Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Mesembryanthemum crystallinum L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3567 KiB  
Article
Exploring Salinity Tolerance in Three Halophytic Plants: Physiological and Biochemical Responses to Agronomic Management in a Half-Strength Seawater Aquaponics System
by Ayenia Carolina Rosales-Nieblas, Mina Yamada, Bernardo Murillo-Amador and Satoshi Yamada
Horticulturae 2025, 11(6), 623; https://doi.org/10.3390/horticulturae11060623 - 2 Jun 2025
Viewed by 528
Abstract
Understanding halophyte responses to agronomic management in saline environments is crucial for optimizing their cultivation. This study assessed the physiological and biochemical responses of three halophytic species, ice plant (Mesembryanthemum crystallinum L.), romeritos (Suaeda edulis Flores Olv. and Noguez), and sea [...] Read more.
Understanding halophyte responses to agronomic management in saline environments is crucial for optimizing their cultivation. This study assessed the physiological and biochemical responses of three halophytic species, ice plant (Mesembryanthemum crystallinum L.), romeritos (Suaeda edulis Flores Olv. and Noguez), and sea asparagus (Salicornia europaea L.) cultivated in half-strength seawater aquaponics (approximately 250 mM NaCl) under the following rooting media treatments: (C) untreated rearing water (RW), (pH) pH-adjusted to 5.5 RW, (pH+S) pH-adjusted to 5.5 RW with nutrient supplementation, and (NS) standard nutrient solution + 5 mM NaCl. Salinity was the primary factor influencing plant responses, while agronomic management played a secondary role. Ice plants exhibited stable growth across treatments due to their strong succulence, high water content, and antioxidative system, requiring minimal management, though optimal pH may enhance nutrient availability. Romeritos showed high treatment variability yet maintained biomass production via Na+ compartmentalization, with C treatment supporting better osmotic regulation, while pH adjustments and mineral supplementation induced stress under HSW. Sea asparagus sustained growth across all treatments, likely due to effective K+ retention and osmoregulation, reducing the need for additional management. These findings highlight species-specific salinity tolerance mechanisms and suggest that minimal agronomic management can effectively support halophyte cultivation in saline aquaponic systems. Full article
(This article belongs to the Special Issue Enhancing Plant Quality and Sustainability in Aquaponics Systems)
Show Figures

Figure 1

14 pages, 2770 KiB  
Article
The Glucose-Lowering Effect of Mesembryanthemum crystallinum and D-Pinitol: Studies on Insulin Secretion in INS-1 Cells and the Reduction of Blood Glucose in Diabetic Rats
by Dahae Lee, Sung Jin Kim, Yea Jung Choi, Young Ho Rho, Tae Seok Kang, Yoon Geol Kim and Ki Sung Kang
Nutrients 2025, 17(1), 193; https://doi.org/10.3390/nu17010193 - 6 Jan 2025
Cited by 1 | Viewed by 1717
Abstract
Background: Ice plant (Mesembryanthemum crystallinum) is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and [...] Read more.
Background: Ice plant (Mesembryanthemum crystallinum) is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. Methods: The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS. The glucose-stimulated index (GSI) and expression levels of insulin-related pathway factors, including insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1), were measured in INS-1 cells. Results: The results showed that the GSI values were found to be 8.17 ± 0.22 and 12.21 ± 0.22 for IPE (25 μg/mL) and D-pinitol (100 μM), respectively. GSI values increased statistically significantly. In addition, IPE and D-pinitol upregulated the expression of insulin-related pathway factors. These findings indicate that insulin secretion was significantly stimulated by IPE and D-pinitol in the INS-1 cells, partly by upregulating the expression of IRS-2, PI3K, Akt, and PDX-1. Additionally, IPE administration significantly reduced excessive weight gain and improved glucose tolerance by decreasing the OGTT-AUC. It demonstrated liver-function-improving and lipid-lowering effects by reducing serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), triglyceride levels, and total cholesterol levels. Mechanistically, IPE enhances insulin signaling by increasing insulin receptor substrate 1 (IRS-1) phosphorylation and improving glucose metabolism and insulin sensitivity. Conclusions: These results offer important new information on the potential of D-pinitol and IPE as functional foods for improving insulin secretion and managing metabolic dysregulation associated with diabetes. Full article
(This article belongs to the Special Issue Hypoglycemic Properties and Pathways of Natural Substances)
Show Figures

Figure 1

12 pages, 3281 KiB  
Article
Evaluation of Sodium Chloride Concentrations on Growth and Phytochemical Production of Mesembryanthemum crystallinum L. in a Hydroponic System
by Giju Eoh, Chulhyun Kim, Jiwon Bae and Jongseok Park
Horticulturae 2024, 10(12), 1304; https://doi.org/10.3390/horticulturae10121304 - 6 Dec 2024
Viewed by 1862
Abstract
Mesembryanthemum crystallinum L., commonly known as the ice plant, is a halophyte recognized for its exceptional salinity tolerance. This study aimed to determine the optimal NaCl concentration for promoting plant growth, D-pinitol, and other phytochemicals in M. crystallinum cultivated in a hydroponics system. [...] Read more.
Mesembryanthemum crystallinum L., commonly known as the ice plant, is a halophyte recognized for its exceptional salinity tolerance. This study aimed to determine the optimal NaCl concentration for promoting plant growth, D-pinitol, and other phytochemicals in M. crystallinum cultivated in a hydroponics system. Seedlings of M. crystallinum were transplanted into a hydroponic system and subjected to different NaCl concentrations (0, 100, 200, 300, 400, and 500 mM) in the nutrient solution. To evaluate the plant’s response to salinity stress, measurements were conducted on growth parameters, chlorophyll and carotenoid levels, total flavonoid and polyphenol contents, and DPPH scavenging activity. The optimal NaCl concentration for growth was found to be 200 mM, at which the shoot fresh and dry weights were highest. Additionally, total chlorophyll and carotenoid contents were maximized at 200 mM NaCl, with a subsequent decrease at higher concentrations. The highest DPPH scavenging activity was observed in the 200 mM NaCl treatment, which correlated with increased levels of total flavonoids and polyphenols. These results indicated that optimizing NaCl concentration can enhance the antioxidant activity of Mesembryanthemum crystallinum L. The D-pinitol content also peaked at 200 mM NaCl treatment, further supporting its role osmotic adjustment under salinity stress. M. crystallinum exhibited enhanced antioxidant production and cellular protective functions at 200 mM NaCl, which optimized its biochemical defense mechanisms and helped maintain physiological functions under salinity stress. These findings provide valuable insights for agricultural and biological applications, particularly in cultivating M. crystallinum for its bioactive compounds. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

11 pages, 570 KiB  
Brief Report
A Comparative Study of the Influence of Soil and Non-Soil Factors on Seed Germination of Edible Salt-Tolerant Species
by Viana Castañeda-Loaiza, Maria João Rodrigues, Eliana Fernandes and Luísa Custódio
Horticulturae 2024, 10(8), 872; https://doi.org/10.3390/horticulturae10080872 - 18 Aug 2024
Cited by 1 | Viewed by 1436
Abstract
Cultivating edible salt-tolerant plants (halophytes) for human consumption is increasingly important due to climate change and soil salinization, and offers sustainable agricultural solutions. Optimizing seed germination, the crucial initial stage of crop growth, is essential for enhancing crop production. This study aimed to [...] Read more.
Cultivating edible salt-tolerant plants (halophytes) for human consumption is increasingly important due to climate change and soil salinization, and offers sustainable agricultural solutions. Optimizing seed germination, the crucial initial stage of crop growth, is essential for enhancing crop production. This study aimed to optimize the germination of edible halophytes under greenhouse conditions, focusing on select soil (salinity and substrate) and non-soil-related factors (chemical and mechanical treatments). The target species were selected for their commercial value and included Mesembryanthemum crystallinum L. (crystalline iceplant), Salicornia ramosissima J. Woods (sea asparagus), Medicago marina L. (sea medick), Ammophila arenaria (L.) Link (European beachgrass), Portulaca oleracea L. (common purslane), and Atriplex halimus L. (Mediterranean saltbush). Salinity negatively impacted germination rates (GRs) and delayed mean germination time (MGT) across species. P. oleracea had the highest GR (95.6%) in coco peat under freshwater irrigation, and the shortest MGT (5.2 days). A. halimus did not germinate under the tested conditions. Scarification with sulfuric acid improved the GR of M. marina by 42.2%, while scarification with ultrasounds improved the GR of A. arenaria by 35.5%. Our results indicate that the choice of substrate and the application of specific treatments like scarification can significantly improve the germination of certain halophyte species under variable saline conditions. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Figure 1

22 pages, 1980 KiB  
Article
How the Ethylene Biosynthesis Pathway of Semi-Halophytes Is Modified with Prolonged Salinity Stress Occurrence?
by Miron Gieniec, Zbigniew Miszalski, Piotr Rozpądek, Roman J. Jędrzejczyk, Małgorzata Czernicka and Michał Nosek
Int. J. Mol. Sci. 2024, 25(9), 4777; https://doi.org/10.3390/ijms25094777 - 27 Apr 2024
Cited by 2 | Viewed by 1804
Abstract
The mechanism of ethylene (ET)–regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components’ response to prolonged [...] Read more.
The mechanism of ethylene (ET)–regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components’ response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs’ was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different. Full article
(This article belongs to the Special Issue Molecular Regulatory Mechanisms of Salinity Tolerance in Plants 2.0)
Show Figures

Figure 1

13 pages, 3589 KiB  
Article
The Effect of the Daily Light Integral and Spectrum on Mesembryanthemum crystallinum L. in an Indoor Plant Production Environment
by Jun Wei Chen, Kateřina Patloková and Robert Pokluda
Horticulturae 2024, 10(3), 266; https://doi.org/10.3390/horticulturae10030266 - 11 Mar 2024
Cited by 4 | Viewed by 2023
Abstract
The effect of artificial lighting with different light spectra and photoperiods/daily light integrals (DLIs) on the yield, bioactive compounds and antioxidant capacity of the common ice plant (Mesembryanthemum crystallinum) was studied. Four-week-old seedlings were selected and subjected to four different light [...] Read more.
The effect of artificial lighting with different light spectra and photoperiods/daily light integrals (DLIs) on the yield, bioactive compounds and antioxidant capacity of the common ice plant (Mesembryanthemum crystallinum) was studied. Four-week-old seedlings were selected and subjected to four different light spectra made up of different combinations of blue (400–500 nm), green (500–600 nm) and red light (600–700 nm), with a total photosynthetic photon flux density (PPFD) of 180 µmol.m−2.s−1. Concurrently, the effect of the daily light integral (DLI) was also studied, with the light treatment photoperiod set at 18 h and 21 h. Biometric parameters such as fresh mass weight, leaf area, leaf width, and dry mass, together with plant metabolite contents such as total antioxidant capacity (TAC), vitamin C, chlorophyll a and b content, and total carotenoids and nitrates, were investigated. It was found that the plants grew better when exposed to light with a higher proportion of the red and blue spectrum, with the highest fresh mass of 68 g observed at a photoperiod of 18 h. On the other hand, green spectrum light was not found to yield any significant improvement in shoot weight, leaf area, or leaf size. It was also found that dry mass, chlorophyll b and nitrates were not influenced by the light spectrum but were influenced by the photoperiod duration. While both the dry mass and nitrate content increase as the photoperiod increases, a longer photoperiod had a negative effect on chlorophyll a, chlorophyll b and total carotenoids, with their content decreasing by as much 29% for chlorophyll a, 59% for chlorophyll b and 29% for total carotenoids. TAC content was seen to increase by more than 24% under the influence of 66% more green light, and 38% more under the 21 h photoperiod. Full article
Show Figures

Figure 1

15 pages, 1123 KiB  
Article
Nanoparticle Effects on Ice Plant Mineral Accumulation under Different Lighting Conditions and Assessment of Hazard Quotients for Human Health
by Rūta Sutulienė, Aušra Brazaitytė, Martynas Urbutis, Simona Tučkutė and Pavelas Duchovskis
Plants 2024, 13(5), 681; https://doi.org/10.3390/plants13050681 - 28 Feb 2024
Cited by 1 | Viewed by 1417
Abstract
Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate [...] Read more.
Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate how different HPS and LED lighting combined with CuO and ZnO NPs influence the elemental composition of ice plants (Mesembryanthemum crystallinum L.). Plants were grown in hydroponic systems with LED and HPS lighting at 250 ± 5 μmol m−2 s−1 intensity, sprayed with aqueous suspensions of CuO (40 nm, 30 ppm) and ZnO (35–45 nm, 800 ppm) NPs; their elemental composition was measured using an ICP–OES spectrometer and hazard quotients were calculated. LED lighting combined with the application of ZnO NPs significantly affected Zn accumulation in plant leaves. Cu accumulation was higher when plants were treated with CuO NPs and HPS illumination combined. The calculated hazard quotients showed that the limits are not exceeded when applying our selected concentrations and growth conditions on ice plants. In conclusion, ice plants had a more significant positive effect on the accumulation of macro- and microelements under LED lighting than HPS. NPs had the strongest effect on the increase in their respective microelements. Full article
(This article belongs to the Special Issue Light and Plant Nutrition)
Show Figures

Figure 1

20 pages, 4767 KiB  
Article
Effect of Na, K and Ca Salts on Growth, Physiological Performance, Ion Accumulation and Mineral Nutrition of Mesembryanthemum crystallinum
by Astra Jēkabsone, Andis Karlsons, Anita Osvalde and Gederts Ievinsh
Plants 2024, 13(2), 190; https://doi.org/10.3390/plants13020190 - 10 Jan 2024
Cited by 5 | Viewed by 2737
Abstract
Mesembryanthemum crystallinum L. is an obligatory halophyte species showing optimum growth at elevated soil salinity levels, but the ionic requirements for growth stimulation are not known. The aim of the present study was to compare the effects of sodium, potassium and calcium in [...] Read more.
Mesembryanthemum crystallinum L. is an obligatory halophyte species showing optimum growth at elevated soil salinity levels, but the ionic requirements for growth stimulation are not known. The aim of the present study was to compare the effects of sodium, potassium and calcium in the form of chloride and nitrate salts on the growth, physiological performance, ion accumulation and mineral nutrition of M. crystallinum plants in controlled conditions. In a paradoxical way, while sodium and potassium had comparable stimulative effect on plant growth, the effect of calcium was strongly negative even at a relatively low concentration, eventually leading to plant death. Moreover, the effect of Ca nitrate was less negative in comparison to that of Ca chloride, but K in the form of nitrate had some negative effects. There were three components of the stimulation of biomass accumulation by NaCl and KCl salinity in M. crsytallinum: the increase in tissue water content, increase in ion accumulation, and growth activation. As optimum growth was in a salinity range from 20 to 100 mM, the increase in the dry biomass of plants at a moderate (200 mM) and high (400 mM) salinity in comparison to control plants was mostly due to ion accumulation. Among physiological indicators, changes in leaf chlorophyll concentration appeared relatively late, but the chlorophyll a fluorescence parameter, Performance Index Total, was the most sensitive to the effect of salts. In conclusion, both sodium and potassium in the form of chloride salts are efficient in promoting the optimum growth of M. crystallinum plants. However, mechanisms leading to the negative effect of calcium on plants need to be assessed further. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Salinity Stress and Tolerance)
Show Figures

Figure 1

17 pages, 7823 KiB  
Article
Antidiabetic Effect of Fermented Mesembryanthemum crystallinum L. in db/db Mice Involves Regulation of PI3K-Akt Pathway
by Hye-Lin Kim, Yunu Jung, Hyo In Kim, Nak-Yun Sung, Min-Jee Kim, In-Jun Han, Geon Kim, Eun Yeong Nho, Sang-Yun Park, Yohan Han, Ji Hoon Jung, Dong-Sub Kim and Jinbong Park
Curr. Issues Mol. Biol. 2023, 45(8), 6415-6431; https://doi.org/10.3390/cimb45080405 - 3 Aug 2023
Cited by 4 | Viewed by 2561
Abstract
Type 2 diabetes (T2D) is a serious health issue with increasing incidences worldwide. However, current medications have limitations due to side effects such as decreased appetite, stomach pain, diarrhea, and extreme tiredness. Here, we report the effect of fermented ice plant (FMC) in [...] Read more.
Type 2 diabetes (T2D) is a serious health issue with increasing incidences worldwide. However, current medications have limitations due to side effects such as decreased appetite, stomach pain, diarrhea, and extreme tiredness. Here, we report the effect of fermented ice plant (FMC) in the T2M mouse model of db/db mice. FMC showed a greater inhibition of lipid accumulation compared to unfermented ice plant extract. Two-week oral administration with FMC inhibited body weight gain, lowered fasting blood glucose, and improved glucose tolerance. Serum parameters related to T2D including insulin, glycosylated hemoglobin, adiponectin, and cholesterols were improved as well. Histological analysis confirmed the protective effect of FMC on pancreas and liver destruction. FMC treatment significantly increased the expression and phosphorylation of IRS-1, PI3K, and AKT. Additionally, AMP-activated protein kinase phosphorylation and nuclear factor erythroid 2–related factor 2 were also increased in the liver tissues of db/db mice treated with FMC. Overall, our results indicate the anti-diabetic effect of FMC; therefore, we suggest that FMC may be useful as a therapeutic agent for T2D. Full article
Show Figures

Figure 1

24 pages, 3035 KiB  
Article
Optimization of Nutrient-Rich Ice Plant (Mesembryanthemum crystallinum L.) Paste Fresh Noodle Pasta Using Response Surface Methodology
by Yeo-Wool Kang and Na-Mi Joo
Foods 2023, 12(13), 2482; https://doi.org/10.3390/foods12132482 - 25 Jun 2023
Cited by 5 | Viewed by 2068
Abstract
The ice plant is a species that is grown mainly in the dry regions of the American West and contains various minerals and ingredients beneficial for human health, such as inositol and beta-carotene. With the growing trend towards healthy foods, pasta consumption has [...] Read more.
The ice plant is a species that is grown mainly in the dry regions of the American West and contains various minerals and ingredients beneficial for human health, such as inositol and beta-carotene. With the growing trend towards healthy foods, pasta consumption has also increased. Pasta is a convenient and low-glycemic-index food that is composed mainly of carbohydrates, proteins, lipids, dietary fiber, and trace amounts of minerals. The optimal mixing ratio was evaluated to produce pasta of the highest quality in terms of blood sugar elevation and antioxidant efficacy. The components and minerals of the ice plant, including D-pinitol and inositol, were analyzed, and 20 essential amino acids were identified. In this study, we also investigated the quality and characteristics of ice plant paste and eggs, as well as the quality, antioxidant activity, and formulation of raw materials mixed with ice plant at different ratios. Optimal conditions were found to be 46.73 g of ice plant paste in 100 g of durum wheat flour, 20.23 g of egg, and 2 g of salt, providing a way to develop fresh pasta that enhances the health benefits of ice plant paste without excessive moisture and other ingredients. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

36 pages, 2887 KiB  
Article
Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences
by Sheila C. Oliveira-Alves, Fábio Andrade, João Sousa, Andreia Bento-Silva, Bernardo Duarte, Isabel Caçador, Miguel Salazar, Elsa Mecha, Ana Teresa Serra and Maria Rosário Bronze
Antioxidants 2023, 12(6), 1161; https://doi.org/10.3390/antiox12061161 - 26 May 2023
Cited by 9 | Viewed by 3912
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out [...] Read more.
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects. Full article
Show Figures

Graphical abstract

21 pages, 1268 KiB  
Article
Interactive Effects of Salinity Stress and Irrigation Intervals on Plant Growth, Nutritional Value, and Phytochemical Content in Mesembryanthemum crystallinum L.
by Okuhle Mndi, Avela Sogoni, Muhali Olaide Jimoh, Carolyn Margaret Wilmot, Fanie Rautenbach and Charles Petrus Laubscher
Agriculture 2023, 13(5), 1026; https://doi.org/10.3390/agriculture13051026 - 8 May 2023
Cited by 16 | Viewed by 3480
Abstract
Halophytes such as ice plants are concurrently subjected to salt and drought stresses in their natural habitats, but our knowledge about the effects of combined stress on plants is limited. In this study, the individual and combined effects of salinity and irrigation intervals [...] Read more.
Halophytes such as ice plants are concurrently subjected to salt and drought stresses in their natural habitats, but our knowledge about the effects of combined stress on plants is limited. In this study, the individual and combined effects of salinity and irrigation intervals on the plant growth, mineral content, and proximate and phytochemical composition of M. crystallinum were evaluated. Treatments consisted of four irrigation treatments ((1) 100 mL once a day; (2) 100 mL once every 2 days; (3) 100 mL once every 4 days; (4) 100 mL once every 8 days) with four salt concentrations (0, 200, 400, and 800 ppm) applied in each treatment. Salt concentrations were set up by adding increasing concentrations of NaCl to the nutrient solution, while the control treatment was irrigated daily without NaCl. The results revealed a significant increase in the leaf number and fresh and dry weights of plants irrigated with 800 ppm salinity every four days. However, the highest chlorophyll content was consistently recorded in the control treatment (0 ppm, 4-day irrigation interval), although no significant variability in chlorophyll content was observed at week 6. The highest yields of N, Mg, and Cu were consistently recorded in plants without saline treatment, while P, K, Ca, Na, Zn, and Fe were consistently recorded in plants subjected to a combination of salinity and irrigation intervals. The combination of salinity and irrigation intervals was significant for Fe and Ca, whereas, for other elements, no significant differences occurred. The salt concentration did not influence the high yields of acid detergent fibre (ADF), crude fat, protein, or neutral detergent fibre (NDF), as they were recorded in high amounts in plants subjected to irrigation intervals only, whereas a combination of salinity and irrigation intervals resulted in the highest ash and moisture contents. Invariably, the 8-day irrigation interval without salinity optimized the yields of assayed polyphenols, flavonols, Ferric Reducing/Antioxidant Power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH), suggesting that salt stress does not influence the quantities of phytochemicals and antioxidants of M. crystallinum. These findings suggest that M. crystallinum can minimize the impact of salt stress on the accumulated minerals, phytochemicals, and proximate and antioxidant substances. Therefore, it is a suitable vegetable for regions affected by both salinity and water stress, as it can provide additional minerals, phytochemicals, antioxidants, and proximate nutrients when cultivated in saline soils. Full article
(This article belongs to the Special Issue Effects of Abiotic Stress on Horticultural Crops)
Show Figures

Figure 1

16 pages, 762 KiB  
Article
Comparative Analysis on Phytochemical Properties, Anti-Oxidative, and Anti-Inflammatory Activities of the Different Organs of the Common Ice Plant Mesembryanthemum crystallinum L.
by Yeo-Wool Kang and Na-Mi Joo
Appl. Sci. 2023, 13(4), 2527; https://doi.org/10.3390/app13042527 - 16 Feb 2023
Cited by 8 | Viewed by 3011
Abstract
The ice plant (Mesembryanthemum crystallinum L.) is a type of succulent known to contain various minerals and beneficial compounds and is enriched in compounds exhibiting a diversity of bioactivity. This study aims to determine the potential antioxidant and anti-inflammatory effects of the [...] Read more.
The ice plant (Mesembryanthemum crystallinum L.) is a type of succulent known to contain various minerals and beneficial compounds and is enriched in compounds exhibiting a diversity of bioactivity. This study aims to determine the potential antioxidant and anti-inflammatory effects of the ice plant by organs (cotyledon, stem, and leaf). The ice plant ethanol extract showed that antioxidant activity, measured by the DPPH radical scavenging ability (51.79 ± 4.18%), and hydroxyl radical scavenging activities (6.57 ± 0.29%) had lower levels than those of control BHT, but had higher antioxidant activity in the leaves of the ice plant, while ABTS+ (58.91 ± 7.23%) and Fe2+ chelating activity (16.89 ± 1.68%) showed high antioxidant activity in the cotyledon. Total polyphenols (115.43 ± 0.47 mg QE/g) and flavonoid contents (1218.07 ± 1.00 mg GAE/g) were notably high in the cotyledon. UHPLC-TOF/HRMS analyses identified 17 polyphenolic compounds of ice plants. The main constituents of the extracts obtained in this study were flavonoids, including their O-glycosides, and compounds not previously described were found. The production of NO as a major indicator of the inflammatory response was found to decrease at 100 and 300 μg/mL (p < 0.05). The levels of the inflammatory cytokines TNF-α in 10 μg/mL (p < 0.05), 50, 100, and 300 μg/mL (p < 0.000); IL-6 in 100 and 300 μg/mL (p < 0.01); and IL-1β in 50, 100 μg/mL (p < 0.01), and 300 μg/mL (p < 0.05) confirmed that the anti-inflammatory effect was exhibited by inhibiting the production of inflammatory cytokines according to the concentration of each organ of the ice plant. Full article
Show Figures

Figure 1

13 pages, 2182 KiB  
Article
Sensory Evaluation of Common Ice Plant (Mesembryanthemum crystallinum L.) in Response to Sodium Chloride Concentration in Hydroponic Nutrient Solution
by Jiaqi Xia, Neil Mattson, Alina Stelick and Robin Dando
Foods 2022, 11(18), 2790; https://doi.org/10.3390/foods11182790 - 9 Sep 2022
Cited by 6 | Viewed by 3575
Abstract
Common ice plant (Mesembryanthemum crystallinum L.) is a novel edible plant with a succulent and savory flavor. The plants display prominent epidermal bladder cells (EBCs) on the surface of the leaves that store water and sodium chloride (NaCl). The plants have high [...] Read more.
Common ice plant (Mesembryanthemum crystallinum L.) is a novel edible plant with a succulent and savory flavor. The plants display prominent epidermal bladder cells (EBCs) on the surface of the leaves that store water and sodium chloride (NaCl). The plants have high nutritional value and are adapted to saline soils. Previous research has determined the impact of NaCl on the growth and mineral content of ice plant, but as NaCl has an impact on a food’s sensory properties, an interesting question is whether saline growth media can affect the plant’s taste and texture, and if this alters consumers’ sensory response to ice plant. The objective of this study was to evaluate the sensory aspects of ice plant, as well as consumer liking in response to increasing NaCl concentration in hydroponic nutrient solution. Four-week-old seedlings of ice plant were transplanted into deep water culture (DWC) hydroponic systems and treated with five NaCl concentrations (0 M [control], 0.05 M, 0.10 M, 0.20 M, and 0.40 M NaCl). Eight-week-old plants (after four weeks of NaCl treatment) were harvested, and the middle leaves of each plant were sampled for consumer testing. A total of 115 participants evaluated various flavor, texture, and appearance aspects of ice plant and provided their liking ratings. The consumers were able to discriminate differences in salt intensity from the plants based on NaCl treatment in the hydroponic nutrient solution. Low NaCl concentrations (0.05–0.10 M) did not have obvious adverse effect on consumer liking, which aligns with the result of previous research that 0.05–0.10 M NaCl could largely stimulate the growth of ice plant. NaCl concentrations higher than 0.20 M are not recommended from both a production and consumer perspective. With increased NaCl level in plant samples, the consumers detected more saltiness, sourness, and fishiness, less green flavor, and similar levels of bitterness and sweetness. NaCl treatment had no effects on leaf appearance and texture, and the consumers’ overall liking was mainly determined by flavor. Overall, ice plant presents some unique attributes (salty and juicy) compared to other edible salad greens; however, consumer awareness of ice plant is very low, and purchase intent is relatively low as well. Consumers picture ice plant being used mainly in salads and in restaurants. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

11 pages, 2143 KiB  
Communication
Measurement of Overlapping Leaf Area of Ice Plants Using Digital Image Processing Technique
by Bolappa Gamage Kaushalya Madhavi, Anil Bhujel, Na Eun Kim and Hyeon Tae Kim
Agriculture 2022, 12(9), 1321; https://doi.org/10.3390/agriculture12091321 - 27 Aug 2022
Cited by 12 | Viewed by 3518
Abstract
Non-destructive and destructive leaf area estimation are critical in plant physiological and ecological experiments. In modern agriculture, ubiquitous digital cameras and scanners are primarily replacing traditional leaf area measurements. Thus, measuring the leaflet’s dimension is integral in analysing plant photosynthesis and growth. Leaf [...] Read more.
Non-destructive and destructive leaf area estimation are critical in plant physiological and ecological experiments. In modern agriculture, ubiquitous digital cameras and scanners are primarily replacing traditional leaf area measurements. Thus, measuring the leaflet’s dimension is integral in analysing plant photosynthesis and growth. Leaf dimension assessment with image processing is widely used nowadays. In this investigation employed an image segmentation algorithm to classify the ice plant (Mesembryanthemum crystallinum L.) canopy image with a threshold segmentation technique by grey colour model and calculating the degree of green colour in the HSV (hue, saturation, value) model. Notably, the segmentation technique is used to separate suitable surfaces from a defective noisy background. In this work, the canopy area was measured by pixel number statistics relevant to the known reference area. Furthermore, this paper proposed total leaf area estimation in a destructive method by a computer coordinating area curvimeter and lastly evaluated the overlapping percentage using the total leaf area and canopy area measurements. To assess the overlapping percentage using the proposed algorithm, the curvimeter method experiment was performed on 24 images of ice plants. The obtained results reveal that the overlapping percentage is less than 10%, as evidenced by a difference in the curvimeter and the proposed algorithm’s results with the canopy leaf area approach. Furthermore, the results show a strong correlation between the canopy and total leaf area (R2: 0.99) calculated by our proposed method. This overlapping leaf area finding offers a significant contribution to crop evolution by using computational techniques to make monitoring easier. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop