Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Meridional Overturning Circulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2921 KiB  
Article
A Revised Model of the Ocean’s Meridional Overturning Circulation
by Jochen Kaempf
J. Mar. Sci. Eng. 2025, 13(7), 1244; https://doi.org/10.3390/jmse13071244 - 27 Jun 2025
Viewed by 331
Abstract
This work explores the density-driven overturning circulation of the ocean using a process-oriented three-dimensional hydrodynamic model with a free sea surface. As expected, dense-water formation in polar regions creates a deep western boundary current (DWBC) spreading southward along the continental slope. Near the [...] Read more.
This work explores the density-driven overturning circulation of the ocean using a process-oriented three-dimensional hydrodynamic model with a free sea surface. As expected, dense-water formation in polar regions creates a deep western boundary current (DWBC) spreading southward along the continental slope. Near the equator, the DWBC releases its water eastward into the ambient ocean to form a large upwelling zone. This upwelling is coupled with a slow westward surface recirculation feeding into a swift surface return flow along the western boundary that closes the mass budget. This recirculation pattern, which is fundamentally different to the Stommel–Arons model, is a consequence of geostrophic adjustment to anomalies of the surface pressure field that form under the influence of both coastal and equatorial Kelvin waves and Rossby waves. Based on the findings, the author presents a revised model of the ocean’s meridional overturning circulation to supersede earlier, incorrect suggestions. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

13 pages, 5167 KiB  
Article
Statistical Analysis of Physical Characteristics Calculated by NEMO Model After Data Assimilation
by Konstantin Belyaev, Andrey Kuleshov and Ilya Smirnov
Mathematics 2025, 13(6), 948; https://doi.org/10.3390/math13060948 - 13 Mar 2025
Viewed by 484
Abstract
The main goal of this study is to develop a method for finding the joint probability distribution of the state of the characteristics of the NEMO (Nucleus for European Modeling of the Ocean) ocean dynamics model with data assimilation using the Generalized Kalman [...] Read more.
The main goal of this study is to develop a method for finding the joint probability distribution of the state of the characteristics of the NEMO (Nucleus for European Modeling of the Ocean) ocean dynamics model with data assimilation using the Generalized Kalman filter (GKF) method developed earlier by the authors. The method for finding the joint distribution is based on the Karhunen–Loeve decomposition of the covariance function of the joint characteristics of the ocean. Numerical calculations of the dynamics of ocean currents, surface and subsurface ocean temperatures, and water salinity were carried out, both with and without assimilation of observational data from the Argo project drifters. The joint probability distributions of temperature and salinity at individual points in the world ocean at different depths were obtained and analyzed. The Atlantic Meridional Overturning Circulation (AMOC) system was also simulated using the NEMO model with and without data assimilation, and these results were compared to each other and analyzed. Full article
Show Figures

Figure 1

19 pages, 15754 KiB  
Article
Time Lag Analysis of Atmospheric CO2 and Proxy-Based Climate Stacks on Global–Hemispheric Scales in the Last Deglaciation
by Zhi Liu and Xingxing Liu
Quaternary 2025, 8(1), 11; https://doi.org/10.3390/quat8010011 - 18 Feb 2025
Viewed by 1124
Abstract
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited [...] Read more.
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited proxy-based global–hemispheric climate stacks was detected using the Wilcoxon rank-sum test and wavelet analysis. The results indicate that the climate stack of the Northern Hemisphere started to increase slowly before 22 kabp, possibly due to the enhancement of summer insolation at high northern latitudes, the onset of warming in the Southern Hemisphere occurred around 19 kabp, and the atmospheric CO2 concentration began to raise around 18.1 kabp. This suggests that the change in northern high-latitude summer insolation was the initial trigger of the last deglaciation, and atmospheric CO2 concentration was an internal feedback associated with global ocean circulation in the Earth’s system. Both the Wilcoxon rank-sum test and wavelet analysis showed that during the BØlling–AllerØd and the Younger Dryas periods there was no obvious asynchrony between the global climate and atmospheric CO2 concentration, which perhaps implies a fast feedback–response mechanism. The seesawing changes in interhemispheric climate and the abrupt variations in the atmospheric CO2 concentration could be explained by the influences of Atlantic meridional overturning circulation strength during the BØlling–AllerØd and the Younger Dryas periods. This reveals that Atlantic meridional overturning circulation played an important role in the course of the last deglaciation. Full article
Show Figures

Figure 1

14 pages, 4138 KiB  
Article
Use of Spectral Clustering for Identifying Circulation Patterns of the East Korea Warm Current and Its Extension
by Eun Young Lee, Dong Eun Lee, Hye-Ji Kim, Haedo Baek, Young Ho Kim and Young-Gyu Park
J. Mar. Sci. Eng. 2024, 12(12), 2338; https://doi.org/10.3390/jmse12122338 - 20 Dec 2024
Viewed by 1105
Abstract
A graphical clustering approach was used to objectively identify prevalent surface circulation patterns in the East/Japan Sea (EJS). By applying a spectral clustering algorithm, three distinct patterns in the East Korea Warm Current (EKWC) and its extension were identified from daily maps of [...] Read more.
A graphical clustering approach was used to objectively identify prevalent surface circulation patterns in the East/Japan Sea (EJS). By applying a spectral clustering algorithm, three distinct patterns in the East Korea Warm Current (EKWC) and its extension were identified from daily maps of reanalyzed sea surface heights spanning the past 30 years. The results are consistent with previous studies that used manual classification of the EKWC’s Lagrangian trajectories, highlighting the effectiveness of spectral clustering in accurately characterizing the surface circulation states in the EJS. Notably, the recent dominance of northern paths, as opposed to routes along Japan’s coastline or those departing from Korea’s east coast further south, has prompted focused re-clustering of the northern paths according to their waviness. This re-clustering, with additional emphasis on path length, distinctly categorized two patterns: straight paths (SPs) and large meanders (LMs). Notably, SPs have become more prevalent in the most recent years, while LMs have diminished. An autoregression analysis reveals that seasonal anomalies in the cluster frequency in spring tend to persist through to the following autumn. The frequency anomalies in the SPs correlate strongly with the development of pronounced anomalies in the gradient of meridional sea surface height and negative anomalies in the surface wind stress curl in the preceding cold seasons. This relationship explains the observed correlation between a negative Arctic Oscillation during the preceding winter and the increased frequency of SPs in the subsequent spring. The rapid increase in the occurrence of SPs indicates that a reduction in LMs limits the mixing of cold, fresh, northern waters with warm, saline, southern waters, thereby reinforcing the presence of SPs due to a strengthened gradient of meridional surface height and contributing to a slowdown in the regional overturning circulation. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

26 pages, 21625 KiB  
Article
Mid-Deep Circulation in the Western South China Sea and the Impacts of the Central Depression Belt and Complex Topography
by Hongtao Mai, Dongxiao Wang, Hui Chen, Chunhua Qiu, Hongzhou Xu, Xuekun Shang and Wenyan Zhang
J. Mar. Sci. Eng. 2024, 12(5), 700; https://doi.org/10.3390/jmse12050700 - 24 Apr 2024
Cited by 3 | Viewed by 2426
Abstract
As a key component of meridional overturning circulation, mid-deep circulation plays a crucial role in the vertical and meridional distribution of heat. However, due to a lack of observation data, current knowledge of the dynamics of mid-deep circulation currents moving through basin boundaries [...] Read more.
As a key component of meridional overturning circulation, mid-deep circulation plays a crucial role in the vertical and meridional distribution of heat. However, due to a lack of observation data, current knowledge of the dynamics of mid-deep circulation currents moving through basin boundaries and complicated seabed topographies is severely limited. In this study, we combined oceanic observation data, bathymetric data, and numerical modeling of the northwest continental margin of the South China Sea to investigate (i) the main features of mid-deep circulation currents traveling through the central depression belt and (ii) how atmospheric-forcing (winds) mesoscale oceanic processes such as eddies and current–topography interactions modulate the mid-deep circulation patterns. Comprehensive results suggest that the convergence of different water masses and current–topography interactions take primary responsibility for the generation of instability and enhanced mixing within the central depression belt. By contrast, winds and mesoscale eddies have limited influence on the development of local circulation patterns at mid-deep depths (>400 m). This study emphasizes that the intensification and bifurcation of mid-deep circulation; specifically, those induced by a large depression belt morphology determine the local material cycle (temperature, salinity, etc.) and energy distribution. These findings provide insights for a better understanding of mid-deep circulation structures on the western boundary of ocean basins such as the South China Sea. Full article
Show Figures

Figure 1

28 pages, 13027 KiB  
Article
Ocean Temperature Profiling Lidar: Analysis of Technology and Potential for Rapid Ocean Observations
by John R. Moisan, Cecile S. Rousseaux, Paul R. Stysley, Gregory B. Clarke and Demetrios P. Poulios
Remote Sens. 2024, 16(7), 1236; https://doi.org/10.3390/rs16071236 - 31 Mar 2024
Cited by 3 | Viewed by 2014
Abstract
Development of ocean measurement technologies can improve monitoring of the global Ocean Heat Content (OHC) and Heat Storage Rate (HSR) that serve as early-warning indices for climate-critical circulation processes such as the Atlantic Meridional Overturning Circulation and provide real-time OHC assessments for tropical [...] Read more.
Development of ocean measurement technologies can improve monitoring of the global Ocean Heat Content (OHC) and Heat Storage Rate (HSR) that serve as early-warning indices for climate-critical circulation processes such as the Atlantic Meridional Overturning Circulation and provide real-time OHC assessments for tropical cyclone forecast models. This paper examines the potential of remotely measuring ocean temperature profiles using a simulated Brillouin lidar for calculating ocean HSR. A series of data analysis (‘Nature’) and Observational Systems Simulation Experiments (OSSEs) were carried out using 26 years (1992–2017) of daily mean temperature and salinity outputs from the ECCOv4r4 ocean circulation model. The focus of this study is to compare various OSSEs carried out to measure the HSR using a simulated Brillouin lidar against the HSR calculated from the ECCOv4r4 model results. Brillouin lidar simulations are used to predict the probability of detecting a return lidar signal under varying sampling strategies. Correlations were calculated for the difference between sampling strategies. These comparisons ignore the measurement errors inherent in a Brillouin lidar. Brillouin lidar technology and instruments are known to contain numerous, instrument-dependent errors and remain an engineering challenge. A significant decrease in the ability to measuring global ocean HSRs is a consequence of measuring ocean temperature from nadir-pointing instruments that can only take measurements along-track. Other sources of errors include the inability to fully profile ocean regions with deep mixed layers, such as the Southern Ocean and North Atlantic, and ocean regions with high light attenuation levels. Full article
(This article belongs to the Special Issue Oceanographic Lidar in the Study of Marine Systems)
Show Figures

Figure 1

37 pages, 6316 KiB  
Review
Interaction between the Westerlies and Asian Monsoons in the Middle Latitudes of China: Review and Prospect
by Xiang-Jie Li and Bing-Qi Zhu
Atmosphere 2024, 15(3), 274; https://doi.org/10.3390/atmos15030274 - 25 Feb 2024
Cited by 7 | Viewed by 2883
Abstract
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the [...] Read more.
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the long-term paleoenvironmental changes in the westerly- and monsoon-controlled areas in China’s middle latitudes is not uniform, and the phase relationship between the two at different time scales is also controversial, especially the exception to the “dry gets drier, wet gets wetter” paradigm in global warming between the two. Based on the existing literature data published, integrated paleoenvironmental records, and comprehensive simulation results in recent years, this study systematically reviews the climate and environmental changes in the two major circulation regions in the mid-latitudes of China since the Middle Pleistocene, with a focus on exploring the phase relationship between the two systems at different time scales and its influencing mechanism. Through the reanalysis and comparative analysis of the existing data, we conclude that the interaction and relationship between the two circulation systems are relatively strong and close during the warm periods, but relatively weak during the cold periods. From the perspective of orbital, suborbital, and millennium time scales, the phase relationship between the westerly and Asian summer monsoon (ASM) circulations shows roughly in-phase, out-of-phase, and anti-phase transitions, respectively. There are significant differences between the impacts of the westerly and ASM circulations on the middle-latitude regions of northwest China, the Qinghai–Tibet Plateau, and eastern China. However, under the combined influence of varied environmental factors such as BHLSR (boreal high-latitude solar radiation), SST (sea surface temperature), AMOC (north Atlantic meridional overturning circulation), NHI (Northern Hemisphere ice volume), NAO (North Atlantic Oscillation), ITCZ (intertropical convergence zone), WPSH (western Pacific subtropical high), TIOA (tropical Indian Ocean anomaly), ENSO (El Niño/Southern Oscillation), CGT/SRP (global teleconnection/Silk Road pattern), etc., there is a complex and close coupling relationship between the two, and it is necessary to comprehensively consider their “multi-factor’s joint-action” mechanism and impact, while, in general, the dynamic mechanisms driving the changes of the westerly and ASM circulations are not the same at different time scales, such as orbital, suborbital, centennial to millennium, and decadal to interannual, which also leads to the formation of different types of phase relationships between the two at different time scales. Future studies need to focus on the impact of this “multi-factor linkage mechanism” and “multi-phase relationship” in distinguishing the interaction between the westerly and ASM circulation systems in terms of orbital, suborbital, millennium, and sub-millennium time scales. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

18 pages, 5747 KiB  
Article
Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities
by Heather H. Furey, Nicholas P. Foukal, Adele Anderson and Amy S. Bower
Remote Sens. 2023, 15(24), 5711; https://doi.org/10.3390/rs15245711 - 13 Dec 2023
Cited by 2 | Viewed by 1442
Abstract
In the 2010s, a large freshening event similar to past Great Salinity Anomalies occurred in the Iceland Basin that has since propagated into the Irminger Sea. The source waters of this fresh anomaly were hypothesized to have come from an eastward diversion of [...] Read more.
In the 2010s, a large freshening event similar to past Great Salinity Anomalies occurred in the Iceland Basin that has since propagated into the Irminger Sea. The source waters of this fresh anomaly were hypothesized to have come from an eastward diversion of the Labrador Current, a finding that has since been supported by recent modeling studies. In this study, we investigate the pathways of the freshwater anomaly using a purely observational approach: particle tracking using satellite altimetry-derived surface velocity fields. Particle trajectories originating in the Labrador Current and integrated forward in time entered the Iceland Basin during the freshening event at nearly twice the frequency observed prior to 2009, suggesting an increased presence of Labrador Current-origin water in the Iceland Basin and Rockall Trough during the freshening. We observe a distinct regime change in 2009, similar to the timing found in the previous modeling papers. These spatial shifts were accompanied by faster transit times along the pathways which led to along-stream convergence and more particles arriving to the eastern subpolar gyre. These findings support the hypothesis that a diversion of relatively fresh Labrador Current waters eastward from the Grand Banks can explain the unprecedented freshening in the Iceland Basin. Full article
Show Figures

Figure 1

6 pages, 1643 KiB  
Proceeding Paper
Unraveling the Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation in the Past 20,000 Years
by Gagan Mandal and Shail Vijeta Ekka
Environ. Sci. Proc. 2023, 27(1), 3; https://doi.org/10.3390/ecas2023-15116 - 14 Oct 2023
Viewed by 810
Abstract
Recent studies have suggested that there is a dynamic connection between the Atlantic Meridional Overturning Circulation (AMOC) and the North Atlantic subpolar gyre (SPG). This modeling study uses a fully coupled atmosphere–ocean–sea ice Earth system model to investigate the SPG dynamics throughout the [...] Read more.
Recent studies have suggested that there is a dynamic connection between the Atlantic Meridional Overturning Circulation (AMOC) and the North Atlantic subpolar gyre (SPG). This modeling study uses a fully coupled atmosphere–ocean–sea ice Earth system model to investigate the SPG dynamics throughout the past twenty-two thousand years. We found that the variations in the SPG and AMOC strength are synchronized. Consequently, during cold events in the Northern Hemisphere, the SPG strength declined simultaneously with the AMOC strength and with shallower mixed layer depths, which reduced the northward meridional heat transport and increased Atlantic sea ice coverage. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

5 pages, 4360 KiB  
Proceeding Paper
The Impact of the Atlantic Meridional Overturning Circulation (AMOC) Variability on the Mediterranean Climate
by Nikoleta Petridi, Iliana Polychroni and Maria Hatzaki
Environ. Sci. Proc. 2023, 26(1), 160; https://doi.org/10.3390/environsciproc2023026160 - 4 Sep 2023
Cited by 1 | Viewed by 2253
Abstract
The Atlantic Meridional Overturning Circulation (AMOC) is a major oceanic circulation system in the Atlantic Ocean, which transports heat to the poles and cold saline waters to the tropics. The AMOC mechanism is responsible for many climate and weather systems; however, it is [...] Read more.
The Atlantic Meridional Overturning Circulation (AMOC) is a major oceanic circulation system in the Atlantic Ocean, which transports heat to the poles and cold saline waters to the tropics. The AMOC mechanism is responsible for many climate and weather systems; however, it is naturally unstable, and it changes in time depending on sea-ice melt, wind patterns, solar radiation variations, etc. At the same time, there are recent indications that the AMOC is in a weaker state than previously thought with impacts more severe than expected. Knowing that the AMOC can impact remote systems, and given the risk the Mediterranean faces with climate change progressing, we focus on the relationship between the AMOC and the Mediterranean climate, based on AMOC indicators and monthly ERA5 fields (sea surface temperature, air temperature and total precipitation) from 1959 to 2021. We find that the two systems exhibit a relationship although it is not homogenous. More specifically, the AMOC is highly correlated with sea and air temperatures of the central and eastern Mediterranean with a time lag of up to 2 years, while strong links are found with the entire Mediterranean’s annual total precipitation up to 3 years ahead. The results suggest the possibility of predicting the occurrence of significantly extreme periods in the Mediterranean several months in advance. Full article
Show Figures

Figure 1

34 pages, 9128 KiB  
Article
Investigating Winter Temperatures in Sweden and Norway: Potential Relationships with Climatic Indices and Effects on Electrical Power and Energy Systems
by Younes Mohammadi, Aleksey Palstev, Boštjan Polajžer, Seyed Mahdi Miraftabzadeh and Davood Khodadad
Energies 2023, 16(14), 5575; https://doi.org/10.3390/en16145575 - 24 Jul 2023
Cited by 10 | Viewed by 3363
Abstract
This paper presents a comprehensive study of winter temperatures in Norway and northern Sweden, covering a period of 50 to 70 years. The analysis utilizes Singular Spectrum Analysis (SSA) to investigate temperature trends at six selected locations. The results demonstrate an overall long-term [...] Read more.
This paper presents a comprehensive study of winter temperatures in Norway and northern Sweden, covering a period of 50 to 70 years. The analysis utilizes Singular Spectrum Analysis (SSA) to investigate temperature trends at six selected locations. The results demonstrate an overall long-term rise in temperatures, which can be attributed to global warming. However, when investigating variations in highest, lowest, and average temperatures for December, January, and February, 50% of the cases exhibit a significant decrease in recent years, indicating colder winters, especially in December. The study also explores the variations in Atlantic Meridional Overturning Circulation (AMOC) variations as a crucial climate factor over the last 15 years, estimating a possible 20% decrease/slowdown within the first half of the 21st century. Subsequently, the study investigates potential similarities between winter AMOC and winter temperatures in the mid to high latitudes over the chosen locations. Additionally, the study examines another important climatic index, the North Atlantic Oscillation (NAO), and explores possible similarities between the winter NAO index and winter temperatures. The findings reveal a moderate observed lagged correlation for AMOC-smoothed temperatures, particularly in December, along the coastal areas of Norway. Conversely, a stronger lagged correlation is observed between the winter NAO index and temperatures in northwest Sweden and coastal areas of Norway. Thus, NAO may influence both AMOC and winter temperatures (NAO drives both AMOC and temperatures). Furthermore, the paper investigates the impact of colder winters, whether caused by AMOC, NAO, or other factors like winds or sea ice changes, on electrical power and energy systems, highlighting potential challenges such as reduced electricity generation, increased electricity consumption, and the vulnerability of power grids to winter storms. The study concludes by emphasizing the importance of enhancing the knowledge of electrical engineering researchers regarding important climate indices, AMOC and NAO, the possible associations between them and winter temperatures, and addressing the challenges posed by the likelihood of colder winters in power systems. Full article
(This article belongs to the Special Issue Climate Changes and the Impacts on Power and Energy Systems)
Show Figures

Figure 1

13 pages, 1938 KiB  
Review
Instability of Atlantic Meridional Overturning Circulation: Observations, Modelling and Relevance to Present and Future
by Zhengyu Liu
Atmosphere 2023, 14(6), 1011; https://doi.org/10.3390/atmos14061011 - 12 Jun 2023
Cited by 2 | Viewed by 3834
Abstract
The Atlantic Meridional Overturning Circulation (AMOC) has changed dramatically during the glacial–interglacial cycle. One leading hypothesis for these abrupt changes is thermohaline instability. Here, I review recent progress towards understanding thermohaline instability in both observations and modelling. Proxy records available seem to favor [...] Read more.
The Atlantic Meridional Overturning Circulation (AMOC) has changed dramatically during the glacial–interglacial cycle. One leading hypothesis for these abrupt changes is thermohaline instability. Here, I review recent progress towards understanding thermohaline instability in both observations and modelling. Proxy records available seem to favor thermohaline instability as the cause of the abrupt climate changes during the glacial–deglacial period because the deep North Atlantic water mass and AMOC seemed to have changed before the North Atlantic climate. However, most fully Coupled General Circulation Models (CGCMs) so far seem to exhibit monostable AMOC, because (1) these models have failed to simulate abrupt AMOC changes unless they are forced by an abrupt change of external forcing and, (2) these models have shown opposite freshwater convergence from the current observations. This potential model bias in the AMOC stability leaves the model projection of the future AMOC change uncertain. Full article
Show Figures

Figure 1

8 pages, 2609 KiB  
Proceeding Paper
The Influence of Antarctic Sea Ice Distribution on the Southern Ocean Overturning Circulation for the Past 20,000 Years
by Gagan Mandal, Jia-Yuh Yu and Shih-Yu Lee
Proceedings 2023, 87(1), 9; https://doi.org/10.3390/IECG2022-14145 - 13 Mar 2023
Viewed by 1421
Abstract
Changes in Southern Ocean physics are dynamically linked to westerly winds, ocean currents, and the distribution of Antarctic sea ice in the Southern Hemisphere. As a result, it is critical to comprehend the response of Southern Ocean physics to the distribution of Antarctic [...] Read more.
Changes in Southern Ocean physics are dynamically linked to westerly winds, ocean currents, and the distribution of Antarctic sea ice in the Southern Hemisphere. As a result, it is critical to comprehend the response of Southern Ocean physics to the distribution of Antarctic sea ice on a basin scale. This modeling study employs a fully coupled Earth system model to investigate the effect of Antarctic Sea ice distribution on Southern Ocean dynamics during the past 20,000 years. The findings show that the formation and melting of sea ice have an effect on the distribution of surface buoyancy flux over the Southern Ocean. The simulated sea ice edge (grid points in the ice model have a sea ice concentration above 5%) in the Southern Ocean almost demarcates the borderline between the lower and upper meridional overturning cells. The seemingly permanent Antarctic sea ice edge (grid points in the ice model with a sea ice concentration greater than 80%) coincides with the shift of buoyancy flux from positive (buoyancy gain) to negative (buoyancy loss). Furthermore, the negative surface buoyancy flux zone has shifted polewards for the past 20,000 years, with the exception of approximately 14.1 thousand years. Our findings show that Antarctic sea ice feedback affects the surface buoyancy flux, affecting the overturning circulation in the Southern Ocean. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Geosciences)
Show Figures

Figure 1

19 pages, 2786 KiB  
Article
The North Atlantic Oscillations: Lead–Lag Relations for the NAO, the AMO, and the AMOC—A High-Resolution Lead–lag Analysis
by Knut Lehre Seip and Hui Wang
Climate 2022, 10(5), 63; https://doi.org/10.3390/cli10050063 - 5 May 2022
Cited by 3 | Viewed by 3836
Abstract
Several studies examine cycle periods and the interactions between the three major climate modes over the North Atlantic, namely the Atlantic meridional overturning circulation (AMOC), the Atlantic multidecadal oscillation (AMO), and the North Atlantic oscillation (NAO). Here, we use a relatively novel high-resolution [...] Read more.
Several studies examine cycle periods and the interactions between the three major climate modes over the North Atlantic, namely the Atlantic meridional overturning circulation (AMOC), the Atlantic multidecadal oscillation (AMO), and the North Atlantic oscillation (NAO). Here, we use a relatively novel high-resolution Lead–lag (LL) method to identify short time windows with persistent LL relations in the three series during the period from 1947 to 2020. We find that there are roughly 20-year time windows where LL relations change direction at both interannual, high-frequency and multidecadal, low-frequency timescales. However, with varying LL strength, the AMO leads AMOC for the full period at the interannual timescale. During the period from 1980 to 2000, we had the sequence NAO→AMO→AMOC→NAO at the interannual timescale. For the full period in the decadal time scale, we obtain NAO→AMO→AMOC. The Ekman variability closely follows the NAO variability. Both single time series and the LL relation between pairs of series show pseudo-oscillating patterns with cycle periods of about 20 years. We list possible mechanisms that contribute to the cyclic behavior, but no conclusive evidence has yet been found. Full article
(This article belongs to the Special Issue The North Atlantic Ocean Dynamics and Climate Change)
Show Figures

Figure 1

21 pages, 24695 KiB  
Article
Exploring AMOC Regime Change over the Past Four Decades through Ocean Reanalyses
by Vincenzo de Toma, Vincenzo Artale and Chunxue Yang
Climate 2022, 10(4), 59; https://doi.org/10.3390/cli10040059 - 8 Apr 2022
Viewed by 5434
Abstract
We examine North Atlantic climate variability using an ensemble of ocean reanalysis datasets to study the Atlantic Meridional Overturning Circulation (AMOC) from 1979 to 2018. The dataset intercomparison shows good agreement for the latest period (1995–2018) for AMOC dynamics, characterized by a weaker [...] Read more.
We examine North Atlantic climate variability using an ensemble of ocean reanalysis datasets to study the Atlantic Meridional Overturning Circulation (AMOC) from 1979 to 2018. The dataset intercomparison shows good agreement for the latest period (1995–2018) for AMOC dynamics, characterized by a weaker overturning circulation after 1995 and a more intense one during 1979–1995, with varying intensity across the various datasets. The correlation between leading empirical orthogonal functions suggests that the AMOC weakening has connections with cooler (warmer) sea surface temperature (SST) and lower (higher) ocean heat content in the subpolar (subtropical) gyre in the North Atlantic. Barotropic stream function and Gulf Stream index reveal a shrinking subpolar gyre and an expanding subtropical gyre during the strong-AMOC period and vice versa, consistently with Labrador Sea deep convection reduction. We also observed an east–west salt redistribution between the two periods. Additional analyses show that the AMOC variability is related to the North Atlantic Oscillation phase change around 1995. One of the datasets included in the comparison shows an overestimation of AMOC variability, notwithstanding the model SST bias reduction via ERA-Interim flux adjustments: further studies with a set of numerical experiments will help explain this behavior. Full article
(This article belongs to the Special Issue The North Atlantic Ocean Dynamics and Climate Change)
Show Figures

Figure 1

Back to TopTop