Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,136)

Search Parameters:
Keywords = Mann-Kendall trend tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 - 1 Aug 2025
Viewed by 240
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

16 pages, 4497 KiB  
Article
Impact Assessment of Climate Change on Climate Potential Productivity in Central Africa Based on High Spatial and Temporal Resolution Data
by Mo Bi, Fangyi Ren, Yian Xu, Xinya Guo, Xixi Zhou, Dmitri van den Bersselaar, Xinfeng Li and Hang Ren
Land 2025, 14(8), 1535; https://doi.org/10.3390/land14081535 - 26 Jul 2025
Viewed by 202
Abstract
This study investigates the spatio-temporal dynamics of Climate Potential Productivity (CPP) in Central Africa during 1901–2019 using the Thornthwaite Memorial model coupled with Mann–Kendall tests based on high spatial and temporal resolution data. The results demonstrate the climate–vegetation interactions under global warming: (1) [...] Read more.
This study investigates the spatio-temporal dynamics of Climate Potential Productivity (CPP) in Central Africa during 1901–2019 using the Thornthwaite Memorial model coupled with Mann–Kendall tests based on high spatial and temporal resolution data. The results demonstrate the climate–vegetation interactions under global warming: (1) Central Africa exhibited a statistically significant warming trend (r2 = 0.33, p < 0.01) coupled with non-significant rainfall reduction, suggesting an emerging warm–dry climate regime that parallels meteorological trends observed in North Africa. (2) Central Africa exhibited an overall increasing trend in CPP, with temporal fluctuations closely aligned with precipitation variability. Specifically, the CPP in Central Africa has undergone three distinct phases: an increasing phase (1901–1960), a decreasing phase (1960–1980), and a slow recovery phase (1980–2019). The multiple intersection points between the UF and UB curves indicate that Central Africa’s CPP has been significantly affected by climate change under global warming. (3) The correlation of CPP–Temperature was mainly positive, mainly distributed in the Lower Guinea Plateau and the northern part of the Congo Basin (r2 = 0.26, p < 0.1). The relationship of CPP–Precipitation showed predominantly a very strong positive correlation (r2 = 0.91, p < 0.01). Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

20 pages, 11785 KiB  
Article
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
by Zhipeng Jian, Qinli Yang, Junming Shao, Guoqing Wang and Vishnu Prasad Pandey
Water 2025, 17(15), 2232; https://doi.org/10.3390/w17152232 - 26 Jul 2025
Viewed by 472
Abstract
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference [...] Read more.
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
by Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili and Nino Chikhradze
Atmosphere 2025, 16(7), 889; https://doi.org/10.3390/atmos16070889 - 19 Jul 2025
Viewed by 774
Abstract
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational [...] Read more.
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus. Full article
Show Figures

Figure 1

28 pages, 12894 KiB  
Article
Evolution of Rainfall Characteristics in Catalonia, Spain, Using a Moving-Window Approach (1950–2022)
by Carina Serra, María del Carmen Casas-Castillo, Raül Rodríguez-Solà and Cristina Periago
Hydrology 2025, 12(7), 194; https://doi.org/10.3390/hydrology12070194 - 19 Jul 2025
Viewed by 603
Abstract
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation [...] Read more.
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation (CV), and trends across 43 overlapping 31-year periods. To assess trends in these moving statistics, a modified Mann–Kendall test was applied to both the 31-year means and CVs. Results revealed a significant 10% decrease in annual rainfall, with summer showing the most pronounced decline, as nearly 90% of stations exhibited negative trends, while the CV showed negative trends in coastal areas and mostly positive trends inland. At the monthly scale, February, March, June, August, and December exhibited negative trends at more than 50% of stations, with rainfall reductions ranging from 20% to 30%. Additionally, the temporal evolution of Mann–Kendall trend coefficients within each 31-year moving window displayed a fourth-degree polynomial pattern, with a periodicity of 30–35 years at annual and seasonal scales, and for some months. Finally, at the annual scale and in two centennial series, the 80-year oscillations found were inversely correlated with the large-scale climate indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). Full article
Show Figures

Figure 1

34 pages, 9311 KiB  
Article
Historical Evolution and Future Trends of Riverbed Dynamics Under Anthropogenic Impact and Climatic Change: A Case Study of the Ialomița River (Romania)
by Andrei Radu and Laura Comănescu
Water 2025, 17(14), 2151; https://doi.org/10.3390/w17142151 - 19 Jul 2025
Viewed by 664
Abstract
Riverbed dynamics are natural processes that are strongly driven by human and climatic factors. In the last two centuries, the anthropogenic influence and impact of climate change on European rivers has resulted in significant degradation of riverbeds. This research paper aims to determine [...] Read more.
Riverbed dynamics are natural processes that are strongly driven by human and climatic factors. In the last two centuries, the anthropogenic influence and impact of climate change on European rivers has resulted in significant degradation of riverbeds. This research paper aims to determine the historical evolution (1856–2021) and future trends of the Ialomița riverbed (Romania) under the influence of anthropogenic impact and climate change. The case study is a reach of 66 km between the confluences with the Ialomicioara and Pâscov rivers. The localisation in a contact zone between the Curvature Subcarpathians and the Târgoviște Plain, the active recent tectonic uplift of the area, and the intense anthropogenic intervention gives to this river reach favourable conditions for pronounced riverbed dynamics over time. To achieve the aim of the study, we developed a complex methodology which involves the use of Geographical Information System (GIS) techniques, hierarchical cluster analysis (HCA), the Mann–Kendall test (MK), and R programming. The results indicate that the evolution of the Ialomița River aligns with the general trends observed across Europe and within Romania, characterised by a reduction in riverbed geomorphological complexity and a general transition from a braided, multi-thread into a sinuous, single-thread fluvial style. The main processes consist of channel narrowing and incision alternating with intense meandering. However, specific temporal and spatial evolution patterns were identified, mainly influenced by the increasingly anthropogenic local influences and confirmed climate changes in the study area since the second half of the 20th century. Future evolutionary trends suggest that, in the absence of river restoration interventions, the Ialomița riverbed is expected to continue degrading on a short-term horizon, following both climatic and anthropogenic signals. The findings of this study may contribute to a better understanding of recent river behaviours and serve as a valuable tool for the management of the Ialomița River. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

24 pages, 6142 KiB  
Article
Variability of Summer Drought and Heatwave Events in Northeast China
by Rui Wang, Longpeng Cong, Ying Sun and Xiaotian Bai
Sustainability 2025, 17(14), 6569; https://doi.org/10.3390/su17146569 - 18 Jul 2025
Viewed by 274
Abstract
As global climate change intensifies, extreme climate events are becoming more frequent, presenting significant challenges to socioeconomic systems and ecosystems. Northeast China, a region highly sensitive to climate change, has been profoundly impacted by compound drought and heat extremes (CDHEs), affecting agriculture, society, [...] Read more.
As global climate change intensifies, extreme climate events are becoming more frequent, presenting significant challenges to socioeconomic systems and ecosystems. Northeast China, a region highly sensitive to climate change, has been profoundly impacted by compound drought and heat extremes (CDHEs), affecting agriculture, society, and the economy. To evaluate the characteristics and evolution of summer CDHEs in this region, this study analyzed observational data from 81 meteorological stations (1961–2020) and developed a Standardized Temperature–Precipitation Index (STPI) using the Copula joint probability method. The STPI’s effectiveness in characterizing compound drought and heat conditions was validated against historical records. Using the constructed STPI, this study conducted a comprehensive analysis of the spatiotemporal distribution of CDHEs. The Theil–Sen median trend analysis, Mann–Kendall trend tests, and the frequency of CDHEs were employed to examine drought and heatwave patterns and their influence on compound events. The findings demonstrated an increase in the severity of compound drought and heat events over time. Although the STPI exhibited a slight interannual decline, its values remained above −2.0, indicating the continued intensification of these events in the study area. Most of the stations showed a non-significant decline in the Standardized Precipitation Index and a significant rise in the Standardized Temperature Index, indicating that rising temperatures primarily drive the increasing severity of compound drought and heat events. The 1990s marked a turning point with a significant increase in the frequency, severity, and spatial extent of these events. Full article
Show Figures

Figure 1

18 pages, 3600 KiB  
Article
Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis
by Enwei Huang, Guofeng Zhu, Yuhao Wang, Rui Li, Yuxin Miao, Xiaoyu Qi, Qingyang Wang, Yinying Jiao, Qinqin Wang and Ling Zhao
Remote Sens. 2025, 17(14), 2497; https://doi.org/10.3390/rs17142497 - 18 Jul 2025
Viewed by 471
Abstract
Snow cover, as a critical component of the cryosphere, serves as a vital water resource for arid regions in Northwest China. The Qilian Mountains (QLM), situated on the northeastern margin of the Tibetan Plateau, function as an important ecological barrier and water conservation [...] Read more.
Snow cover, as a critical component of the cryosphere, serves as a vital water resource for arid regions in Northwest China. The Qilian Mountains (QLM), situated on the northeastern margin of the Tibetan Plateau, function as an important ecological barrier and water conservation area in western China. This study presents the first high-resolution historical snow cover product developed specifically for the QLM, utilizing a multi-level snow classification algorithm tailored to the complex topography of the region. By employing Landsat satellite data from 1986–2024, we constructed a comprehensive 39-year snow cover dataset at a resolution of 30 m. A dual adaptive cloud masking strategy and spatial interpolation techniques were employed to effectively address cloud contamination and data gaps prevalent in mountainous regions. The spatiotemporal characteristics and driving mechanisms of snow cover changes in the QLM were systematically analyzed using Sen–Theil trend analysis and Mann–Kendall tests. The results reveal the following: (1) The mean annual snow cover extent in the QLM was 15.73% during 1986–2024, exhibiting a slight declining trend (−0.046% yr−1), though statistically insignificant (p = 0.215); (2) The snowline showed significant upward migration, with mean elevation and minimum elevation rising at rates of 3.98 m yr−1 and 2.81 m yr−1, respectively; (3) Elevation-dependent variations were observed, with significant snow cover decline in high-altitude (>5000 m) and low-altitude (2000–3500 m) regions, while mid-altitude areas remained relatively stable; (4) Comparison with MODIS data demonstrated good correlation (r = 0.828) but revealed systematic differences (RMSE = 12.88%), with MODIS showing underestimation in mountainous environments (Bias: −8.06%). This study elucidates the complex response mechanisms of the QLM snow system under global warming, providing scientific evidence for regional water resource management and climate change adaptation strategies. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Snow and Ice Monitoring)
Show Figures

Graphical abstract

21 pages, 9917 KiB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Viewed by 280
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

22 pages, 35931 KiB  
Article
Spatiotemporal Dynamics and Future Climate Change Response of Forest Carbon Sinks in an Ecologically Oriented County
by Jiale Lei, Caihong Chen, Jiyun She and Ye Xu
Sustainability 2025, 17(14), 6552; https://doi.org/10.3390/su17146552 - 17 Jul 2025
Viewed by 284
Abstract
Research on forest carbon sinks is crucial for mitigating global climate change and achieving carbon peaking and neutrality. However, studies at the county level remain relatively limited. This study utilized multi-source remote sensing data and the Carnegie–Ames-Stanford Approach (CASA) and soil respiration models [...] Read more.
Research on forest carbon sinks is crucial for mitigating global climate change and achieving carbon peaking and neutrality. However, studies at the county level remain relatively limited. This study utilized multi-source remote sensing data and the Carnegie–Ames-Stanford Approach (CASA) and soil respiration models to estimate the forest net ecosystem productivity (NEP) in Taoyuan County from 2000 to 2023. The spatiotemporal differentiation was analyzed using seasonal Mann–Kendall tests, Theil–Sen slope estimation, and standard deviation ellipses. The forest NEP for 2035 was predicted under multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) by applying a discrete coupling of the Patch-generating Land Use Simulation (PLUS) model, incorporating territorial spatial planning policy, and using the CASA model. The results indicated that the Taoyuan County forest NEP exhibited a fluctuating upward trend from 2000 to 2023, with higher (lower) values in the west/south (east/north). Under future warming and humidification, the overall forest NEP in Taoyuan County was projected to decrease by 2035, with predicted NEP values across scenarios ranking as SSP5-8.5 > SSP1-2.6 > SSP2-4.5. The findings offer practical insights for improving local forest management, optimizing forest configuration, and guiding county-level “dual-carbon” policies under future climate and land use change, thereby contributing to ecological sustainability. Full article
Show Figures

Figure 1

27 pages, 2272 KiB  
Article
A New Approach Based on Trend Analysis to Estimate Reference Evapotranspiration for Irrigation Planning
by Murat Ozocak
Sustainability 2025, 17(14), 6531; https://doi.org/10.3390/su17146531 - 17 Jul 2025
Viewed by 382
Abstract
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the [...] Read more.
Increasing drought conditions at the global level have created concerns about the decrease in water resources. This situation has made the correct planning of irrigation applications the most important situation. Irrigation management in future periods is possible with the correct determination of the reference evapotranspiration (ET0) trend. In the current situation, the trend is usually determined using one or two methods. Failure to conduct a detailed trend analysis results in incorrect irrigation management. With the new approach presented in the research, all of the Mann–Kendall (MK), innovative trend analysis (ITA), Sen’s slope (SS) and Spearman’s rho (SR) tests were used, and the common results of the four tests, namely increase, decrease, and no trend, were taken into account. The ET0 values calculated in different approaches were focused on temporal and spatial analysis for the future irrigation management of Türkiye with the Blaney–Criddle (BC), Turc (TR), and Coutagne (CT) methods. The future period forecast was made using four different trend analyses with geographical information system (GIS) based spatial applications using 12-month ET0 data calculated from 59 years of data between 1965 and 2023. Statistical analysis was performed to reveal the relationship between ET0 calculation methods. The findings showed that although there is a general increasing trend in ET0 values in the region, this situation is more pronounced, especially in the provinces in the western and central regions. The research results improve the determination of plant water needs for future periods in terms of irrigation management. This new approach, which determines ET0 trend analysis in the Black Sea region, can be used in regional, national, and international studies by supporting different calculations to be made in order to plan future water management correctly, to reduce the concern of decreasing water resources in drought conditions, and to obtain comprehensive data in order to provide appropriate irrigation. Full article
Show Figures

Figure 1

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 308
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

Back to TopTop