg atoms concurrently contribute to solid-solution strengthening via the formation of Cottrell atmospheres around dislocations, while simultaneously enhancing electron scattering, which is detrimental to conductivity. A critical synergy was identified at the Mg/Si ratio of 1.75, which promotes the dense precipitation of fine β″ phase while facilitating extensive recovery of high dislocation density. Furthermore, EBSD analysis confirmed the development of a microstructure comprising 74.1% high-angle grain boundaries alongside a low dislocation density (KAM ≤ 2°). This specific microstructural configuration effectively minimizes electron scattering while providing moderate grain boundary strengthening, thereby synergistically achieving an optimal balance between strength and electrical conductivity. Consequently, this work elucidates the key quantitative relationships and competitive mechanisms among composition (Mg/Si ratio), processing parameters, microstructure evolution, and final properties within the studied Al-xMg-0.5Si alloy system. These findings establish a clear design guideline and provide a fundamental understanding for developing high-performance aluminum-based conductor alloys with tailored Mg/Si ratios. Full article
(This article belongs to the Special Issue Microstructure, Properties and Characterization of Aluminum Alloys)
Show Figures

Figure 1

24 pages, 9651 KB  
Article
H2/CH4 Competitive Adsorption of LTA Zeolite: Effects of Cations, Si/Al Ratio, Adsorption Temperature, and Pressure
by Xue Zhang, Jianfeng Tang and Hui Liu
Processes 2026, 14(2), 387; https://doi.org/10.3390/pr14020387 - 22 Jan 2026
Viewed by 15
Abstract
The efficient separation of H2 from CH4 is crucial for hydrogen purification from industrial off-gases using pressure swing adsorption (PSA). In this study, the competitive adsorption behavior of H2/CH4 on LTA zeolites was systematically investigated via grand canonical [...] Read more.
The efficient separation of H2 from CH4 is crucial for hydrogen purification from industrial off-gases using pressure swing adsorption (PSA). In this study, the competitive adsorption behavior of H2/CH4 on LTA zeolites was systematically investigated via grand canonical Monte Carlo (GCMC) simulations, with a focus on the effects of cation type (Na+, Li+, Ca2+, Mg2+), Si/Al ratio (1–1.5), temperature (298–318 K), and pressure (0.2–2 MPa). The results reveal that CH4 favors β-cages as excellent adsorption sites with high population density, followed by the regions adjacent to the cations or framework oxygen atoms of the eight-membered rings. In contrast, H2 is uniformly distributed throughout all the channels. Cations with higher valence and smaller ionic radii (e.g., Mg2+) enhance CH4 adsorption capacity and diffusion more effectively than monovalent or larger cations. Increasing the Si/Al ratio reduces cation content and exposes more framework oxygen atoms, particularly those in Si–O–Si environments, which improve CH4 adsorption. Elevated temperature weakens CH4 adsorption while promoting H2 diffusion and pore occupancy. Although higher pressure increases the uptake of both gases, H2 adsorption rises more substantially and distributes more widely, leading to a decrease in CH4/H2 selectivity. Full article
(This article belongs to the Special Issue Advanced Research on Marine and Deep Oil & Gas Development)
Show Figures

Graphical abstract

19 pages, 7248 KB  
Article
Effect of Heat Treatment on the Corrosion Behavior of Additively Manufactured and Cast AlSi10Mg
by Fynn Buhl, Kilian Feil, Nic Tusch, André Korten and Philipp Schempp
Corros. Mater. Degrad. 2026, 7(1), 5; https://doi.org/10.3390/cmd7010005 - 22 Jan 2026
Viewed by 20
Abstract
This study investigates the corrosion resistance of aluminum alloy AlSi10Mg to evaluate the influence of both manufacturing methods and heat treatments on its durability. The research compares samples produced via laser power bed fusion (LPBF) and conventional casting, with subsets subjected to either [...] Read more.
This study investigates the corrosion resistance of aluminum alloy AlSi10Mg to evaluate the influence of both manufacturing methods and heat treatments on its durability. The research compares samples produced via laser power bed fusion (LPBF) and conventional casting, with subsets subjected to either no, T5 (artificial aging), and T6 (solution annealing and aging) heat treatment. All samples were exposed to an accelerated cyclic corrosion test, using immersion and drying cycles. Corrosion performance was quantified via mass loss (ML) measurements and analyzed using metallography. The analysis revealed that heat treatment (factor A) is the only statistically significant factor affecting mass loss. Even short exposure to the corrosive environment caused clearly visible surface changes. This suggests a significant decrease in corrosion resistance, linked to microstructural changes. While LPBF parts exhibited lower mass loss in the as-manufactured and T5 states, the T6 treatment negatively impacted both manufacturing routes. Full article
Show Figures

Figure 1

16 pages, 8364 KB  
Article
Effect of Master Alloy Based on Al and Si with Ti and B on Mechanical Properties of AlSi9 Alloy
by Tomasz Lipiński
Materials 2026, 19(2), 431; https://doi.org/10.3390/ma19020431 - 22 Jan 2026
Viewed by 14
Abstract
Hypoeutectic aluminum–silicon casting alloys in their unmodified state have a coarse-grained eutectic (α + β), which results in poor mechanical properties and brittleness. Microstructure refinement and improved mechanical properties are possible, among other things, by introducing various elements and chemical compounds. The literature [...] Read more.
Hypoeutectic aluminum–silicon casting alloys in their unmodified state have a coarse-grained eutectic (α + β), which results in poor mechanical properties and brittleness. Microstructure refinement and improved mechanical properties are possible, among other things, by introducing various elements and chemical compounds. The literature presents numerous studies on the modification of hypoeutectic silumins, but there are no results confirming the effectiveness of the interaction of a master alloy containing titanium and boron with its main component, which may be aluminum, aluminum with silicon, or aluminum with silicon and magnesium. This paper presents the results of microstructure refinement using titanium or boron introduced into the Al, AlSi7, and AlSi7Mg master alloys. The introduction of titanium and boron into the aluminum-based master alloy resulted in microstructure refinement and improved mechanical properties. The results indicate that the most favorable results were obtained when titanium and boron were introduced into the AlSi7 master alloy. The addition of magnesium to the master alloy AlSi7 resulted in less effective microstructure refinement of the AlSi9 silumin, which resulted in lower mechanical properties than those obtained for the master alloy without Mg. Full article
Show Figures

Figure 1

21 pages, 2141 KB  
Article
Biochar–Sponge Iron Modified Bioretention System Improved Nitrogen Removal Efficiency for Aquaculture Wastewater Treatment
by Jiang Wang, Wenqiang Jiang, Luting Wen, Chengcai Zhang, Junneng Liang, Linyuan Jiang, Xueming Yang and Shumin Wang
Water 2026, 18(2), 270; https://doi.org/10.3390/w18020270 - 21 Jan 2026
Viewed by 62
Abstract
To address the challenge of low nitrogen removal efficiency, particularly the difficulty in meeting total nitrogen (TN) discharge standards during low-temperature seasons and intermittent emission modes in conventional aquaculture wastewater treatment, this study proposed the novel application of bioretention systems. Biochar and sponge [...] Read more.
To address the challenge of low nitrogen removal efficiency, particularly the difficulty in meeting total nitrogen (TN) discharge standards during low-temperature seasons and intermittent emission modes in conventional aquaculture wastewater treatment, this study proposed the novel application of bioretention systems. Biochar and sponge iron were used as fillers to construct three bioretention systems: biochar-based (B-BS), sponge iron-based (SI-BS), and a composite system (SIB-BS), for evaluating their nitrogen removal performance for aquaculture wastewater treatment. Experimental results demonstrated that under intermittent flooding conditions at 8.0–13.0 °C and increasing TN loading (9.48 mg/L–31.13 mg/L), SIB-BS maintained stable TN removal (79.7–86.7%), outperforming B-BS and SI-BS (p < 0.05). Under continuous inflow (influent TN = 8.4 ± 0.5 mg/L) at 8.0–13.0 °C, SIB-BS achieved significantly lower effluent TN (2.57 ± 1.5 mg/L) than B-BS (5.6 ± 1.6 mg/L) and SI-BS (5.0 ± 1.5 mg/L) (p < 0.05). Meanwhile, when the temperature ranged from 8.0 to 26.3 °C, SIB-BS exhibited a more stable and efficient denitrification ability. Mechanistic investigations revealed that coupling biochar with sponge iron promoted denitrifying microbial activity and enhanced the functional potential for nitrogen transformation (p < 0.05). Specifically, biochar provided porous attachment sites and improved mass transfer, while sponge iron supplied readily available Fe2+ as an electron donor; their combination buffered iron oxidation and facilitated Fe2+-mediated electron transfer. At low temperature, SIB-BS further stimulated extracellular polymeric substances (EPS) secretion, strengthened biofilm stability without causing blockage, and improved the protective interactions between fillers, thereby increasing metabolic efficiency and sustaining TN removal under variable loading. This study provided a technical reference for the efficient denitrification of aquaculture wastewater. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

14 pages, 3287 KB  
Article
Econazole Exhibits In Vitro and In Vivo Efficacy Against Leishmania amazonensis
by Juliana Tonini Mesquita, Ingrid de Oliveira Dias, Andre Gustavo Tempone and Juliana Quero Reimão
Pharmaceuticals 2026, 19(1), 185; https://doi.org/10.3390/ph19010185 - 21 Jan 2026
Viewed by 125
Abstract
Background/Objectives: Cutaneous leishmaniasis (CL) remains a major neglected tropical disease, and current chemotherapeutic options are limited by toxicity and emerging resistance. Repurposing azole antifungals is a promising approach, as they target ergosterol biosynthesis, a pathway also essential in Leishmania spp. This study investigated [...] Read more.
Background/Objectives: Cutaneous leishmaniasis (CL) remains a major neglected tropical disease, and current chemotherapeutic options are limited by toxicity and emerging resistance. Repurposing azole antifungals is a promising approach, as they target ergosterol biosynthesis, a pathway also essential in Leishmania spp. This study investigated the antileishmanial potential of econazole through in vitro and in vivo assays. Methods: Econazole activity was evaluated against Leishmania amazonensis promastigotes and intracellular amastigotes using MTT and luminescence-based methods. Cytotoxicity in NCTC cells was determined to calculate the selectivity index (SI). Drug interactions with miltefosine were assessed by fixed-ratio isobologram analysis. In vivo efficacy was examined in BALB/c mice infected with L. amazonensis and orally treated with econazole (2.5, 5, or 10 mg/kg/day) for 28 days. Lesion development and parasite burden were monitored. Molecular docking simulations were performed using SwissDock. Results: Econazole showed potent in vitro activity, with EC50 values of 8.9 µM for promastigotes and 11 µM for intracellular amastigotes, and a CC50 of 31 µM. Isobologram analysis revealed additive interactions with miltefosine (ΣFIC 0.5–1.2; mean 0.95). In vivo, econazole reduced lesion size and parasite load, achieving up to 75% reduction at 10 mg/kg/day. Docking results suggested that econazole may inhibit sterol biosynthesis, potentially through interaction with 14α-demethylase. Conclusions: These findings provide the first evidence of econazole activity against L. amazonensis in vitro and in vivo. Its exploratory efficacy and compatibility with miltefosine support further investigation of econazole as a repurposed candidate for CL, including optimization of dosing strategies and combination regimens. Full article
Show Figures

Graphical abstract

28 pages, 2892 KB  
Article
Foliar Application of Silicon and Sulfur Modifies Grain Mineral Composition of Spring Oats ( Avena sativa L.) Under Contrasting Seasonal Drought Conditions
by Bekir Bytyqi, Fanni Zsuzsa Forgács, Anteneh Agezew Melash, István Csaba Virág, József Csajbók, Ebenezer Ayew Appiah and Erika Tünde Kutasy
Plants 2026, 15(2), 316; https://doi.org/10.3390/plants15020316 - 21 Jan 2026
Viewed by 146
Abstract
This study evaluated the effects of foliar silicon (Si) and sulfur (S) applications under contrasting climatic conditions on macro- and micronutrient accumulation in oat grain. The three-year field experiment (2022–2024) was conducted in Debrecen, Hungary, using a randomized complete block design (RCBD)with three [...] Read more.
This study evaluated the effects of foliar silicon (Si) and sulfur (S) applications under contrasting climatic conditions on macro- and micronutrient accumulation in oat grain. The three-year field experiment (2022–2024) was conducted in Debrecen, Hungary, using a randomized complete block design (RCBD)with three replications. Grain samples were analyzed for macroelements (K, P, S, Mg, Ca) and micronutrients (Na, Si, Fe, Mn, Cu). Environmental conditions markedly influenced nutrient accumulation. Severe drought promoted the highest concentrations of K, S, and Mg, while mild drought significantly increased the accumulation of P, Ca, Si, Fe, and Cu contents. Moderate drought favored Na accumulation. Foliar S application under relatively favorable water supply significantly enhanced the concentration of all measured elements, with the strongest response observed for Cu (+47.4% compared with the control) and the weakest for Mg (8.5%). In contrast, Si application alone had only limited or negative effects, particularly under severe drought, where it reduced K (6.4%), S (2.4%), and Ca (13%) concentrations, despite increased Si accumulation in the grain. During drought stress, however, the combined Si + S treatment significantly increased the grain macro- and micronutrient concentrations. Among the tested genotypes, ‘Mv Pehely’ exhibited the highest macronutrient accumulation, while ‘GK Kormorán’ and ‘Mv Pehely’ showed superior micronutrient accumulation. ‘GK Pillangó’ and ‘Mv Szellő’ showed consistently lower nutrient contents. These results highlight the importance of genotype × environment × nutrient management strategies for improving nutrient composition in oat grain. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

19 pages, 4052 KB  
Article
Microstructure and Wear Resistance of (Mg2Si + SiCp)/Al Composites
by Dekun Zhou, Xiaobo Liu and Miao Yang
Metals 2026, 16(1), 111; https://doi.org/10.3390/met16010111 - 18 Jan 2026
Viewed by 164
Abstract
The microstructure and wear behaviors of Mg2Si/Al composites with 0 wt.%, 5 wt.%, and 10 wt.% SiC particles were studied using XRD, OM observation, SEM observation, EDS analysis, an extraction experiment, a hardness test, and the dry sliding wear test. It [...] Read more.
The microstructure and wear behaviors of Mg2Si/Al composites with 0 wt.%, 5 wt.%, and 10 wt.% SiC particles were studied using XRD, OM observation, SEM observation, EDS analysis, an extraction experiment, a hardness test, and the dry sliding wear test. It is shown by the results that after the addition of 10 wt.% SiC particles, the population of primary Mg2Si particles increased, while the mean size of these particles reduced from 40 ± 10 μm (in the SiC-free composite) to 25 ± 8 μm. Both the matrix and the eutectic structure were refined. The tetrakaidecahedral morphologies of Mg2Si crystals were confirmed by the results of extraction tests. The wear test results with GCr15 steel as the friction pair show that the Mg2Si/Al composite with 10 wt.% SiC particles displayed more favorable wear resistance than the specimens with 0 wt.% and 5 wt.% SiC particle additions under both constant load and constant sliding velocity conditions. Under applied loads of 10 N, 20 N, and 30 N at a fixed sliding speed of 300 r/min, the wear rate of the Mg2Si-Al composites reinforced with 10 wt.% SiC particles was 36.01%, 48.29%, and 23.32% lower than that of the SiC-free composites, respectively. When the sliding speed was set to 300 r/min, 550 r/min, 750 r/min, and 1000 r/min under a constant applied load of 20 N, the wear rate of the 10 wt.% SiC-reinforced Mg2Si-Al composites was reduced by 40.37%, 40.87%, 26.20%, and 25.78%, respectively, compared with the SiC-free counterparts. The wear failure mechanisms of (Mg2Si + SiCP)/Al composites were mainly adhesive wear and abrasive wear, but the proportion of oxidation wear increased after the addition of the SiC particles. Full article
(This article belongs to the Special Issue Recent Advances in Forming Processes of Lightweight Metals)
Show Figures

Figure 1

16 pages, 5668 KB  
Article
Effect of Selectively Etched Al-Rich and Si-Rich Microstructures on the Adhesion of Polyimide Coatings to SLM AlSi10Mg
by Jianzhu Li, Shuo Yang and Yujie Li
Materials 2026, 19(2), 385; https://doi.org/10.3390/ma19020385 - 18 Jan 2026
Viewed by 145
Abstract
Interfacial adhesion between selective laser-melted (SLM) AlSi10Mg and polyimide (PI) insulating coatings is often limited by mismatched physicochemical properties. To improve adhesion, Al-rich and Si-rich microstructured surfaces were fabricated on the XY plane (perpendicular to the build direction) and the Z plane (parallel [...] Read more.
Interfacial adhesion between selective laser-melted (SLM) AlSi10Mg and polyimide (PI) insulating coatings is often limited by mismatched physicochemical properties. To improve adhesion, Al-rich and Si-rich microstructured surfaces were fabricated on the XY plane (perpendicular to the build direction) and the Z plane (parallel to the build direction) by acidic and alkaline etching, exploiting the characteristic microstructure of SLM AlSi10Mg. Surface topography, chemical composition, and wettability were characterized, and interfacial mechanical performance was evaluated by shear and pull-off tests. The microstructures increased surface roughness and improved wettability. The shear strength rose from 2.6 ± 1.5 MPa for the polished surface to 43.2 ± 8.6 MPa. The polished surface showed a pull-off strength of 2.2 ± 0.25 MPa. In pull-off tests, failure mainly occurred within the dolly/adhesive/PI system, indicating that the interfacial tensile strength exceeded the strength of the adhesive system; the maximum measured pull-off strength was 29.0 ± 1.3 MPa. Fractography predominantly showed cohesive failure in PI on Al-rich microstructures. Si-rich microstructures exhibited mixed failure, including fracture of the Si skeleton and tearing of PI, together with interfacial microcracks. Full article
(This article belongs to the Special Issue Friction, Wear and Surface Engineering of Materials)
Show Figures

Graphical abstract

12 pages, 3500 KB  
Article
Hydrogeochemical Characteristics and Formation Mechanism of Metasilicic Acid Mineral Water at Taoping Water Source Area
by Dian Liu, Ximin Bai, Xuegang Wang, Shengpin Yu, Tian Li and Fei Deng
Water 2026, 18(2), 249; https://doi.org/10.3390/w18020249 - 17 Jan 2026
Viewed by 168
Abstract
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. [...] Read more.
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. Taking the Taoping water source area in northwestern Jiangxi as a case study, 11 sets of groundwater and surface water samples were systematically collected. By comprehensively applying mathematical statistics, ionic ratios, and isotopic analyses, the hydrogeochemical characteristics and formation processes of metasilicic acid-type mineral water were examined. The results indicate that: (1) The mineral waters in the area are weakly alkaline and belong to the metasilicic acid type, with concentrations ranging from 22.0 to 67.0 mg/L, of which 75% exceed 30 mg/L. (2) The primary hydrochemical types are HCO3–Ca·Na, HCO3–Ca·Mg, and HCO3–Ca. Analysis of stable isotopes (δ18O and δ2H) and tritium (3H) indicates that metasilicic acid mineral water is primarily recharged by atmospheric precipitation, with an apparent groundwater age of approximately 60 years. (3) The enrichment of metasilicic acid primarily results from the weathering and leaching of silicate minerals, coupled with cation exchange. K+ and Na+ are mainly derived from silicate minerals such as feldspars and halite, whereas Ca2+ and Mg2+ originate primarily from carbonate minerals like calcite and dolomite. During recharge, atmospheric precipitation infiltrates the aquifer, dissolving aluminosilicate and siliceous minerals in the surrounding rocks, thereby releasing metasilicic acid into the groundwater and ultimately forming the metasilicic acid-type mineral water. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 6748 KB  
Article
Roller Joining of AA1050 and AA6061 Aluminum Foam Immediately After Heating Process
by Yoshihiko Hangai, Shingo Nagatake, Ryosuke Suzuki, Kenji Amagai and Nobuhiro Yoshikawa
Metals 2026, 16(1), 102; https://doi.org/10.3390/met16010102 - 16 Jan 2026
Viewed by 142
Abstract
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further [...] Read more.
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further enhance its functionality. In this study, we attempted to fabricate a three-layer aluminum foam composed of commercially pure aluminum AA1050 and Al-Mg-Si aluminum alloy AA6061 by heating and foaming a total of three pieces of AA1050 precursor and AA6061 precursor arranged alternately, followed by immediate roller joining. It was found that, by traversing a roller immediately after foaming the AA1050 and AA6061 precursors, the aluminum foam could be joined while forming it into a flat plate. In addition, X-ray CT images of the fabricated samples revealed that material flow induced by roller traversing ruptured the surface skin layer. Numerous pores were observed within the sample, indicating pores were maintained during the roller traversing and no significant differences in porosities were identified between AA1050 aluminum foam and AA6061 aluminum foam. Furthermore, from the four-point bending test and the observation of samples after bending test, although quantitative mechanical properties were not obtained due to the as-joined samples were used for the bending test, pores were observed at the fracture surfaces, confirming that roller joining achieved seamless joining. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

Back to TopTop