Investigating Winter Temperatures in Sweden and Norway: Potential Relationships with Climatic Indices and Effects on Electrical Power and Energy Systems
Abstract
:1. Introduction
1.1. Problem Description
1.2. Literature Review
1.3. Contribution and Paper Organization
2. Dataset and Selected Locations
3. Methods
4. Results
4.1. AMOC Variations
4.2. Winter Temperature Variations at Candidate Locations
4.3. Possible Similarity between Winter Variations in AMOC and Temperatures of Candidate Locations
4.4. Possible Impacts of Other Variables, Particularly NAO, on the Winter AMOC and/or Temperatures
- (1)
- There is a strong relationship between winter NAO and temperatures, particularly during December, for locations 2, 4, 5, and 6. These locations, situated closer to the coastal areas of Norway rather than the northernmost regions, exhibit correlation values exceeding 0.6. Such values suggest a potentially significant influence of NAO on the temperature patterns observed in these locations.
- (2)
- Among locations 2, 4, 5, and 6, there is a higher probability of having colder winters influenced by the NAO for locations 2, 4, and 5. This conclusion is supported by the following observations: (i) the correlation values between the winter NAO index and winter temperatures are greater than 0.42; (ii) the highest average rates of temperature decrease in Table 2 support this pattern for locations 2, 4, and 6.
5. Cold Winter Impact on the Electrical Power System’s Aspects
5.1. Colder Winters and Electricity Generation
5.2. Colder Winters and Electricity Consumption
5.3. Colder Winters, More Likely Storms, and Security of Electricity Supply
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- O’Hare, G. Updating Our Understanding of Climate Change in the North Atlantic: The Role of Global Warming and the Gulf Stream. Geography 2011, 96, 5–15. [Google Scholar] [CrossRef]
- Lozier, M.S. Overturning in the North Atlantic. Ann. Rev. Mar. Sci. 2011, 4, 291–315. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.K. Can in Situ Floats and Satellite Altimeters Detect Long-Term Changes in Atlantic Ocean Overturning? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chassignet, E.P.; Johns, W.E.; Schmitz, W.J.; Metzger, E.J. Intraseasonal to Interannual Variability of the Atlantic Meridional Overturning Circulation from Eddy-Resolving Simulations and Observations. J. Geophys. Res. 2014, 119, 5140–5159. [Google Scholar] [CrossRef]
- Johns, W.E.; Baringer, M.O.; Beal, L.M.; Cunningham, S.A.; Kanzow, T.; Bryden, H.L.; Hirschi, J.J.M.; Marotzke, J.; Meinen, C.S.; Shaw, B.; et al. Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5° N. J. Clim. 2011, 24, 2429–2449. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, E.L.; King, B.A.; Bryden, H.L.; Courtois, P.; Szuts, Z.; Baringer, M.; Cunningham, S.A.; Atkinson, C.; McCarthy, G. Continuous Estimate of Atlantic Oceanic Freshwater Flux at 26.5° N. J. Clim. 2015, 28, 8888–8906. [Google Scholar] [CrossRef]
- Talley, L.D.; Feely, R.A.; Sloyan, B.M.; Wanninkhof, R.; Baringer, M.O.; Bullister, J.L.; Carlson, C.A.; Doney, S.C.; Fine, R.A.; Firing, E.; et al. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Ann. Rev. Mar. Sci. 2016, 8, 185–215. [Google Scholar] [CrossRef] [Green Version]
- Seidov, D.; Mishonov, A.; Reagan, J.; Parsons, R. Multidecadal Variability and Climate Shift in the North Atlantic Ocean. Geophys. Res. Lett. 2017, 44, 4985–4993. [Google Scholar] [CrossRef]
- Lavoie, D.; Lambert, N.; Gilbert, D. Projections of Future Trends in Biogeochemical Conditions in the Northwest Atlantic Using CMIP5 Earth System Models. Atmosphere-Ocean 2019, 57, 18–40. [Google Scholar] [CrossRef] [Green Version]
- Portis, D.H.; Walsh, J.E.; El Hamly, M.; Lamb, P.J. Seasonality of the North Atlantic Oscillation. J. Clim. 2001, 14, 2069–2078. [Google Scholar] [CrossRef]
- Yang, H.; Lohmann, G.; Wei, W.; Dima, M.; Ionita, M.; Liu, J. Intensification and Poleward Shift of Subtropical Western Boundary Currents in a Warming Climate. J. Geophys. Res. Ocean. 2016, 121, 4928–4945. [Google Scholar] [CrossRef] [Green Version]
- Delworth, T.L.; Zeng, F. The Impact of the North Atlantic Oscillation on Climate through Its Influence on the Atlantic Meridional Overturning Circulation. J. Clim. 2016, 29, 941–962. [Google Scholar] [CrossRef]
- Li, M.; Yao, Y.; Simmonds, I.; Luo, D.; Zhong, L.; Chen, X. Collaborative Impact of the Nao and Atmospheric Blocking on European Heatwaves, with a Focus on the Hot Summer of 2018. Environ. Res. Lett. 2020, 15, 114003. [Google Scholar] [CrossRef]
- Buckley, M.W.; Marshall, J. Observations, Inferences, and Mechanisms of the Atlantic Meridional Overturning Circulation: A Review. Rev. Geophys. 2016, 54, 5–63. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional Twentieth-Century Slowdown in Atlantic Ocean Overturning Circulation. Nat. Clim. Chang. 2015, 5, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Smeed, D.A.; McCarthy, G.D.; Cunningham, S.A.; Frajka-Williams, E.; Rayner, D.; Johns, W.E.; Meinen, C.S.; Baringer, M.O.; Moat, B.I.; Duchez, A.; et al. Observed Decline of the Atlantic Meridional Overturning Circulation 2004–2012. Ocean Sci. 2014, 10, 29–38. [Google Scholar] [CrossRef] [Green Version]
- IPCC. CLIMATE CHANGE 2013 Climate Change 2013; IPCC: Geneva, Switzerland, 2013; ISBN 9781107661820. [Google Scholar]
- Longworth, H.R.; Bryden, H.L.; Baringer, M.O. Historical Variability in Atlantic Meridional Baroclinic Transport at 26.5° N from Boundary Dynamic Height Observations. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 1754–1767. [Google Scholar] [CrossRef]
- Bryden, H.L.; Longworth, H.R.; Cunningham, S.A. Slowing of the Atlantic Meridional Overturning Circulation at 25 Degrees N. Nature 2005, 438, 655–657. [Google Scholar] [CrossRef]
- Kanzow, T.; Cunningham, S.A.; Johns, W.E.; Hirschi, J.J.M.; Marotzke, J.; Baringer, M.O.; Meinen, C.S.; Chidichimo, M.P.; Atkinson, C.; Beal, L.M.; et al. Seasonal Variability of the Atlantic Meridional Overturning Circulation at 26.5° N. J. Clim. 2010, 23, 5678–5698. [Google Scholar] [CrossRef] [Green Version]
- Jewett, L.; Romanou, A. Ocean acidification and other ocean changes. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 364–392. [Google Scholar] [CrossRef] [Green Version]
- Weijer, W.; Cheng, W.; Garuba, O.A.; Hu, A.; Nadiga, B.T. CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 2020, 47, e2019GL086075. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Chai, F.; Xue, H.; Oey, L.-Y. Remote Sensing Linear Trends of the Gulf Stream from 1993 to 2016. Ocean Dyn. 2020, 70. [Google Scholar] [CrossRef]
- Andres, M.; Donohue, K.A.; Toole, J.M. The Gulf Stream’s Path and Time-Averaged Velocity Structure and Transport at 68.5° W and 70.3° W. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 156, 103179. [Google Scholar] [CrossRef]
- Fox-Kemper, B. Ocean, Cryosphere and Sea Level Change. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021; Volume 2021, p. U13B-09. [Google Scholar]
- Yang, H.; Chen, G.; Tang, Q.; Hess, P. Quantifying Isentropic Stratosphere-Troposphere Exchange of Ozone. J. Geophys. Res. Atmos. 2016, 121, 3372–3387. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, G.; Xie, S.-P.; Liu, W. Why Does Global Warming Weaken the Gulf Stream but Intensify the Kuroshio? J. Clim. 2019, 32, 7437–7451. [Google Scholar] [CrossRef]
- Caesar, L.; Rahmstorf, S.; Robinson, A.G.; Feulner, G.; Saba, V.S. Observed Fingerprint of a Weakening Atlantic Ocean Overturning Circulation. Nature 2017, 556, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Robson, J.; Sutton, R.; Andrews, M. Mechanisms of Decadal Variability in the Labrador Sea and the Wider North Atlantic in a High-Resolution Climate Model. Clim. Dyn. 2017, 49, 2625–2647. [Google Scholar] [CrossRef] [Green Version]
- Belonenko, T.; Morozova, L.; Gordeeva, S. Key to the Atlantic Gates of the Arctic. Russ. J. Earth Sci. 2022, 22, 2004. [Google Scholar] [CrossRef]
- Caesar, L.; McCarthy, G.; Thornalley, D.; Cahill, N.; Rahmstorf, S. Current Atlantic Meridional Overturning Circulation Weakest in Last Millennium. Nat. Geosci. 2021, 14, 1–3. [Google Scholar] [CrossRef]
- Biastoch, A.; Schwarzkopf, F.U.; Getzlaff, K.; Rühs, S.; Martin, T.; Scheinert, M.; Schulzki, T.; Handmann, P.; Hummels, R.; Böning, C.W. Regional Imprints of Changes in the Atlantic Meridional Overturning Circulation in the Eddy-Rich Ocean Model VIKING20X. Ocean Sci. 2021, 17, 1177–1211. [Google Scholar] [CrossRef]
- University of South Florida (USF Innovation). Melting Greenland ice Sheet may Affect Global Ocean Circulation, Future Climate: University of South Florida and International Scientists Find Influx of Freshwater Could Disrupt the Atlantic Meridional Overturning Circulation, an Important Component of Global Ocean Circulation. ScienceDaily, 22 January 2016. Available online: www.sciencedaily.com/releases/2016/01/160122122629.htm (accessed on 24 February 2023).
- Ciemer, C.; Winkelmann, R.; Kurths, J.; Boers, N. Impact of an AMOC Weakening on the Stability of the Southern Amazon Rainforest. Eur. Phys. J. Spec. Top. 2021, 230, 3065–3073. [Google Scholar] [CrossRef]
- Liu, W.; Fedorov, A.V.; Xie, S.-P.; Hu, S. Climate Impacts of a Weakened Atlantic Meridional Overturning Circulation in a Warming Climate. Sci. Adv. 2020, 6, eaaz4876. [Google Scholar] [CrossRef]
- Wang, H.; Zuo, Z.; Qiao, L.; Zhang, K.; Sun, C.; Xiao, D.; Bu, L. Frequency of Winter Temperature Extremes over Northern Eurasia Dominated by AMOC. npj Clim. Atmos. Sci. 2021, 5, 84. [Google Scholar] [CrossRef]
- Smeed, D.; Wood, R.; Cunningham, S.; Mccarthy, G.; Kuhlbrodt, T.; Office, M.; Centre, H. Impacts of Climate Change on the Atlantic Heat Conveyor. MCCP Sci. Rev. 2013, 4, 49–59. [Google Scholar] [CrossRef]
- Buchan, J.; Hirschi, J.J.M.; Blaker, A.T.; Sinha, B. North Atlantic SST Anomalies and the Cold North European Weather Events of Winter 2009/10 and December 2010. Mon. Weather Rev. 2014, 142, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Bryden, H.L.; King, B.A.; McCarthy, G.D.; McDonagh, E.L. Impact of a 30% Reduction in Atlantic Meridional Overturning during 2009–2010. Ocean Sci. 2014, 10, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Munday, A.J.; Hunt, J.B. University of Southampton. Tribology 1970, 3, 106–107. [Google Scholar] [CrossRef]
- Bellomo, K.; Meccia, V.; D’Agostino, R.; Fabiano, F.; von Hardenberg, J.; Corti, S. The Climate Impacts of an Abrupt AMOC Weakening on the European Winters. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-1023. [Google Scholar] [CrossRef]
- RAPID: Monitoring the Atlantic Meridional Overturning Circulation at 26.5 N since 2004. Available online: https://rapid.ac.uk/rapidmoc/overview.php (accessed on 26 January 2023).
- Duchez, A.; Courtois, P.; Harris, E.; Josey, S.A.; Kanzow, T.; Marsh, R.; Smeed, D.A.; Hirschi, J.J.M. Potential for Seasonal Prediction of Atlantic Sea Surface Temperatures Using the RAPID Array at 26° N. Clim. Dyn. 2016, 46, 3351–3370. [Google Scholar] [CrossRef] [Green Version]
- Moat, B.I.; Smeed, D.A.; Frajka-Williams, E.; Desbruyères, D.G.; Beaulieu, C.; Johns, W.E.; Rayner, D.; Sanchez-Franks, A.; Baringer, M.O.; Volkov, D.; et al. Pending Recovery in the Strength of the Meridional Overturning Circulation at 26° N. Ocean Sci. 2020, 16, 863–874. [Google Scholar] [CrossRef]
- Wanner, H.; Brönnimann, S.; Casty, C.; Gyalistras, D.; Luterbacher, J.; Schmutz, C.; Stephenson, D.B.; Xoplaki, E. North Atlantic Oscillation–Concepts And Studies. Surv. Geophys. 2001, 22, 321–381. [Google Scholar] [CrossRef]
- Stephenson, D.B.; Wanner, H.; Brönnimann, S.; Luterbacher, J. The History of Scientific Research on the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; American Geophysical Union (AGU): Washington, DC, USA, 2003; pp. 37–50. ISBN 9781118669037. [Google Scholar]
- Norsk Klimaservicesenter. Available online: https://seklima.met.no/observations (accessed on 26 January 2023).
- Swedish National Knowledge Centre for Climate Change Adaptation|SMHI. Available online: https://www.smhi.se/en/theme/climate-centre (accessed on 26 January 2023).
- Monitoring North Atlantic Oscillation Since 1950. Available online: Https://Ftp.Cpc.Ncep.Noaa.Gov/Cwlinks/ (accessed on 15 May 2023).
- Sinha, B.; Smeed, D.A.; McCarthy, G.; Moat, B.I.; Josey, S.A.; Hirschi, J.J.-M.; Frajka-Williams, E.; Blaker, A.T.; Rayner, D.; Madec, G. The Accuracy of Estimates of the Overturning Circulation from Basin-Wide Mooring Arrays. Prog. Oceanogr. 2018, 160, 101–123. [Google Scholar] [CrossRef]
- McCarthy, G.D.; Brown, P.J.; Flagg, C.N.; Goni, G.; Houpert, L.; Hughes, C.W.; Hummels, R.; Inall, M.; Jochumsen, K.; Larsen, K.M.H.; et al. Sustainable Observations of the AMOC: Methodology and Technology. Rev. Geophys. 2020, 58, e2019RG000654. [Google Scholar] [CrossRef] [Green Version]
- Boschat, G.; Simmonds, I.; Purich, A.; Cowan, T.; Pezza, A.B. On the Use of Composite Analyses to Form Physical Hypotheses: An Example from Heat Wave-SST Associations. Sci. Rep. 2016, 6, 29599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C. Time Series Decomposition Using Singular Spectrum Analysis Part of the Longitudinal Data Analysis and Time Series Commons. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2014. [Google Scholar]
- Golyandina, N. Particularities and Commonalities of Singular Spectrum Analysis as a Method of Time Series Analysis and Signal Processing. WIREs Comput. Stat. 2020, 12, e1487. [Google Scholar] [CrossRef]
- Miraftabzadeh, S.M.; Longo, M.; Brenna, M.; Pasetti, M. Data-Driven Model for PV Power Generation Patterns Extraction via Unsupervised Machine Learning Methods. In Proceedings of the 2022 North American Power Symposium (NAPS), Salt Lake City, UT, USA, 9–11 October 2022; pp. 1–5. [Google Scholar]
- Miraftabzadeh, S.M.; Longo, M.; Brenna, M. Knowledge Extraction from PV Power Generation with Deep Learning Autoencoder and Clustering-Based Algorithms. IEEE Access 2023, 11, 69227–69240. [Google Scholar] [CrossRef]
- Li, H. Spectral Analysis of Signals [Book Review]; IEEE: Piscataway, NJ, USA, 2008; Volume 24, ISBN 0131139568. [Google Scholar]
- Muir, L.C.; Fedorov, A.V. How the AMOC Affects Ocean Temperatures on Decadal to Centennial Timescales: The North Atlantic versus an Interhemispheric Seesaw. Clim. Dyn. 2015, 45, 151–160. [Google Scholar] [CrossRef]
- Bellomo, K.; Agostino, R.D.; Fabiano, F.; Larson, S.M.; Corti, S. Impacts of a Weakened AMOC on Precipitation over the Euro- Atlantic Region in the EC-Earth3 Climate Model. Clim. Dyn. 2022. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Cheng, W.; Kim, W.M.; Kim, S. Untangling the Relationship Between AMOC Variability and North Atlantic Upper-Ocean Temperature and Salinity. Geophys. Res. Lett. 2021, 48, e2021GL093496. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North Atlantic Oscillation (NAO) on Combined Temperature and Precipitation Winter Modes in the Mediterranean Mountains: Observed Relationships and Projections for the 21st Century. Glob. Planet. Chang. 2011, 77, 62–76. [Google Scholar] [CrossRef]
- Rousi, E.; Rust, H.W.; Ulbrich, U.; Anagnostopoulou, C. Implications of Winter NAO Flavors on Present and Future European Climate. Climate 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.C.; Biastoch, A.; Buckley, M.W.; Desbruyères, D.G.; Frajka-Williams, E.; Moat, B.; Robson, J. The Evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 2022, 3, 241–254. [Google Scholar] [CrossRef]
- Roach, L.A.; Blanchard-Wrigglesworth, E.; Ragen, S.; Cheng, W.; Armour, K.C.; Bitz, C.M. The Impact of Winds on AMOC in a Fully-Coupled Climate Model. Geophys. Res. Lett. 2022, 49, 1–10. [Google Scholar] [CrossRef]
- Kim, H.J.; An, S.I.; Park, J.H.; Sung, M.K.; Kim, D.; Choi, Y.; Kim, J.S. North Atlantic Oscillation Impact on the Atlantic Meridional Overturning Circulation Shaped by the Mean State. npj Clim. Atmos. Sci. 2023, 6. [Google Scholar] [CrossRef]
- Iversen, E.C.; Burningham, H. Relationship between NAO and Wind Climate over Norway. Clim. Res. 2015, 63, 115–134. [Google Scholar] [CrossRef]
- Xu, Y. Estimates of Changes in Surface Wind and Temperature Extremes in Southwestern Norway Using Dynamical Downscaling Method under Future Climate. Weather Clim. Extrem. 2019, 26, 100234. [Google Scholar] [CrossRef]
- ENTSO-E Transparency Platform. Available online: https://transparency.entsoe.eu/ (accessed on 24 February 2023).
- Energifaktanorge.No-Fakta Om Norsk Energi Og Vannressurser-Energifakta Norge. Available online: https://energifaktanorge.no/ (accessed on 24 February 2023).
- An Overview of Energy in Sweden 2022 Now Available. Available online: https://www.energimyndigheten.se/en/news/2022/an-overview-of-energy-in-sweden-2022-now-available/ (accessed on 24 February 2023).
- Quarterly Statistics-Swedish Wind Energy Association. Available online: https://swedishwindenergy.com/statistics (accessed on 24 February 2023).
- Haddeland, I.; Hole, J.; Holmqvist, E.; Koestler, V.; Sidelnikova, M.; Veie, C.A.; Wold, M. Effects of Climate on Renewable Energy Sources and Electricity Supply in Norway. Renew. Energy 2022, 196, 625–637. [Google Scholar] [CrossRef]
- Heggenes, J.; Stickler, M.; Alfredsen, K.; Brittain, J.E.; Adeva-Bustos, A.; Huusko, A. Hydropower-Driven Thermal Changes, Biological Responses and Mitigating Measures in Northern River Systems. River Res. Appl. 2021, 37, 743–765. [Google Scholar] [CrossRef]
- François, B.; Martino, S.; Tøfte, L.S.; Hingray, B.; Mo, B.; Creutin, J.-D. Effects of Increased Wind Power Generation on Mid-Norway’s Energy Balance under Climate Change: A Market Based Approach. Energies 2017, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Farsaei, A.; Syri, S.; Olkkonen, V.; Khosravi, A. Unintended Consequences of National Climate Policy on International Electricity Markets—Case Finland’s Ban on Coal-Fired Generation. Energies 2020, 13, 1930. [Google Scholar] [CrossRef] [Green Version]
- Olkkonen, V.; Syri, S. Spatial and Temporal Variations of Marginal Electricity Generation: The Case of the Finnish, Nordic, and European Energy Systems up to 2030. J. Clean. Prod. 2016, 126, 515–525. [Google Scholar] [CrossRef]
- Gündüz, N.; Küfeoğlu, S.; Lehtonen, M. Impacts of Natural Disasters on Swedish Electric Power Policy: A Case Study. Sustainability 2017, 9, 230. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.statista.com/Statistics/1027078/Electricity-Consumption-in-Sweden/ (accessed on 5 May 2023).
- Available online: https://www.statista.com/Statistics/1024933/Net-Consumption-of-Electricity-in-Norway/ (accessed on 25 January 2023).
- Energimyndigheten. Available online: https://www.energimyndigheten.se/ (accessed on 26 January 2023).
- Renewable Energy Production in Norway. Available online: https://www.regjeringen.no/en/topics/energy/renewable-energy/renewable-energy-production-in-norway/id2343462/ (accessed on 11 May 2016).
- Mata, É.; Wanemark, J.; Nik, V.M.; Sasic Kalagasidis, A. Economic Feasibility of Building Retrofitting Mitigation Potentials: Climate Change Uncertainties for Swedish Cities. Appl. Energy 2019, 242, 1022–1035. [Google Scholar] [CrossRef]
- Sommerfeldt, N.; Madani, H. In-Depth Techno-Economic Analysis of PV/Thermal plus Ground Source Heat Pump Systems for Multi-Family Houses in a Heating Dominated Climate. Sol. Energy 2019, 190, 44–62. [Google Scholar] [CrossRef]
- Fischer, R.; Elfgren, E.; Toffolo, A. Towards Optimal Sustainable Energy Systems in Nordic Municipalities. Energies 2020, 13, 290. [Google Scholar] [CrossRef] [Green Version]
- Hybrit. Available online: https://www.hybritdevelopment.se/en/ (accessed on 24 February 2023).
- Öhman, A.; Karakaya, E.; Urban, F. Enabling the Transition to a Fossil-Free Steel Sector: The Conditions for Technology Transfer for Hydrogen-Based Steelmaking in Europe. Energy Res. Soc. Sci. 2022, 84, 102384. [Google Scholar] [CrossRef]
- Höltinger, S.; Mikovits, C.; Schmidt, J.; Baumgartner, J.; Arheimer, B.; Lindström, G.; Wetterlund, E. The Impact of Climatic Extreme Events on the Feasibility of Fully Renewable Power Systems: A Case Study for Sweden. Energy 2019, 178, 695–713. [Google Scholar] [CrossRef] [Green Version]
- Miraftabzadeh, S.M.; Longo, M. High-Resolution PV Power Prediction Model Based on the Deep Learning and Attention Mechanism. Sustain. Energy Grids Networks 2023, 34, 101025. [Google Scholar] [CrossRef]
- Graham, J.; Heylen, E.; Bian, Y.; Teng, F. Benchmarking Explanatory Models for Inertia Forecasting Using Public Data of the Nordic Area. In Proceedings of the 2022 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Lisbon, Portugal, 12–15 June 2022; pp. 1–6. [Google Scholar]
- Atlantic Ocean Circulation at Weakest in a Millennium, Say Scientists|Climate Crisis|The Guardian. Available online: https://www.theguardian.com/environment/2021/feb/25/atlantic-ocean-circulation-at-weakest-in-a-millennium-say-scientists (accessed on 26 January 2023).
- Available online: https://www.clearias.com/atlantic-meridional-overturning-circulation/ (accessed on 20 December 2022).
- Chartrand, J.; Pausata, F.S.R. Impacts of the North Atlantic Oscillation on Winter Precipitations and Storm Track Variability in Southeast Canada and the Northeast United States. Weather Clim. Dyn. 2020, 1, 731–744. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the Impacts of Climate Change and Extreme Climate Events on Energy Systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef] [Green Version]
- de Morais, S.G.; Resener, M.; Ramos, J.S.M.; Mohammadi, Y. Estabilidade Transitória de Sistemas de Distribuição Ativos Com Recursos Energéticos Distribuídos: Um Estudo de Caso. Secr. SBA 2020, 2, 1. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Moradi, M.H.; Chouhy Leborgne, R. Employing Instantaneous Positive Sequence Symmetrical Components for Voltage Sag Source Relative Location. Electr. Power Syst. Res. 2017, 151, 186–196. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Salarpour, A.; Chouhy Leborgne, R. Comprehensive Strategy for Classification of Voltage Sags Source Location Using Optimal Feature Selection Applied to Support Vector Machine and Ensemble Techniques. Int. J. Electr. Power Energy Syst. 2021, 124, 106363. [Google Scholar] [CrossRef]
- Shazdeh, S.; Golpîra, H.; Bevrani, H. A PMU-Based Back-up Protection Scheme for Fault Detection Considering Uncertainties. Int. J. Electr. Power Energy Syst. 2023, 145, 108592. [Google Scholar] [CrossRef]
- Liu, T.; Tang, Z.; Huang, Y.; Xu, L.; Yang, Y. Online Prediction and Control of Post-Fault Transient Stability Based on PMU Measurements and Multi-Task Learning. Front. Energy Res. 2023, 10, 1084295. [Google Scholar] [CrossRef]
- Alqudah, M.; Kezunovic, M.; Obradovic, Z. Automated Power System Fault Prediction and Precursor Discovery Using Multi-Modal Data. IEEE Access 2023, 11, 7283–7296. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Leborgne, R.C. A New Approach for Voltage Sag Source Relative Location in Active Distribution Systems with the Presence of Inverter-Based Distributed Generations. Electr. Power Syst. Res. 2020, 182, 106222. [Google Scholar] [CrossRef]
- Moradi, M.H.; Mohammadi, Y.; Hoseyni Tayyebi, M. A Novel Method to Locate the Voltage Sag Source: A Case Study in the Brazilian Power Network (Mato Grosso). Prz. Elektrotechniczny 2012, 88, 112–115. [Google Scholar]
- Mohammadi, Y.; Leborgne, R.C.; Polajžer, B. Modified Methods for Voltage-Sag Source Detection Using Transient Periods. Electr. Power Syst. Res. 2022, 207, 107857. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Miraftabzadeh, S.M.; Bollen, M.H.J.; Longo, M. Voltage-Sag Source Detection: Developing Supervised Methods and Proposing a New Unsupervised Learning. Sustain. Energy, Grids Networks 2022, 32, 100855. [Google Scholar] [CrossRef]
- Štumbrger, G.; Rošer, M.; Pintarič, M.; Polajžer, B. Permanent Closed-Loop Operation as a Measure for Improving Power Supply Reliability in a Rural Medium Voltage Distribution Network. Renew. Energy Power Qual. J. 2021, 19, 523–527. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Leborgne, R.C. Improved DR and CBM Methods for Finding Relative Location of Voltage Sag Source at the PCC of Distributed Energy Resources. Int. J. Electr. Power Energy Syst. 2020, 117, 105664. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Miraftabzadeh, S.M.; Bollen, M.H.J.; Longo, M. An Unsupervised Learning Schema for Seeking Patterns in Rms Voltage Variations at the Sub-10-Minute Time Scale. Sustain. Energy Grids Networks 2022, 31, 100773. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Mahdi Miraftabzadeh, S.; Bollen, M.H.J.; Longo, M. Seeking Patterns in Rms Voltage Variations at the Sub-10-Minute Scale from Multiple Locations via Unsupervised Learning and Patterns’ Post-Processing. Int. J. Electr. Power Energy Syst. 2022, 143, 108516. [Google Scholar] [CrossRef]
Location | City/Country | Measurement Period | Observed Years No. | Measurement Station | |
---|---|---|---|---|---|
From | To | ||||
1 | Kiruna/Sweden | 1958 | 2020 | 63 | Kiruna Flygplats |
2 | Katterjakk/Sweden | 1970 | 2019 | 50 | Katterjåkk |
3 | Fruholmen/Norway | 1955 | 2022 | 68 | SN94500 |
4 | Torsvag/Norway | 1956 | 2021 | 66 | SN90800 |
5 | Tromsø-Langnes/Norway | 1965 | 2022 | 58 | SN90490 |
6 | Nordøyan/Norway | 1951 | 2021 | 71 | SN75410 |
Location | Winter Month | Type of Temp. | From | To | Decreased Temp. (°C) | Duration of Decreased Temps. (Year) | Decreased Temp. Rate (°C/Year) | |||
---|---|---|---|---|---|---|---|---|---|---|
Temp (°C) | Year | Temp (°C) | Year | Month/Type Temp | Avg/Loc | |||||
2 | Dec | High | −5 | 2011 | −5.35 | 2018 | 0.35 | 8 | 0.044 | 0.090 |
Jan | Low | −11.2 | 2011 | −11.7 | 2019 | 0.5 | 9 | 0.056 | ||
High | −6.85 | 2011 | −7.9 | 2019 | 1.05 | 9 | 0.117 | |||
Avg | −9 | 2011 | −9.8 | 2019 | 0.8 | 9 | 0.089 | |||
Feb | Low | −12.6 | 2016 | −12.93 | 2019 | 0.33 | 4 | 0.083 | ||
Avg | −10.4 | 2014 | −11 | 2019 | 0.6 | 6 | 0.100 | |||
High | −8.25 | 2014 | −9.1 | 2019 | 0.85 | 6 | 0.142 | |||
3 | Dec | High | 3.6 | 2019 | 3.5 | 2021 | 0.1 | 3 | 0.033 | 0.040 |
Jan | High | 1.3 | 2017 | 0.8 | 2022 | 0.5 | 6 | 0.083 | ||
Feb | High | 0.1 | 2000 | 0 | 2022 | 0.1 | 23 | 0.004 | ||
4 | Dec | Avg | 2.3 | 2017 | 1.2 | 2021 | 1.1 | 5 | 0.220 | 0.088 |
Jan | Avg | 0.04 | 2017 | −0.015 | 2022 | 0.055 | 6 | 0.009 | ||
High | 2.25 | 2020 | 2.13 | 2022 | 0.12 | 3 | 0.040 | |||
Feb | High | 1.9 | 2020 | 1.65 | 2022 | 0.25 | 3 | 0.083 | ||
5 | Dec | Low | −3.4 | 2018 | −3.6 | 2021 | 0.2 | 4 | 0.050 | 0.059 |
High | 1.19 | 2019 | 0.8 | 2021 | 0.39 | 3 | 0.130 | |||
Avg | −1.1 | 2020 | −1.22 | 2021 | 0.12 | 2 | 0.060 | |||
Jan | Low | −5 | 2016 | −5.3 | 2022 | 0.3 | 7 | 0.043 | ||
High | −0.5 | 2016 | −0.86 | 2022 | 0.36 | 7 | 0.051 | |||
Avg | −2.37 | 2016 | −2.67 | 2022 | 0.3 | 7 | 0.043 | |||
Feb | Low | −5.6 | 2016 | −6.06 | 2022 | 0.46 | 7 | 0.066 | ||
High | −0.04 | 2017 | −0.25 | 2022 | 0.21 | 6 | 0.035 | |||
Avg | −2.91 | 2016 | −3.3 | 2022 | 0.39 | 7 | 0.056 | |||
6 | Dec | Low | 2.48 | 2017 | 1.46 | 2021 | 1.02 | 5 | 0.204 | 0.076 |
Jan | Avg | 3.33 | 2020 | 3.21 | 2022 | 0.12 | 3 | 0.040 | ||
Feb | High | 3.91 | 2020 | 3.89 | 2022 | 0.02 | 3 | 0.007 | ||
Avg | 2.36 | 2021 | 2.25 | 2022 | 0.11 | 2 | 0.055 |
Correlation | Lag (Year) | |||||||
---|---|---|---|---|---|---|---|---|
Location | Dec | Jan | Feb | Winter | Dec | Jan | Feb | Winter |
1 | 0.44 | 0.24 | 0.3 | 0.25 | 0.032 | 0.871 | 3.150 | 0.011 |
2 | 0.45 | 0.33 | 0.27 | 0.26 | 0.032 | 0.806 | 3.080 | 0.000 |
3 | 0.49 | 0.32 | 0.29 | 0.32 | 0.065 | 1.129 | 1.381 | 0.078 |
4 | 0.58 | 0.35 | 0.27 | 0.37 | 0.065 | 1.194 | 2.973 | 0.055 |
5 | 0.47 | 0.2 | 0.3 | 0.28 | 0.097 | 1.000 | 2.973 | 0.044 |
6 | 0.52 | 0.43 | 0.3 | 0.43 | 0.097 | 0.258 | 0 | 0.033 |
Correlation | Lag (Year) | |||||||
---|---|---|---|---|---|---|---|---|
Location | Dec | Jan | Feb | Winter | Dec | Jan | Feb | Winter |
1 | 0.57 | 0.35 | 0.31 | 0.40 | 0.097 | 0.129 | 3.044 | 0.044 |
2 | 0.62 | 0.37 | 0.33 | 0.42 | 0.065 | 0.129 | 3.044 | 0.044 |
3 | 0.58 | 0.28 | 0.32 | 0.37 | 0.097 | 0.226 | 2.973 | 0.044 |
4 | 0.60 | 0.33 | 0.32 | 0.42 | 0.161 | 0.129 | 3.044 | 0.033 |
5 | 0.62 | 0.32 | 0.41 | 0.37 | 0.194 | 0 | 3.044 | 0.011 |
6 | 0.66 | 0.48 | 0.51 | 0.55 | 0.129 | 0.194 | 0.142 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, Y.; Palstev, A.; Polajžer, B.; Miraftabzadeh, S.M.; Khodadad, D. Investigating Winter Temperatures in Sweden and Norway: Potential Relationships with Climatic Indices and Effects on Electrical Power and Energy Systems. Energies 2023, 16, 5575. https://doi.org/10.3390/en16145575
Mohammadi Y, Palstev A, Polajžer B, Miraftabzadeh SM, Khodadad D. Investigating Winter Temperatures in Sweden and Norway: Potential Relationships with Climatic Indices and Effects on Electrical Power and Energy Systems. Energies. 2023; 16(14):5575. https://doi.org/10.3390/en16145575
Chicago/Turabian StyleMohammadi, Younes, Aleksey Palstev, Boštjan Polajžer, Seyed Mahdi Miraftabzadeh, and Davood Khodadad. 2023. "Investigating Winter Temperatures in Sweden and Norway: Potential Relationships with Climatic Indices and Effects on Electrical Power and Energy Systems" Energies 16, no. 14: 5575. https://doi.org/10.3390/en16145575