Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,097)

Search Parameters:
Keywords = Matrix-assisted

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4682 KiB  
Article
Visual Active SLAM Method Considering Measurement and State Uncertainty for Space Exploration
by Yao Zhao, Zhi Xiong, Jingqi Wang, Lin Zhang and Pascual Campoy
Aerospace 2025, 12(7), 642; https://doi.org/10.3390/aerospace12070642 - 20 Jul 2025
Viewed by 140
Abstract
This paper presents a visual active SLAM method considering measurement and state uncertainty for space exploration in urban search and rescue environments. An uncertainty evaluation method based on the Fisher Information Matrix (FIM) is studied from the perspective of evaluating the localization uncertainty [...] Read more.
This paper presents a visual active SLAM method considering measurement and state uncertainty for space exploration in urban search and rescue environments. An uncertainty evaluation method based on the Fisher Information Matrix (FIM) is studied from the perspective of evaluating the localization uncertainty of SLAM systems. With the aid of the Fisher Information Matrix, the Cramér–Rao Lower Bound (CRLB) of the pose uncertainty in the stereo visual SLAM system is derived to describe the boundary of the pose uncertainty. Optimality criteria are introduced to quantitatively evaluate the localization uncertainty. The odometry information selection method and the local bundle adjustment information selection method based on Fisher Information are proposed to find out the measurements with low uncertainty for localization and mapping in the search and rescue process. By adopting the method above, the computing efficiency of the system is improved while the localization accuracy is equivalent to the classical ORB-SLAM2. Moreover, by the quantified uncertainty of local poses and map points, the generalized unary node and generalized unary edge are defined to improve the computational efficiency in computing local state uncertainty. In addition, an active loop closing planner considering local state uncertainty is proposed to make use of uncertainty in assisting the space exploration and decision-making of MAV, which is beneficial to the improvement of MAV localization performance in search and rescue environments. Simulations and field tests in different challenging scenarios are conducted to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 1856 KiB  
Article
An Evolutionary Game Analysis of AI Health Assistant Adoption in Smart Elderly Care
by Rongxuan Shang and Jianing Mi
Systems 2025, 13(7), 610; https://doi.org/10.3390/systems13070610 - 19 Jul 2025
Viewed by 160
Abstract
AI-powered health assistants offer promising opportunities to enhance health management among older adults. However, real-world uptake remains limited, not only due to individual hesitation, but also because of complex interactions among users, platforms, and public policies. This study investigates the dynamic behavioral mechanisms [...] Read more.
AI-powered health assistants offer promising opportunities to enhance health management among older adults. However, real-world uptake remains limited, not only due to individual hesitation, but also because of complex interactions among users, platforms, and public policies. This study investigates the dynamic behavioral mechanisms behind adoption in aging populations using a tripartite evolutionary game model. Based on replicator dynamics, the model simulates the strategic behaviors of older adults, platforms, and government. It identifies evolutionarily stable strategies, examines convergence patterns, and evaluates parameter sensitivity through a Jacobian matrix analysis. Results show that when adoption costs are high, platform trust is low, and government support is limited, the system tends to converge to a low-adoption equilibrium with poor service quality. In contrast, sufficient policy incentives, platform investment, and user trust can shift the system toward a high-adoption state. Trust coefficients and incentive intensity are especially influential in shaping system dynamics. This study proposes a novel framework for understanding the co-evolution of trust, service optimization, and institutional support. It emphasizes the importance of coordinated trust-building strategies and layered policy incentives to promote sustainable engagement with AI health technologies in aging societies. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

33 pages, 4382 KiB  
Article
A Distributed Multi-Robot Collaborative SLAM Method Based on Air–Ground Cross-Domain Cooperation
by Peng Liu, Yuxuan Bi, Caixia Wang and Xiaojiao Jiang
Drones 2025, 9(7), 504; https://doi.org/10.3390/drones9070504 - 18 Jul 2025
Viewed by 195
Abstract
To overcome the limitations in the perception performance of individual robots and homogeneous robot teams, this paper presents a distributed multi-robot collaborative SLAM method based on air–ground cross-domain cooperation. By integrating environmental perception data from UAV and UGV teams across air and ground [...] Read more.
To overcome the limitations in the perception performance of individual robots and homogeneous robot teams, this paper presents a distributed multi-robot collaborative SLAM method based on air–ground cross-domain cooperation. By integrating environmental perception data from UAV and UGV teams across air and ground domains, this method enables more efficient, robust, and globally consistent autonomous positioning and mapping. First, to address the challenge of significant differences in the field of view between UAVs and UGVs, which complicates achieving a unified environmental understanding, this paper proposes an iterative registration method based on semantic and geometric features assistance. This method calculates the correspondence probability of the air–ground loop closure keyframes using these features and iteratively computes the rotation angle and translation vector to determine the coordinate transformation matrix. The resulting matrix provides strong initialization for back-end optimization, which helps to significantly reduce global pose estimation errors. Next, to overcome the convergence difficulties and high computational complexity of large-scale distributed back-end nonlinear pose graph optimization, this paper introduces a multi-level partitioning majorization–minimization DPGO method incorporating loss kernel optimization. This method constructs a multi-level, balanced pose subgraph based on the coupling degree of robot nodes. Then, it uses the minimization substitution function of non-trivial loss kernel optimization to gradually converge the distributed pose graph optimization problem to a first-order critical point, thereby significantly improving global pose estimation accuracy. Finally, experimental results on benchmark SLAM datasets and the GRACO dataset demonstrate that the proposed method effectively integrates environmental feature information from air–ground cross-domain UAV and UGV teams, achieving high-precision global pose estimation and map construction. Full article
Show Figures

Figure 1

15 pages, 1062 KiB  
Article
Prevalence of Biogenic Amines and Their Relation to the Bacterial Content in Ripened Cheeses on the Retail Market in Poland
by Marzena Pawul-Gruba, Edyta Denis, Tomasz Kiljanek and Jacek Osek
Foods 2025, 14(14), 2478; https://doi.org/10.3390/foods14142478 - 15 Jul 2025
Viewed by 249
Abstract
Biogenic amines (BA) are simple organic bases of low molecular weight, formed during decarboxylation of amino acids. Ripened cheeses provide suitable conditions for the development of bacteria and production of BAs. The aim of the present study was to investigate the presence of [...] Read more.
Biogenic amines (BA) are simple organic bases of low molecular weight, formed during decarboxylation of amino acids. Ripened cheeses provide suitable conditions for the development of bacteria and production of BAs. The aim of the present study was to investigate the presence of eight BAs in ripened cheese samples (n = 125) using a high-performance liquid chromatography with diode array detector (HPLC-DAD). Furthermore, microbiological analyses towards identification of bacteria using matrix-assisted laser desorption ionisation—time of flight mass spectrometry (MALDI-TOF MS) were performed. Cadaverine and putrescine were detected in 28.0% and 20.8% of cheese samples at concentrations ranging from 6.12 to 2871 mg/kg and 5.74 to 441 mg/kg, respectively. High amounts of putrescine and cadaverine in cheeses were associated with the presence of Hafnia alvei. Tyramine was identified in 28.0% of samples in the concentration range of 5.62–646 mg/kg. High concentrations of this amine was found in cheeses containing Enterococcus faecium and Enterococcus faecalis. Histamine content, the only BA restricted in food according to Regulation 2073/2005, was observed above 100 mg/kg in 11.2% of the cheeses. Ripened cheeses available on the local retail market may contain significant levels of biogenic amines and may pose a potential health hazard to consumers. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

22 pages, 1927 KiB  
Review
The Applications of MALDI-TOF MS in the Diagnosis of Microbiological Food Contamination
by Maciej Ireneusz Kluz, Bożena Waszkiewicz-Robak and Miroslava Kačániová
Appl. Sci. 2025, 15(14), 7863; https://doi.org/10.3390/app15147863 - 14 Jul 2025
Viewed by 203
Abstract
Microbiological contamination of food remains a critical global public health concern, contributing to millions of foodborne illness cases each year. Traditional diagnostic methods, particularly culture-based techniques, have been widely employed but are often limited by low sensitivity, insufficient specificity, and lengthy turnaround times. [...] Read more.
Microbiological contamination of food remains a critical global public health concern, contributing to millions of foodborne illness cases each year. Traditional diagnostic methods, particularly culture-based techniques, have been widely employed but are often limited by low sensitivity, insufficient specificity, and lengthy turnaround times. Recent advances in molecular biology, biosensor technology, and analytical chemistry have enabled the development of more rapid and precise diagnostic tools. Among these, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has emerged as a transformative method for microbial identification. This review provides a comprehensive overview of the current applications of MALDI-TOF MS in the diagnosis of microbiological contamination in food. The method offers rapid, accurate, and cost-effective identification of microorganisms and is increasingly used in food safety laboratories for the detection of foodborne pathogens, ensuring the safety and quality of food products. We highlight the fundamental principles of MALDI-TOF MS, discuss its methodologies, and examine its advantages, limitations, and future prospects in food microbiology and quality assurance. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

10 pages, 559 KiB  
Article
Mitigating Bovine Mastitis and Raw Milk Pathogen Risks: Inhibition of Staphylococcus xylosus by Mediterranean Plants’ Essential Oil
by Rosario De Fazio, Giacomo Di Giacinto, Paola Roncada, Domenico Britti, Rosangela Odore, Paola Badino and Cristian Piras
Vet. Sci. 2025, 12(7), 659; https://doi.org/10.3390/vetsci12070659 - 11 Jul 2025
Viewed by 334
Abstract
Milk is frequently susceptible to contamination by potential pathogens, posing risks to both food safety and public health. Cheesemaking often relies on raw milk, where microbial communities—including Staphylococcus xylosus—can play a dual role: (i) contributing to fermentation and (ii) acting as opportunistic [...] Read more.
Milk is frequently susceptible to contamination by potential pathogens, posing risks to both food safety and public health. Cheesemaking often relies on raw milk, where microbial communities—including Staphylococcus xylosus—can play a dual role: (i) contributing to fermentation and (ii) acting as opportunistic pathogens that can be often present in subclinical mastitis and be subjected to carry over in dairy products. In this study, Staphylococcus xylosus was isolated from raw bovine milk (preclinical mastitis) and identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (Biotyper scores: 1.87–2.19). Its susceptibility to erythromycin and to an essential oil blend composed of Myrtus communis, Salvia officinalis, and Cistus ladanifer was evaluated. The essential oil blend produced inhibition zones ranging from 9 mm to 13.3 mm, indicating moderate antibacterial activity. Further Minimum Inhibitory Concentration analysis revealed that Myrtus communis, Salvia officinalis, and the essential oil blend inhibited Staphylococcus xylosus growth at concentrations between 0.5 and 0.25 percent, while Cistus ladanifer required higher levels (1 to 0.5 percent). These findings suggest that selected essential oils—especially in combination—hold promise as complementary antimicrobial agents in food safety and antimicrobial resistance mitigation efforts. Full article
Show Figures

Figure 1

14 pages, 16727 KiB  
Article
Well Begun Is Half Done: The Impact of Pre-Processing in MALDI Mass Spectrometry Imaging Analysis Applied to a Case Study of Thyroid Nodules
by Giulia Capitoli, Kirsten C. J. van Abeelen, Isabella Piga, Vincenzo L’Imperio, Marco S. Nobile, Daniela Besozzi and Stefania Galimberti
Stats 2025, 8(3), 57; https://doi.org/10.3390/stats8030057 - 10 Jul 2025
Cited by 1 | Viewed by 163
Abstract
The discovery of proteomic biomarkers in cancer research can be effectively performed in situ by exploiting Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI). However, due to experimental limitations, the spectra extracted by MALDI-MSI can be noisy, so pre-processing steps are generally [...] Read more.
The discovery of proteomic biomarkers in cancer research can be effectively performed in situ by exploiting Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI). However, due to experimental limitations, the spectra extracted by MALDI-MSI can be noisy, so pre-processing steps are generally needed to reduce the instrumental and analytical variability. Thus far, the importance and the effect of standard pre-processing methods, as well as their combinations and parameter settings, have not been extensively investigated in proteomics applications. In this work, we present a systematic study of 15 combinations of pre-processing steps—including baseline, smoothing, normalization, and peak alignment—for a real-data classification task on MALDI-MSI data measured from fine-needle aspirates biopsies of thyroid nodules. The influence of each combination was assessed by analyzing the feature extraction, pixel-by-pixel classification probabilities, and LASSO classification performance. Our results highlight the necessity of fine-tuning a pre-processing pipeline, especially for the reliable transfer of molecular diagnostic signatures in clinical practice. We outline some recommendations on the selection of pre-processing steps, together with filter levels and alignment methods, according to the mass-to-charge range and heterogeneity of data. Full article
(This article belongs to the Section Applied Statistics and Machine Learning Methods)
Show Figures

Graphical abstract

21 pages, 1768 KiB  
Article
FST Polymorphisms Associate with Musculoskeletal Traits and Modulate Exercise Response Differentially by Sex and Modality in Northern Han Chinese Adults
by Wei Cao, Zhuangzhuang Gu, Ronghua Fu, Yiru Chen, Yong He, Rui Yang, Xiaolin Yang and Zihong He
Genes 2025, 16(7), 810; https://doi.org/10.3390/genes16070810 - 10 Jul 2025
Viewed by 271
Abstract
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research [...] Read more.
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research on Key Technologies for an Exercise and Fitness Expert Guidance System” project, was analyzed. These participants were previously randomly assigned to one of four exercise groups (Hill, Running, Cycling, Combined) or a non-exercising Control group, and completed their respective 16-week protocols. Body composition, bone mineral content (BMC), bone mineral density (BMD), and serum follistatin levels were all assessed pre- and post-intervention. Dual-energy X-ray absorptiometry (DXA) was utilized for the body composition, BMC, and BMD measurements. FST SNPs (rs3797296, rs3797297) were genotyped using matrix assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) or microarrays. To elucidate the biological mechanisms, we performed in silico functional analyses for rs3797296 and rs3797297. Results: Baseline: In females only, the rs3797297 T allele was associated with higher muscle mass (β = 1.159, 95% confidence interval (CI): 0.202–2.116, P_adj = 0.034) and BMC (β = 0.127, 95% CI: 0.039–0.215, P_adj = 0.009), with the BMC effect significantly mediated by muscle mass. Exercise Response: Interventions improved body composition, particularly in females. Gene-Exercise Interaction: A significant interaction occurred exclusively in women undertaking hill climbing: the rs3797296 G allele was associated with attenuated muscle mass gains (β = −1.126 kg, 95% CI: −1.767 to −0.485, P_adj = 0.034). Baseline follistatin correlated with body composition (stronger in males) and increased post-exercise (primarily in males, Hill/Running groups) but did not mediate SNP effects on exercise adaptation. Functional annotation revealed that rs3797297 is a likely causal variant, acting as a skeletal muscle eQTL for the mitochondrial gene NDUFS4, suggesting a mechanism involving muscle bioenergetics. Conclusions: Findings indicate that FST polymorphisms associate with musculoskeletal traits in Northern Han Chinese. Mechanistic insights from functional annotation reveal potential pathways for these associations, highlighting the potential utility of these genetic markers for optimizing training program design. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 600 KiB  
Article
Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
by Sunao Tanaka, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser and Hideki Furuya
Diagnostics 2025, 15(14), 1749; https://doi.org/10.3390/diagnostics15141749 - 10 Jul 2025
Viewed by 296
Abstract
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, [...] Read more.
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, TX, USA) to simultaneously measure 10 protein analytes in urine [angiogenin, apolipoprotein E, carbonic anhydrase IX (CA9), interleukin-8, matrix metalloproteinase-9 and -10, alpha-1 anti-trypsin, plasminogen activator inhibitor-1, syndecan-1, and vascular endothelial growth factor]. Methods: In a pilot study (N = 36 subjects; 18 with BC), Oncuria performed essentially identically across three different common analyzers (the laser/flow-based FlexMap 3D and 200 systems, and the LED/image-based MagPix system; Luminex). The current study compared Oncuria performance across instrumentation platforms using a larger study population (N = 181 subjects; 51 with BC). Results: All three analyzers assessed all 10 analytes in identical samples with excellent concordance. The percent coefficient of variation (%CV) in protein concentrations across systems was ≤2.3% for 9/10 analytes, with only CA9 having %CVs > 2.3%. In pairwise correlation plot comparisons between instruments for all 10 biomarkers, R2 values were 0.999 for 15/30 comparisons and R2 ≥ 0.995 for 27/30 comparisons; CA9 showed the greatest variability (R2 = 0.948–0.970). Standard curve slopes were statistically indistinguishable for all 10 biomarkers across analyzers. Conclusions: The Oncuria BC assay generates comprehensive urinary protein signatures useful for assisting BC diagnosis, predicting treatment response, and tracking disease progression and recurrence. The equivalent performance of the multiplex BC assay using three popular analyzers rationalizes test adoption by CLIA (Clinical Laboratory Improvement Amendments) clinical and research laboratories. Full article
(This article belongs to the Special Issue Diagnostic Markers of Genitourinary Tumors)
Show Figures

Figure 1

13 pages, 590 KiB  
Review
Potential Shifts in the Oral Microbiome Induced by Bariatric Surgery—A Scoping Review
by Zuzanna Ślebioda, Hélène Rangé, Marta Strózik-Wieczorek and Marzena Liliana Wyganowska
Antibiotics 2025, 14(7), 695; https://doi.org/10.3390/antibiotics14070695 - 10 Jul 2025
Viewed by 252
Abstract
Background: The oral microbiome differs in obese patients compared to normal-weight subjects. Microbiologic shifts very often appear after surgical interventions such as bariatric surgery (BS) and in immunocompromised patients. However, the oral microbiome composition and load in subjects after bariatric surgery are [...] Read more.
Background: The oral microbiome differs in obese patients compared to normal-weight subjects. Microbiologic shifts very often appear after surgical interventions such as bariatric surgery (BS) and in immunocompromised patients. However, the oral microbiome composition and load in subjects after bariatric surgery are unclear. Aim: The aim of this review is to summarize the current state of the art related to the oral microbiome shift induced by bariatric surgery and to discuss its implications on oral cavity health. Methods: Electronic databases: PubMed/Medline, Web of Science, and Cochrane Library were searched for articles published up to March 30, 2025, describing prospective studies focused on changes in the oral microbiota of patients who underwent bariatric surgery. Results: Eight studies measuring the oral microbiome with different approaches—16S ribosomal RNA (16S rRNA) sequencing, polymerase chain reaction (PCR), culture, and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS)—were included in this review. The following bariatric techniques were used: sleeve gastrectomy, Roux-en-Y gastric bypass, Omega loop gastric bypass, and laparoscopic gastric plication. The follow-up period ranged from 3 to 12 months. The results of microbiologic studies were unequivocal. There was an increment in Streptococcus mutans reported, high levels of Candida species, and increased rates of some periodontitis-associated bacteria (Porphyromonas gingivalis) in the post-bariatric surgery period, though some studies suggested a shift towards non-pathogenic composition of the oral microbiome in prospective observations. Conclusions: The local oral microbial homeostasis becomes strongly impacted by the bariatric surgical treatment itself as well as its consequences in the further post-operative period. Therefore, obese patients undergoing BS require very careful dental observation. Full article
(This article belongs to the Special Issue Periodontal Bacteria and Periodontitis: Infections and Therapy)
Show Figures

Figure 1

17 pages, 679 KiB  
Article
Low-Complexity Sum-Rate Maximization for Multi-IRS-Assisted V2I Systems
by Qi Liu, Beiping Zhou, Jie Zhou and Yongfeng Zhao
Electronics 2025, 14(14), 2750; https://doi.org/10.3390/electronics14142750 - 8 Jul 2025
Viewed by 194
Abstract
Intelligent reflecting surface (IRS) has emerged as a promising solution to establish propagation paths in non-line-of-sight (NLoS) scenarios, effectively mitigating blockage challenges in direct vehicle-to-infrastructure (V2I) links. This study investigates a time-varying multi-IRS-assisted multiple-input multiple-output (MIMO) communication system, aiming to maximize the system [...] Read more.
Intelligent reflecting surface (IRS) has emerged as a promising solution to establish propagation paths in non-line-of-sight (NLoS) scenarios, effectively mitigating blockage challenges in direct vehicle-to-infrastructure (V2I) links. This study investigates a time-varying multi-IRS-assisted multiple-input multiple-output (MIMO) communication system, aiming to maximize the system sum rate through the joint optimization of base station (BS) precoding and IRS phase configurations. The formulated problem exhibits inherent non-convexity and time-varying characteristics, posing significant optimization challenges. To address these, we propose a low-complexity dimension-wise sine maximization (DSM) algorithm, grounded in the sum path gain maximization (SPGM) criterion, to efficiently optimize the IRS phase shift matrix. Concurrently, the water-filling (WF) algorithm is employed for BS precoding design. Simulation results demonstrate that compared with traditional methods, the proposed DSM algorithm achieves a 14.9% increase in sum rate, while exhibiting lower complexity and faster convergence. Furthermore, the proposed multi-IRS design yields an 8.7% performance gain over the single-IRS design. Full article
Show Figures

Figure 1

12 pages, 2630 KiB  
Article
Off-Axis Fabric Orientation Angle Effect on the Flexural Characterisation of Mineral Basalt-Fibre-Reinforced Novel Acrylic Thermoplastic Composites
by Mohamad Alsaadi, Aswani Kumar Bandaru, Tomas Flanagan and Declan M. Devine
J. Compos. Sci. 2025, 9(7), 347; https://doi.org/10.3390/jcs9070347 - 5 Jul 2025
Cited by 1 | Viewed by 312
Abstract
A fabric orientation angle has a significant influence on the failure mechanisms at the lamina level. Any change in this angle can lead to a sudden reduction in strength, potentially resulting in catastrophic failures due to variations in load-carrying capacity. This study examined [...] Read more.
A fabric orientation angle has a significant influence on the failure mechanisms at the lamina level. Any change in this angle can lead to a sudden reduction in strength, potentially resulting in catastrophic failures due to variations in load-carrying capacity. This study examined the impact of off-axis fabric orientation angles (0°, 15°, 30°, 45°, 60°, and 90°) on the flexural properties of non-crimp basalt-fibre-reinforced acrylic thermoplastic composites. The basalt/Elium® composite panels were manufactured using a vacuum-assisted resin transfer moulding technique. The results show that the on-axis (0°) composite specimens exhibited linear stress–strain behaviour and quasi-brittle failure characterised by fibre dominance, achieving superior strength and failure strain values of 1128 MPa and 3.85%, respectively. In contrast, the off-axis specimens exhibited highly nonlinear ductile behaviour. They failed at lower load values due to matrix dominance, with strength and failure strain values of 144 MPa and 6.0%, respectively, observed at a fabric orientation angle of 45°. The in-plane shear stress associated with off-axis angles influenced the flexural properties. Additionally, the degree of deformation and the fracture mechanisms were analysed. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

19 pages, 5430 KiB  
Article
Porosity of Geopolymers Using Complementary Techniques of Image Analysis and Physical Adsorption of Gases
by Carlos A. Rosas-Casarez, Ramón Corral-Higuera, Susana P. Arredondo-Rea, José M. Gómez-Soberón, Manuel J. Chinchillas-Chinchillas, Margarita Rodríguez-Rodríguez, Manuel J. Pellegrini-Cervantes and Jesús M. Bernal-Camacho
Buildings 2025, 15(13), 2353; https://doi.org/10.3390/buildings15132353 - 4 Jul 2025
Viewed by 458
Abstract
Previous research on geopolymers has not fully established their porosity and its influence on the matrix structure, as well as its relevance to mechanical and durability properties, supporting the potential of this material as a sustainable alternative to traditional construction materials. In this [...] Read more.
Previous research on geopolymers has not fully established their porosity and its influence on the matrix structure, as well as its relevance to mechanical and durability properties, supporting the potential of this material as a sustainable alternative to traditional construction materials. In this study, three geopolymer mortar (GM) mixtures were prepared: the first was obtained with fly ash (FA) without mechanical grinding (GM_FA), the second with FA that required crushing and sieving through a #200 sieve (GM_FA_200), and the third was a GM with FA that required crushing and sieving through a #325 sieve (GM_FA_325). The main objective was to evaluate the porosity of the geopolymeric paste and the interfacial transition zone (ITZ) between the aggregate and the geopolymerization products. Due to the susceptibility of this area to develop higher porosity, which leads to reduced mechanical properties and durability, it has become a significant focus of investigation in materials such as concrete and mortar. These analyses were carried out using physical adsorption of gases (PAG), and a methodology for image analysis of GM microporosity was implemented using micrographs obtained from a scanning electron microscope (SEM) and processed with the NI Vision Assistant 8.6 software (VA). The results from both image analysis and physical adsorption demonstrated that the GM_FA_325 matrix exhibited 19% less porosity compared to the GM_FA matrix. The results confirmed that GMs are predominantly mesoporous. It was observed that GM_FA_325 has the lowest total porosity, resulting in a denser and more compact microstructure, which is a key factor in its mechanical performance and potential applications as an eco-friendly construction material for coatings and precast elements such as blocks, panels, and similar products. In addition, image analysis using VA is highlighted as an efficient, cost-effective, and complementary technique to PAG, enabling robust results and resource optimization. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Sustainable Construction)
Show Figures

Figure 1

24 pages, 8040 KiB  
Article
Development of Modified Drug Delivery Systems with Metformin Loaded in Mesoporous Silica Matrices: Experimental and Theoretical Designs
by Mousa Sha’at, Maria Ignat, Florica Doroftei, Vlad Ghizdovat, Maricel Agop, Alexandra Barsan (Bujor), Monica Stamate Cretan, Fawzia Sha’at, Ramona-Daniela Pavaloiu, Adrian Florin Spac, Lacramioara Ochiuz, Carmen Nicoleta Filip and Ovidiu Popa
Pharmaceutics 2025, 17(7), 882; https://doi.org/10.3390/pharmaceutics17070882 - 4 Jul 2025
Viewed by 605
Abstract
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for [...] Read more.
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for metformin hydrochloride (MTF), using KIT-6 mesoporous silica as a matrix, to enhance oral antidiabetic therapy. Methods: KIT-6 was synthesized using an ultrasound-assisted sol-gel method and subsequently loaded with MTF via adsorption from alkaline aqueous solutions at two concentrations (1 and 3 mg/mL). The structural and morphological characteristics of the matrices—before and after drug loading—were assessed using SEM-EDX, TEM, and nitrogen adsorption–desorption isotherms (the BET method). In vitro drug release profiles were recorded in simulated gastric and intestinal fluids over 12 h. Kinetic modeling was performed using seven classical models, and a multifractal theoretical framework was used to further interpret the complex release behavior. Results: The loading efficiency increased with increasing drug concentration but nonlinearly, reaching 56.43 mg/g for 1 mg/mL and 131.69 mg/g for 3 mg/mL. BET analysis confirmed significant reductions in the surface area and pore volume upon MTF incorporation. In vitro dissolution showed a biphasic release: a fast initial phase in an acidic medium followed by sustained release at a neutral pH. The Korsmeyer–Peppas and Weibull models best described the release profiles, indicating a predominantly diffusion-controlled mechanism. The multifractal model supported the experimental findings, capturing nonlinear dynamics, memory effects, and soliton-like transport behavior across resolution scales. Conclusions: The study confirms the potential of KIT-6 as a reliable and efficient carrier for the modified oral delivery of metformin. The combination of experimental and multifractal modeling provides a deeper understanding of drug release mechanisms in mesoporous systems and offers a predictive tool for future drug delivery design. This integrated approach can be extended to other active pharmaceutical ingredients with complex release requirements. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

24 pages, 4258 KiB  
Article
Proteomic Profiling Reveals Novel Molecular Insights into Dysregulated Proteins in Established Cases of Rheumatoid Arthritis
by Afshan Masood, Hicham Benabdelkamel, Assim A. Alfadda, Abdurhman S. Alarfaj, Amina Fallata, Salini Scaria Joy, Maha Al Mogren, Anas M. Abdel Rahman and Mohamed Siaj
Proteomes 2025, 13(3), 32; https://doi.org/10.3390/proteomes13030032 - 4 Jul 2025
Viewed by 377
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder that predominantly affects synovial joints, leading to inflammation, pain, and progressive joint damage. Despite therapeutic advancements, the molecular basis of established RA remains poorly defined. Methods: In this study, we conducted an untargeted [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder that predominantly affects synovial joints, leading to inflammation, pain, and progressive joint damage. Despite therapeutic advancements, the molecular basis of established RA remains poorly defined. Methods: In this study, we conducted an untargeted plasma proteomic analysis using two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in samples from RA patients and healthy controls in the discovery phase. Results: Significantly (ANOVA, p ≤ 0.05, fold change > 1.5) differentially abundant proteins (DAPs) were identified. Notably, upregulated proteins included mitochondrial dicarboxylate carrier, hemopexin, and 28S ribosomal protein S18c, while CCDC124, osteocalcin, apolipoproteins A-I and A-IV, and haptoglobin were downregulated. Receiver operating characteristic (ROC) analysis identified CCDC124, osteocalcin, and metallothionein-2 with high diagnostic potential (AUC = 0.98). Proteins with the highest selected frequency were quantitatively verified by multiple reaction monitoring (MRM) analysis in the validation cohort. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) revealed the underlying molecular pathways and key interaction networks involved STAT1, TNF, and CD40. These central nodes were associated with immune regulation, cell-to-cell signaling, and hematological system development. Conclusions: Our combined proteomic and bioinformatic approaches underscore the involvement of dysregulated immune pathways in RA pathogenesis and highlight potential diagnostic biomarkers. The utility of these markers needs to be evaluated in further studies and in a larger cohort of patients. Full article
(This article belongs to the Special Issue Proteomics in Chronic Diseases: Issues and Challenges)
Show Figures

Figure 1

Back to TopTop