Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Velocity Fields
2.2. Particle Deployment Locations
2.3. Particle Advection Software and Simulation Experiments
2.4. Ability of Altimetry-Derived Velocity Fields to Predict Surface Drifter Pathways
2.5. Geostrophic Versus Ekman+Geostrophic Velocity Fields
3. Results
3.1. More Labrador Current-Origin Water Found in Iceland Basin in 2015 and 2016
3.2. Labrador Current Waters Diverted East at the Tail of the Grand Banks between 2012–2016
4. Discussion
4.1. Diversion Mechanisms near the Tail of the Grand Banks
4.2. Expanding insights from Surface to Depth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelderloos, R.; Straneo, F.; Katsmann, C.A. Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–1971. J. Clim. 2012, 25, 6743–6755. [Google Scholar] [CrossRef]
- Böning, C.; Behrens, E.; Biastoch, A.; Getzlaff, K.; Bamber, J.L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 2016, 9, 523–552. [Google Scholar] [CrossRef]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; van den Broeke, M.R.; Ribergaard, M.H.; Mortensen, J. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 2016, 7, 10525. [Google Scholar] [CrossRef] [PubMed]
- Holliday, N.P.; Bersch, M.; Berx, B.; Chafik, L.; Cunningham, S.; Florindo-López, C.; Hátún, H.; Johns, W.E.; Josey, S.A.; Larsen, K.M.H.; et al. Ocean Circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun. 2020, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Biló, T.C.; Straneo, F.; Holte, J.; Le Bras, I.A.-A. Arrival of new great salinity anomaly weakens convection in the Irminger Sea. Geophys. Res. Lett. 2022, 49, e2022GL098857. [Google Scholar] [CrossRef]
- Le Bras, I.A.-A.; Straneo, F.; Holte, J.; De Jong, M.F.; Holliday, N.P. Rapid export of waters formed by convection near the Irminger Sea’s western boundary. Geophys. Res. Lett. 2020, 47, 3. [Google Scholar] [CrossRef]
- Dickson, R.R.; Meincke, J.; Malmberg, S.-A.; Lee, A.J. The “Great Salinity Anomaly” in the Northern North Atlantic 1968–82. Prog. Oceanogr. 1988, 20, 103–151. [Google Scholar] [CrossRef]
- Belkin, I.M.; Levitus, S.; Antonov, J.; Malmberg, S.-V. “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr. 1998, 41, 1–68. [Google Scholar] [CrossRef]
- Belkin, I.M. Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys. Res. Lett. 2004, 31, L08306. [Google Scholar] [CrossRef]
- Lazier, J.R. Oceanographic conditions at ocean weather ship Bravo, 1964–1974. Atmos.-Ocean 1980, 18, 227–238. [Google Scholar] [CrossRef]
- Haak, H.; Jungclaus, J.; Mikolajewicz, U.; Latif, M. Formation and propagation of great salinity anomalies. Geophys. Res. Lett. 2003, 30, 9. [Google Scholar] [CrossRef]
- Holliday, N.P.; Hughes, S.L.; Bacon, S.; Beszczynska-Möller, A.; Hansen, B.; Lavín, A.; Loeng, H.; Mork, K.A.; Østerhus, S.; Sherwin, T.; et al. Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys. Res. Lett. 2008, 35, 3. [Google Scholar] [CrossRef]
- Fratantoni, P.S.; Pickart, R.S. The western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 2007, 37, 2509–2533. [Google Scholar] [CrossRef]
- Han, G.; Ma, Z.; Chen, N. Ocean climate variability off Newfoundland and Labrador over 1979–2010: A modelling approach. Ocean Model. 2019, 144, 101505. [Google Scholar] [CrossRef]
- Fratantoni, P.S.; McCartney, M.S. Freshwater export from the Labrador Current to the North Atlantic Current at the Tail of the Grand Banks of Newfoundland. Deep-Sea Res. I. 2009, 57, 258–283. [Google Scholar] [CrossRef]
- Wang, Q.; Ilicak, M.; Gerdes, R.; Drange, H.; Aksenov, Y.; Bailey, D.A.; Bentsen, M.; Biastoch, A.; Bozec, A.; Böning, C.; et al. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Model. 2016, 99, 86–109. [Google Scholar] [CrossRef]
- Gonçalves Neto, A.; Langan, J.A.; Palter, J.B. Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. Commun. Earth Environ. 2021, 2, 74. [Google Scholar] [CrossRef]
- Gonçalves Neto, A.; Palter, J.B.; Xu, X.; Fratantoni, P. Temporal variability of the Labrador Current pathways around the Tail of the Grand Banks at intermediate depths in a high-resolution ocean circulation model. J. Geophys. Res. Ocean. 2023, 128, 3. [Google Scholar] [CrossRef]
- Fox, A.D.; Handmann, P.; Schmidt, C.; Fraser, N.; Rühs, S.; Sanchez-Franks, A.; Martin, T.; Oltmanns, M.; Johnson, C.; Rath, W.; et al. Exceptional freshening and coolingin the eastern subpolar North Atlantic caused by reduced Labrador Sea surface heat loss. Ocean Sci. 2022, 18, 1507–1533. [Google Scholar] [CrossRef]
- Biastoch, A.; Schwarzkopf, F.U.; Getzlaff, K.; Rühs, S.; Martin, T.; Scheinert, M.; Schulzki, T.; Handmann, P.; Hummels, R.; Böning, C. Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20x. Ocean Sci. 2021, 17, 1177–1211. [Google Scholar] [CrossRef]
- Jutras, M.; Dufour, C.; Mucci, A.; Talbot, L.C. Large-scale control of the retroflection of the Labrador Current. Nat. Commun. 2023, 14, 2623. [Google Scholar] [CrossRef] [PubMed]
- Reagan, J.R.; US DOC/NOAA/NESDIS/NCEI > Oceanographic and Geophysical Science and Services Division. World Ocean Atlas 2023—Objectively Analyzed In Situ Temperature and Salinity Climatologies for the 1991–2020 Climate Normal Period (NCEI Accession 0270533). Subset 1991–2000 Climatology. NOAA National Centers for Environmental Information. 2020. Available online: https://www.ncei.noaa.gov/archive/accession/0270533 (accessed on 5 July 2023).
- Rio, M.-H.; Mulet, S.; Picot, N. Beyond GOCE for the ocean circulation estimate: Synergistic use of altimetry, gravimetr, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett. 2014, 41, 24. [Google Scholar] [CrossRef]
- Cyr, F.; Snook, S.; Bishop, C.; Galbraith, P.S.; Chen, N.; Han, G. Physical Oceanographic Conditions on the Newfoundland and Labrador Shelf during 2021. DFO Can. Sci. Advis. Secr. Res. Doc. 2022. Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/41063491.pdf (accessed on 6 December 2023).
- Florindo-Llopez, C.; Bacon, S.; Aksenov, Y.; Chafik, L.; Colbourne, E.; Holliday, N.P. Arctic Ocean and Hudson Bay freshwater exports: New estimates from seven decades of hydrographic surveys on the Labrador Shelf. J. Clim. 2020, 33, 8849–8868. [Google Scholar] [CrossRef]
- Delandmeter, P.; Van Sebille, E. The Parcels v2.0 Lagrangian framework: New field interpolation schemes. Geosci. Model Dev. 2019, 12, 3571–3584. [Google Scholar] [CrossRef]
- Wagner, P.; Rühs, S.; Schwarzkopf, F.U.; Koszalka, I.M.; Biastoch, A. Can Lagrangian tracking simulate tracer spreading in a high-resolution ocean general circulation model? J. Phys. Oceanogr. 2019, 49, 1141–1157. [Google Scholar] [CrossRef]
- Schmidt, C.; Schwarzkopf, F.U.; Rühs, S.; Biastoch, A. Characteristics and robustness of Agulhas leakage estimates: An inter-comparison study of Lagrangian methods. Ocean Sci. 2021, 17, 1067–1080. [Google Scholar] [CrossRef]
- Desbruyères, D.; Chafik, L.; Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Commun. Earth Environ. 2021, 2, 48. [Google Scholar] [CrossRef]
- Brambilla, E.; Talley, L.D. Surface drifter exchange between the North Atlantic subtropical and subpolar gyres. J. Geophys. Res. Ocean. 2006, 111, C7. [Google Scholar] [CrossRef]
- Hakkinen, S.; Rhines, P.B. Decline of subpolar North Atlantic circulation during the 1990s. Science 2004, 304, 555–559. [Google Scholar] [CrossRef]
- Holliday, N.P.; Cunningham, S.; Johnson, C.; Gary, S.F.; Griffiths, C.; Read, J.F.; Sherwin, T. Multidecadal variability of potential temperature, salinity and transports in the eastern subpolar North Atlantic. J. Geophys. Res. Ocean. 2015, 120, 5945–5967. [Google Scholar] [CrossRef]
- Berglund, S.; Döös, K.; Groeskamp, S.; McDougall, T. North Atlantic Ocean Circulation and Related Exchange of Heat and Salt Between Water Masses. Geophys. Res. Lett. 2023, 50, 13. [Google Scholar] [CrossRef]
- Foukal, N.P.; Lozier, M.S. Assessing variability in the size and strength of the North Atlantic subpolar gyre. J. Geophys. Res. Ocean. 2017, 122, 8. [Google Scholar] [CrossRef]
- Gawarkiewicz, G.; Fratantoni, P.; Bahr, F.; Ellertson, A. Increasing frequency of salinity maximum intrusions in the Middle Atlantic Bight. J. Geophys. Res. Ocean. 2022, 127, 7. [Google Scholar] [CrossRef]
Pathway | Percent of Total Trajectories | Percent of Total Trajectories That Reached IB/RT | Peak (Mean) Travel Time to IB/RT |
---|---|---|---|
All | 100% | 42% | 295 d (353 d) |
Direct | 43% | 25% | 275 d (331 d) |
Looped | 30% | 17% | 320 d (385 d) |
West of TGB | 7% | 5% | 365 d (429 d) |
East of TGB | 22% | 11% | 255 d (305 d) |
West | 26% | - | - |
None | 2% | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furey, H.H.; Foukal, N.P.; Anderson, A.; Bower, A.S. Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities. Remote Sens. 2023, 15, 5711. https://doi.org/10.3390/rs15245711
Furey HH, Foukal NP, Anderson A, Bower AS. Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities. Remote Sensing. 2023; 15(24):5711. https://doi.org/10.3390/rs15245711
Chicago/Turabian StyleFurey, Heather H., Nicholas P. Foukal, Adele Anderson, and Amy S. Bower. 2023. "Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities" Remote Sensing 15, no. 24: 5711. https://doi.org/10.3390/rs15245711
APA StyleFurey, H. H., Foukal, N. P., Anderson, A., & Bower, A. S. (2023). Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities. Remote Sensing, 15(24), 5711. https://doi.org/10.3390/rs15245711