Instability of Atlantic Meridional Overturning Circulation: Observations, Modelling and Relevance to Present and Future
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Paleo Evidence of AMOC Instability
3.2. AMOC Instability in CGCMs
3.3. Relevance to the Present and Future
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broecker, W.S. Paleocean circulation during the Last Deglaciation: A bipolar seesaw? Paleoceanography 1998, 13, 119–121. [Google Scholar] [CrossRef]
- Pedro, J.B.; Jochum, M.; Buizert, C.; He, F.; Barker, S.; Rasmussen, S.O. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 2018, 192, 27–46. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annu. Rev. Mar. Sci. 2017, 9, 83–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duplessy, J.C.; Shackleton, N.J.; Fairbanks, R.G.; Labeyrie, L.; Oppo, D.; Kallel, N. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 1988, 3, 343–360. [Google Scholar] [CrossRef]
- Goldstein, S.L.; Hemming, S.R. Long-lived Isotopic Tracers in Oceanography, Paleoceanography, and Ice-sheet Dynamics. Treatise Geochem. 2003, 6, 453–483. [Google Scholar]
- Lynch-Stieglitz, J.; Adkins, J.F.; Curry, W.B.; Dokken, T.M.; Hall, I.R.; Herguera, J.C.; Hirschi, J.J.-M.; Ivanova, E.; Kissel, C.; Marchal, O.; et al. Atlantic Meridional Overturning Circulation During the Last Glacial Maximum. Science 2007, 316, 66–69. [Google Scholar] [CrossRef] [Green Version]
- McManus, J.F.; Francois, R.; Gherardi, J.M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, J.; Curry, W.B.; Slowey, N. Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature 1999, 402, 644–648. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Stommel, H. Thermohaline Convection with Two Stable Regimes of Flow. Tellus 1961, 13, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 1996, 12, 799–811. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.; Hammer, C.U.; Oeschger, H. North Atlantic Climatic Oscillations Revealed by Deep Greenland Ice Cores. In Climate Processes and Climate Sensitivity; Wiley Online Library: New York, NY, USA, 1984; pp. 288–298. [Google Scholar] [CrossRef]
- Oeschger, H.; Beer, J.; Siegenthaler, U.; Stauffer, B.; Dansgaard, W.; Langway, C.C. Late Glacial Climate History from Ice Cores. In Climate Processes and Climate Sensitivity; Wiley Online Library: New York, NY, USA, 1984; pp. 299–306. [Google Scholar] [CrossRef]
- Broecker, W.S.; Peteet, D.M.; Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation? Nature 1985, 315, 21–26. [Google Scholar] [CrossRef]
- Bond, G.; Heinrich, H.; Broecker, W.; Labeyrie, L.; McManus, J.; Andrews, J.; Huon, S.; Jantschik, R.; Clasen, S.; Simet, C.; et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 1992, 360, 245–249. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; deMenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Gherardi, J.-M.; Labeyrie, L.; Nave, S.; Francois, R.; McManus, J.F.; Cortijo, E. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography 2009, 24, PA2204. [Google Scholar] [CrossRef] [Green Version]
- Henry, L.G.; McManus, J.F.; Curry, W.B.; Roberts, N.L.; Piotrowski, A.M.; Keigwin, L.D. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 2016, 353, 470–474. [Google Scholar] [CrossRef] [Green Version]
- Hoogakker, B.A.A.; McCave, I.N.; Vautravers, M.J. Antarctic link to deep flow speed variation during Marine Isotope Stage 3 in the western North Atlantic. Earth Planet. Sci. Lett. 2007, 257, 463–473. [Google Scholar] [CrossRef]
- Clark, P.U.; Pisias, N.G.; Stocker, T.F.; Weaver, A.J. The role of the thermohaline circulation in abrupt climate change. Nature 2002, 415, 863–869. [Google Scholar] [CrossRef]
- Barker, S.; Chen, J.; Gong, X.; Jonkers, L.; Knorr, G.; Thornalley, D. Icebergs not the trigger for North Atlantic cold events. Nature 2015, 520, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Brook, E.J. Atmospheric CO2 and Climate on Millennial Time Scales During the Last Glacial Period. Science 2008, 322, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Schmittner, A.; Galbraith, E.D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 2008, 456, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Bryden, H.L.; King, B.A.; McCarthy, G.D. South Atlantic overturning circulation at 24°S. J. Mar. Res. 2011, 69, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Marotzke, J.; Welander, P.; Willebrand, J. Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus A Dyn. Meteorol. Oceanogr. 1988, 40, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Wright, D.G.; Broecker, W.S. The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 1992, 7, 529–541. [Google Scholar] [CrossRef]
- Weaver, A.J.; Hughes, T.M.C. Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 1994, 367, 447–450. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Two Stable Equilibria of a Coupled Ocean-Atmosphere Model. J. Clim. 1988, 1, 841–866. [Google Scholar] [CrossRef]
- Ganopolski, A.; Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 2001, 409, 153–158. [Google Scholar] [CrossRef]
- Weaver, A.J.; Saenko, O.A.; Clark, P.U.; Mitrovica, J.X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 2003, 299, 1709–1713. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S.; Crucifix, M.; Ganopolski, A.; Goosse, H.; Kamenkovich, I.; Knutti, R.; Lohmann, G.; Marsh, R.; Mysak, L.A.; Wang, Z.; et al. Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett. 2005, 32, L23605. [Google Scholar] [CrossRef] [Green Version]
- Huisman, S.E.; den Toom, M.; Dijkstra, H.A.; Drijfhout, S. An Indicator of the Multiple Equilibria Regime of the Atlantic Meridional Overturning Circulation. J. Phys. Oceanogr. 2010, 40, 551–567. [Google Scholar] [CrossRef] [Green Version]
- Sijp, W.P. Characterising meridional overturning bistability using a minimal set of state variables. Clim. Dyn. 2012, 39, 2127–2142. [Google Scholar] [CrossRef]
- Yin, Q.Z.; Wu, Z.P.; Berger, A.; Goosse, H.; Hodell, D. Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials. Science 2021, 373, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Marotzke, J. Abrupt climate change and thermohaline circulation: Mechanisms and predictability. Proc. Natl. Acad. Sci. USA 2000, 97, 1347–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Liu, Z. Assessing the stability of the Atlantic meridional overturning circulation of the past, present, and future. J. Meteorol. Res. 2014, 28, 803–819. [Google Scholar] [CrossRef]
- Gent, P.R. A commentary on the Atlantic meridional overturning circulation stability in climate models. Ocean Model. 2018, 122, 57–66. [Google Scholar] [CrossRef]
- Weijer, W.; de Ruijter, W.P.M.; Dijkstra, H.A.; van Leeuwen, P.J. Impact of Interbasin Exchange on the Atlantic Overturning Circulation. J. Phys. Oceanogr. 1999, 29, 2266–2284. [Google Scholar] [CrossRef]
- Marcott, S.A.; Clark, P.U.; Padman, L.; Klinkhammer, G.P.; Springer, S.R.; Liu, Z.; Otto-Bliesner, B.L.; Carlson, A.E.; Ungerer, A.; Padman, J.; et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad. Sci. USA 2011, 108, 13415–13419. [Google Scholar] [CrossRef] [Green Version]
- Max, L.; Nürnberg, D.; Chiessi, C.M.; Lenz, M.M.; Mulitza, S. Subsurface ocean warming preceded Heinrich Events. Nat. Commun. 2022, 13, 4217. [Google Scholar] [CrossRef]
- MacAyeal, D.R. Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 1993, 8, 775–784. [Google Scholar] [CrossRef]
- Mignot, J.; Ganopolski, A.; Levermann, A. Atlantic Subsurface Temperatures: Response to a Shutdown of the Overturning Circulation and Consequences for Its Recovery. J. Clim. 2007, 20, 4884–4898. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Zhu, J.; Zhang, J.; Gu, S.; Otto-Bliesner, B.L.; Brady, E.; Zhu, C.; Jin, Y.; Sun, J. North Atlantic subsurface temperature response controlled by effective freshwater input in “Heinrich” events. Earth Planet. Sci. Lett. 2020, 539, 116247. [Google Scholar] [CrossRef]
- Shaffer, G.; Olsen, S.M.; Bjerrum, C.J. Ocean subsurface warming as a mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting events. Geophys. Res. Lett. 2004, 31, L24202. [Google Scholar] [CrossRef]
- Ma, Z.-B.; Cheng, H.; Tan, M.; Edwards, R.L.; Li, H.-C.; You, C.-F.; Duan, W.-H.; Wang, X.; Kelly, M.J. Timing and structure of the Younger Dryas event in northern China. Quat. Sci. Rev. 2012, 41, 83–93. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, H.; Spötl, C.; Baker, J.; Sinha, A.; Li, H.; Bartolomé, M.; Moreno, A.; Kathayat, G.; Zhao, J.; et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 23408–23417. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Yin, J.-j.; Gregory, J.M.; Dixon, K.W.; Spelman, M.J.; Hurlin, W.J.; Weaver, A.J.; Eby, M.; Flato, G.; Hasumi, H.; et al. Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. J. Clim. 2006, 19, 1365–1387. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, M.; Merkel, U.; Otto-Bliesner, B.; Prange, M.; Abe-Ouchi, A.; Lohmann, G.; Ohgaito, R.; Roche, D.M.; Singarayer, J.; Swingedouw, D.; et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study. Clim. Past 2013, 9, 935–953. [Google Scholar] [CrossRef] [Green Version]
- Bonan, D.B.; Thompson, A.F.; Newsom, E.R.; Sun, S.; Rugenstein, M. Transient and Equilibrium Responses of the Atlantic Overturning Circulation to Warming in Coupled Climate Models: The Role of Temperature and Salinity. J. Clim. 2022, 35, 5173–5193. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.M.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.C.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomas, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.B.; Brook, E.J.; et al. Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Liu, Z.; Zhang, X.; Eisenman, I.; Liu, W. Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophys. Res. Lett. 2014, 41, 6252–6258. [Google Scholar] [CrossRef] [Green Version]
- Ivanovic, R.F.; Gregoire, L.J.; Kageyama, M.; Roche, D.M.; Valdes, P.J.; Burke, A.; Drummond, R.; Peltier, W.R.; Tarasov, L. Transient climate simulations of the deglaciation 21–9 thousand years before present. PMIP 4 Core experiment design and boundary conditions. Geosci. Model Dev. 2016, 9, 2563–2587. [Google Scholar] [CrossRef] [Green Version]
- Ivanovic, R.F.; Gregoire, L.J.; Wickert, A.D.; Valdes, P.J.; Burke, A. Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. Geophys. Res. Lett. 2017, 44, 383–392. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Otto-Bliesner, B.L.; Brady, E.C.; Zhu, C.; Tomas, R.; Clark, P.U.; Zhu, J.; Jahn, A.; Gu, S.; et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Sci. Adv. 2021, 7, eabe2611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lohmann, G.; Knorr, G.; Purcell, C. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 2014, 512, 290–294. [Google Scholar] [CrossRef]
- Zhang, X.; Knorr, G.; Lohmann, G.; Barker, S. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nat. Geosci. 2017, 10, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Barker, S.; Knorr, G.; Lohmann, G.; Drysdale, R.; Sun, Y.; Hodell, D.; Chen, F. Direct astronomical influence on abrupt climate variability. Nat. Geosci. 2021, 14, 819–826. [Google Scholar] [CrossRef]
- Zhang, X.; Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 2020, 242, 106443. [Google Scholar] [CrossRef]
- Peltier, W.R.; Vettoretti, G. Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett. 2014, 41, 7306–7313. [Google Scholar] [CrossRef]
- Vettoretti, G.; Peltier, W.R. Fast Physics and Slow Physics in the Nonlinear Dansgaard–Oeschger Relaxation Oscillation. J. Clim. 2018, 31, 3423–3449. [Google Scholar] [CrossRef]
- Kuniyoshi, Y.; Abe-Ouchi, A.; Sherriff-Tadano, S.; Chan, W.-L.; Saito, F. Effect of Climatic Precession on Dansgaard-Oeschger-Like Oscillations. Geophys. Res. Lett. 2022, 49, e2021GL095695. [Google Scholar] [CrossRef]
- Izumi, K.; Armstrong, E.; Valdes, P.J. Global footprints of dansgaard-oeschger oscillations in a GCM. Quat. Sci. Rev. 2023, 305, 108016. [Google Scholar]
- Klockmann, M.; Mikolajewicz, U.; Marotzke, J. Two AMOC States in Response to Decreasing Greenhouse Gas Concentrations in the Coupled Climate Model MPI-ESM. J. Clim. 2018, 31, 7969–7984. [Google Scholar] [CrossRef]
- Prange, M.; Lohmann, G.; Paul, A. Influence of Vertical Mixing on the Thermohaline Hysteresis: Analyses of an OGCM. J. Phys. Oceanogr. 2003, 33, 1707–1721. [Google Scholar] [CrossRef] [Green Version]
- Nof, D.; Van Gorder, S.; de Boer, A. Does the Atlantic meridional overturning cell really have more than one stable steady state? Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 2005–2021. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Are two modes of thermohaline circulation stable. Tellus A 1999, 51, 400–411. [Google Scholar] [CrossRef]
- Dijkstra, H.A. Characterization of the multiple equilibria regime in a global ocean model. Tellus A Dyn. Meteorol. Oceanogr. 2007, 59, 695–705. [Google Scholar] [CrossRef]
- de Vries, P.; Weber, S.L. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett. 2005, 32, L09606. [Google Scholar] [CrossRef]
- Oka, A.; Abe-Ouchi, A.; Sherriff-Tadano, S.; Yokoyama, Y.; Kawamura, K.; Hasumi, H. Glacial mode shift of the Atlantic meridional overturning circulation by warming over the Southern Ocean. Commun. Earth Environ. 2021, 2, 169. [Google Scholar] [CrossRef]
- Drijfhout, S.S.; Weber, S.L.; van der Swaluw, E. The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim. Dyn. 2011, 37, 1575–1586. [Google Scholar] [CrossRef]
- Hawkins, E.; Smith, R.S.; Allison, L.C.; Gregory, J.M.; Woollings, T.J.; Pohlmann, H.; de Cuevas, B. Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett. 2011, 38, L10605. [Google Scholar] [CrossRef] [Green Version]
- Mecking, J.V.; Drijfhout, S.S.; Jackson, L.C.; Graham, T. Stable AMOC off state in an eddy-permitting coupled climate model. Clim. Dyn. 2016, 47, 2455–2470. [Google Scholar] [CrossRef] [Green Version]
- Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 2021, 11, 680–688. [Google Scholar] [CrossRef]
- Weaver, A.J.; Sedláček, J.; Eby, M.; Alexander, K.; Crespin, E.; Fichefet, T.; Philippon-Berthier, G.; Joos, F.; Kawamiya, M.; Matsumoto, K.; et al. Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett. 2012, 39, L20709. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, Z.; Hu, A. The stability of an evolving Atlantic meridional overturning circulation. Geophys. Res. Lett. 2013, 40, 1562–1568. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z. A Note on the Stability Indicator of the Atlantic Meridional Overturning Circulation. J. Clim. 2014, 27, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Garzoli, S.L.; Baringer, M.O.; Dong, S.; Perez, R.C.; Yao, Q. South Atlantic meridional fluxes. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 71, 21–32. [Google Scholar] [CrossRef]
- Liu, W.; Xie, S.-P.; Liu, Z.; Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 2017, 3, e1601666. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.L.; Drijfhout, S.S.; Abe-Ouchi, A.; Crucifix, M.; Eby, M.; Ganopolski, A.; Murakami, S.; Otto-Bliesner, B.; Peltier, W.R. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim. Past 2007, 3, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, Z.; Brady, E.C. Why is the AMOC Monostable in Coupled General Circulation Models? J. Clim. 2014, 27, 2427–2443. [Google Scholar] [CrossRef]
- Liu, W. Why Is the AMOC Monostable in Coupled General Circulation Models? American Geophysical Union: Washington, DC, USA, 2016; p. PO54A-3227. [Google Scholar]
- Mecking, J.V.; Drijfhout, S.S.; Jackson, L.C.; Andrews, M.B. The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1299910. [Google Scholar] [CrossRef] [Green Version]
- Weijer, W.; Cheng, W.; Drijfhout, S.S.; Fedorov, A.V.; Hu, A.; Jackson, L.C.; Liu, W.; McDonagh, E.L.; Mecking, J.V.; Zhang, J. Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. J. Geophys. Res. Ocean. 2019, 124, 5336–5375. [Google Scholar] [CrossRef] [Green Version]
- Mechoso, C.R.; Robertson, A.W.; Barth, N.; Davey, M.K.; Delecluse, P.; Gent, P.R.; Ineson, S.; Kirtman, B.; Latif, M.; Treut, H.L.; et al. The Seasonal Cycle over the Tropical Pacific in Coupled Ocean–Atmosphere General Circulation Models. Mon. Weather Rev. 1995, 123, 2825–2838. [Google Scholar] [CrossRef]
- Lin, J.-L. The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis. J. Clim. 2007, 20, 4497–4525. [Google Scholar] [CrossRef]
- Davey, M.; Huddleston, M.; Sperber, K.; Braconnot, P.; Bryan, F.; Chen, D.; Colman, R.; Cooper, C.; Cubasch, U.; Delecluse, P.; et al. STOIC: A study of coupled model climatology and variability in tropical ocean regions. Clim. Dyn. 2002, 18, 403–420. [Google Scholar] [CrossRef] [Green Version]
- Stouffer, R.J.; Manabe, S. Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration. Clim. Dyn. 2003, 20, 759–773. [Google Scholar] [CrossRef]
- Yin, J.; Stouffer, R.J. Comparison of the Stability of the Atlantic Thermohaline Circulation in Two Coupled Atmosphere–Ocean General Circulation Models. J. Clim. 2007, 20, 4293–4315. [Google Scholar] [CrossRef] [Green Version]
- Mignac, D.; Ferreira, D.; Haines, K. Decoupled Freshwater Transport and Meridional Overturning in the South Atlantic. Geophys. Res. Lett. 2019, 46, 2178–2186. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Liu, Z.; Gu, S. Model bias for South Atlantic Antarctic intermediate water in CMIP5. Clim. Dyn. 2018, 50, 3613–3624. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.C.; Smith, R.S.; Wood, R.A. Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM. Clim. Dyn. 2017, 49, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Rind, D.; Schmidt, G.A.; Jonas, J.; Miller, R.; Nazarenko, L.; Kelley, M.; Romanski, J. Multicentury Instability of the Atlantic Meridional Circulation in Rapid Warming Simulations With GISS ModelE2. J. Geophys. Res. 2018, 123, 6331–6355. [Google Scholar] [CrossRef]
- Alley, R.B.; Marotzke, J.; Nordhaus, W.; Overpeck, J.T.; Peteet, D.M.; Pielke, R.A.; Pierrehumbert, R.T.; Rhines, P.B.; Stocker, T.F.; Talley, L.D.; et al. Abrupt climate change: Inevitable surprises. Science 2003, 299, 2005–2010. [Google Scholar] [CrossRef] [Green Version]
- Fox-Kemper, G.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. 2021: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1211–1362. [Google Scholar] [CrossRef]
- Alley, R.B.; Mayewski, P.A.; Sowers, T.; Stuiver, M.; Taylor, K.C.; Clark, P.U. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 1997, 25, 483–486. [Google Scholar] [CrossRef]
- Romanou, A.; Rind, D.; Jonas, J.; Miller, R.; Kelley, M.; Russell, G.; Orbe, C.; Nazarenko, L.; Latto, R.; Schmidt, G.A. Stochastic Bifurcation of the North Atlantic Circulation Under A Mid-Range Future Climate Scenario With The NASA-GISS ModelE. J. Clim. 2023, 1, 1–49. [Google Scholar] [CrossRef]
- Dijkstra, H.A.; Neelin, J.D. Imperfections of the Thermohaline Circulation: Multiple Equilibria andFlux Correction. J. Clim. 1999, 12, 1382–1392. [Google Scholar] [CrossRef]
- Walczak, M.H.; Mix, A.C.; Cowan, E.A.; Fallon, S.; Fifield, L.K.; Alder, J.R.; Du, J.; Haley, B.; Hobern, T.; Padman, J.; et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 2020, 370, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.J.D.; van Caspel, M.C.; Zenk, W.; Morozov, E.G.; Frey, D.I.; Piola, A.R.; Meinen, C.S.; Sato, O.T.; Perez, R.C.; Dong, S. Warming Trend in Antarctic Bottom Water in the Vema Channel in the South Atlantic. Geophys. Res. Lett. 2021, 48, e2021GL094709. [Google Scholar] [CrossRef]
- Johnson, G.C.; Cadot, C.; Lyman, J.M.; McTaggart, K.E.; Steffen, E.L. Antarctic Bottom Water Warming in the Brazil Basin: 1990s Through 2020, From WOCE to Deep Argo. Geophys. Res. Lett. 2020, 47, e2020GL089191. [Google Scholar] [CrossRef]
- Johnson, G.C.; Lyman, J.M. Warming trends increasingly dominate global ocean. Nat. Clim. Chang. 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Frey, D.I.; Krechik, V.A.; Bashirova, L.D.; Ostroumova, S.A.; Smirnova, D.A.; Kuleshova, L.A.; Ponomarenko, E.P.; Morozov, E.G.; Ligi, M.; Dudkov, I.Y.; et al. Multiple Abyssal Jets Flowing Into the Vema Deep, Romanche Fracture Zone. J. Geophys. Res. Ocean. 2023, 128, e2022JC019434. [Google Scholar] [CrossRef]
- Purkey, S.G.; Johnson, G.C. Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets. J. Clim. 2010, 23, 6336–6351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, Z.; Qiao, F. Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves. J. Clim. 2018, 31, 8541–8555. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 2015, 5, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Chang. 2020, 10, 998–1003. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Z.; Zhang, S.; Wu, L. Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint. Nat. Commun. 2023, 14, 1245. [Google Scholar] [CrossRef] [PubMed]
- Weijer, W.; Maltrud, M.E.; Hecht, M.W.; Dijkstra, H.A.; Kliphuis, M.A. Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys. Res. Lett. 2012, 39, L09606. [Google Scholar] [CrossRef]
- Winton, M.; Anderson, W.G.; Delworth, T.L.; Griffies, S.M.; Hurlin, W.J.; Rosati, A.J. Has coarse ocean resolution biased simulations of transient climate sensitivity? Geophys. Res. Lett. 2014, 41, 8522–8529. [Google Scholar] [CrossRef]
- Jackson, L.C.; Wood, R.A. Hysteresis and Resilience of the AMOC in an Eddy-Permitting GCM. Geophys. Res. Lett. 2018, 45, 8547–8556. [Google Scholar] [CrossRef]
- Lenderink, G.; Haarsma, R.J. Variability and Multiple Equilibria of the Thermohaline Circulation Associated with Deep-Water Formation. J. Phys. Oceanogr. 1994, 24, 1480–1493. [Google Scholar] [CrossRef]
- Jayne, S.R.; Marotzke, J. A Destabilizing Thermohaline Circulation-Atmosphere-Sea Ice Feedback. J. Clim. 1999, 12, 642–651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z. Instability of Atlantic Meridional Overturning Circulation: Observations, Modelling and Relevance to Present and Future. Atmosphere 2023, 14, 1011. https://doi.org/10.3390/atmos14061011
Liu Z. Instability of Atlantic Meridional Overturning Circulation: Observations, Modelling and Relevance to Present and Future. Atmosphere. 2023; 14(6):1011. https://doi.org/10.3390/atmos14061011
Chicago/Turabian StyleLiu, Zhengyu. 2023. "Instability of Atlantic Meridional Overturning Circulation: Observations, Modelling and Relevance to Present and Future" Atmosphere 14, no. 6: 1011. https://doi.org/10.3390/atmos14061011
APA StyleLiu, Z. (2023). Instability of Atlantic Meridional Overturning Circulation: Observations, Modelling and Relevance to Present and Future. Atmosphere, 14(6), 1011. https://doi.org/10.3390/atmos14061011