Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis
Abstract
1. Introduction
2. Methods
2.1. Study Area and Data
2.2. Cloud Masking Strategy
2.3. Radiometric Correction and Spectral Index Calculation
2.4. Multi-Level Snow Classification Algorithm
2.5. Time-Series Construction and Composite Strategy
2.6. Spatial Interpolation and Data Gap-Filling
2.7. Trend Analysis and Testing
2.8. Product Accuracy Evaluation
3. Results
3.1. Spatiotemporal Characteristics of Snow Cover Extent
3.1.1. Overall Temporal Variability
3.1.2. Elevation-Dependent Spatial Patterns
3.2. Temporal Variability Patterns of Snow Cover
4. Discussion
4.1. Data Quality Assessment
4.2. Comparison with MODIS
4.3. Mechanisms of Climate Change Impact on Snow Cover in the Qilian Mountains
5. Conclusions
- Significant Upward Trend of the Snow Line: The vertical distribution of snow cover revealed a pronounced rise in the snow line, with mean and minimum snow cover elevations increasing at rates of 3.98 m yr−1 and 2.81 m yr−1, respectively (p < 0.001).
- Reduction of Snow Cover in High and Low Elevations: Both high-elevation areas (>5000 m) and low-elevation zones (2000–3500 m) showed significant declines in SCE, demonstrating the sensitivity of these regions to climate warming, while mid-elevation areas (4000–5000 m) remained relatively stable, likely serving as vital storage for future snow resources.
- Comparison with MODIS Shows Systematic Underestimation: A systematic comparison with MODIS’s MOD10A1 products revealed a strong correlation between the two datasets (Pearson r = 0.8281, Spearman r = 0.9057). However, Landsat consistently captured a higher mean snow cover extent (16.10%) compared to MODIS (7.98%), indicating a systematic bias of approximately −8.11%. This discrepancy suggests that Landsat may be more sensitive to actual changes in snow coverage, especially in complex mountainous terrain. Error metrics indicated moderate prediction errors, highlighting the challenges in accurately identifying high snow cover, with the consistency for low snow cover recognition between the two products reaching 0.978, while recognition consistency for high summer snow cover was only 0.022.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pulliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, L.; Liu, Y.; Bhat, M.A.; Qiu, D.; Zhao, K.; Sang, L.; Lin, X.; Ye, L. Snow-melt water: An important water source for Picea crassifolia in Qilian Mountains. J. Hydrol. 2022, 613, 128441. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Sun, D.; Ji, Z.; Wang, Y.; Zhang, W. Assessment and forecasting of water ecological security and obstacle factor diagnosis in the Hexi Corridor of Northwest China. Sci. Rep. 2024, 14, 23507. [Google Scholar] [CrossRef]
- Li, Z.; Gui, J.; Wang, X.; Feng, Q.; Zhao, T.; Ouyang, C.; Guo, X.; Zhang, B.; Shi, Y. Water resources in inland regions of central Asia: Evidence from stable isotope tracing. J. Hydrol. 2019, 570, 1–16. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Cuo, L.; Liang, L. Characteristics and attribution of spatiotemporal changes in Qilian Mountains’ runoff over the past six decades. J. Geophys. Res. Atmos. 2023, 128, e2023JD039176. [Google Scholar] [CrossRef]
- Gui, J.; Li, Z.; Feng, Q.; Cui, Q.; Xue, J. Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes. Hydrol. Earth Syst. Sci. 2023, 27, 97–122. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wang, F.; He, Y.; Li, Z. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ. Res. Lett. 2020, 15, 104040. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Li, Y.; Wang, Y. Declining snowfall fraction in the alpine regions, Central Asia. Sci. Rep. 2020, 10, 3476. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Zhao, K.; Zhang, X.; Li, L. Change in the potential snowfall phenology: Past, present, and future in the Chinese Tianshan mountainous region, Central Asia. Cryosphere 2023, 17, 2437–2453. [Google Scholar] [CrossRef]
- Dong, W.; Ming, Y. Seasonality and Variability of Snowfall to Total Precipitation Ratio over High Mountain Asia Simulated by the GFDL High-Resolution AM4. J. Clim. 2022, 35, 5573–5589. [Google Scholar] [CrossRef]
- Fallah, B.; Didovets, I.; Rostami, M.; Hamidi, M. Climate change impacts on Central Asia: Trends, extremes and future projections. Int. J. Climatol. 2024, 44, 3191–3213. [Google Scholar] [CrossRef]
- Bokhorst, S.; Pedersen, S.H.; Brucker, L.; Anisimov, O.; Bjerke, J.W.; Brown, R.D.; Ehrich, D.; Essery, R.L.; Heilig, A.; Ingvander, S. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 2016, 45, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 2015, 10, 114016. [Google Scholar] [CrossRef]
- Musselman, K.N.; Addor, N.; Vano, J.A.; Molotch, N.P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 2021, 11, 418–424. [Google Scholar] [CrossRef]
- Siirila-Woodburn, E.R.; Rhoades, A.M.; Hatchett, B.J.; Huning, L.S.; Szinai, J.; Tague, C.; Nico, P.S.; Feldman, D.R.; Jones, A.D.; Collins, W.D. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2021, 2, 800–819. [Google Scholar] [CrossRef]
- Wang, C.; Yang, K.; Li, Y.; Wu, D.; Bo, Y. Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China. J. Clim. 2017, 30, 885–903. [Google Scholar] [CrossRef]
- Bednorz, E. Snow cover in eastern Europe in relation to temperature, precipitation and circulation. Int. J. Climatol. 2004, 24, 591–601. [Google Scholar] [CrossRef]
- Karl, T.R.; Groisman, P.Y.; Knight, R.W.; Heim, R.R., Jr. Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Clim. 1993, 6, 1327–1344. [Google Scholar] [CrossRef]
- Jiang, Y.; Ming, J.; Ma, P.; Wang, P.; Du, Z. Variation in the snow cover on the Qilian Mountains and its causes in the early 21st century. Geomat. Nat. Hazards Risk 2016, 7, 1824–1834. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Ma, X.; Zhang, J.; Yang, R. Relationship between vegetation phenology and snow cover changes during 2001–2018 in the Qilian Mountains. Ecol. Indic. 2021, 133, 108351. [Google Scholar] [CrossRef]
- Deng, G.; Liu, X.G.; Shen, Q.K.; Zhang, T.C.; Chen, Q.H.; Tang, Z.G. Remote Sensing Data Assimilation to Improve the Seasonal Snow Cover Simulations Over the Heihe River Basin, Northwest China. Int. J. Climatol. 2024, 44, 5621–5640. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.G.; Dong, C.Y.; Shao, D.H.; Wang, X. Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sens. 2024, 16, 192. [Google Scholar] [CrossRef]
- Tang, Z.G.; Wang, X.R.; Deng, G.; Wang, X.; Jiang, Z.L.; Sang, G.Q. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Crawford, C.J. MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+. Hydrol. Process. 2015, 29, 128–138. [Google Scholar] [CrossRef]
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345–356. [Google Scholar] [CrossRef]
- Kuter, S.; Akyurek, Z.; Weber, G.-W. Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sens. Environ. 2018, 205, 236–252. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.X.; Feng, Q.; Li, Z.J.; Gui, J.; Li, Y.C. Ecological conservation pattern based on ecosystem services in the Qilian Mountains, northwest China. Environ. Dev. 2023, 46, 100834. [Google Scholar] [CrossRef]
- Wei, S.H.; Wang, X.J.; Wang, K.; Liu, L.Y.; Liang, B.B.; Zhao, W.Y. Rethinking spatiotemporal variations in air temperature over the Qilian Mountains, Western China, from 1979 to 2018. Atmos. Res. 2023, 286, 106671. [Google Scholar] [CrossRef]
- Yuan, X.; Jiao, L.; Che, X.C.; Wu, J.J.; Zhu, X.L.; Li, Q. Study on the water-carbon coupling coordination function on the eastern edge of the Qinghai-Tibet plateau. Ecol. Model. 2024, 487, 110572. [Google Scholar] [CrossRef]
- Du, K.; Yang, L.R.; Zhang, R.; Yue, L.P.; Guo, H.J.; Zhang, Y.X.; Li, J.X.; Gong, H.J. Cenozoic tectonics and landform evolution in the Qilian Mountains and adjacent areas. Int. Geol. Rev. 2020, 62, 585–597. [Google Scholar] [CrossRef]
- Huang, X.F.; Gao, R.; Li, W.H.; Xiong, X.S. Seismic reflection evidence of crustal duplexing and lithospheric underthrusting beneath the western Qilian Mountains, northeastern margin of the Tibetan Plateau. Sci. China-Earth Sci. 2021, 64, 96–109. [Google Scholar] [CrossRef]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Li, Y.; Peng, S.M. Ecological and hydrologic evolution history in the sensitive zone of both East Asian summer monsoon and Westerly since the Last Glacial Maximum. J. Mt. Sci. 2023, 20, 1266–1281. [Google Scholar] [CrossRef]
- Crawford, C.J.; Manson, S.M.; Bauer, M.E.; Hall, D.K. Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sens. Environ. 2013, 135, 224–233. [Google Scholar] [CrossRef]
- JPL, NASA. NASA Shuttle Radar Topography Mission Global 1 arc Second; NASA Earthdata: Pasadena, CA, USA, 2013. Available online: https://earthdata.nasa.gov/ (accessed on 16 July 2025).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Ménard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Zhang, P.; Zeng, J.Y.; Gao, S.; Zheng, Z.J. An Assessment and Error Analysis of MOD10A1 Snow Product Using Landsat and Ground Observations Over China During 2000–2016. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1467–1478. [Google Scholar] [CrossRef]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Chen, J.; Zhu, X.; Shen, M. Thick cloud removal in Landsat images based on autoregression of Landsat time-series data. Remote Sens. Environ. 2020, 249, 112001. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Chen, L.; Xu, B. Spatially and temporally weighted regression: A novel method to produce continuous cloud-free Landsat imagery. IEEE Trans. Geosci. Remote Sens. 2016, 55, 27–37. [Google Scholar] [CrossRef]
- Chen, Y.; Weng, Q.; Tang, L.; Zhang, X.; Bilal, M.; Li, Q. Thick clouds removing from multitemporal Landsat images using spatiotemporal neural networks. IEEE Trans. Geosci. Remote Sens. 2020, 60, 4400214. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Wang, S.Y.; Wu, T.J.; Feng, L.; Wu, W.; Luo, J.C.; Zhang, X.; Yan, N.N. For-backward LSTM-based missing data reconstruction for time-series Landsat images. GIScience Remote Sens. 2022, 59, 410–430. [Google Scholar] [CrossRef]
- Wang, J.W.; Tang, Z.G.; Deng, G.; Hu, G.J.; You, Y.H.; Zhao, Y.C. Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022. Remote Sens. 2023, 15, 2534. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Desinayak, N.; Prasad, A.K.; El-Askary, H.; Kafatos, M.; Asrar, G.R. Snow cover variability and trend over the Hindu Kush Himalayan region using MODIS and SRTM data. Ann. Geophys. 2022, 40, 67–82. [Google Scholar] [CrossRef]
- Zhu, L.L.; Ma, G.Y.; Zhang, Y.Y.; Wang, J.G.; Tian, W.; Kan, X. Accelerated decline of snow cover in China from 1979 to 2018 observed from space. Sci. Total Environ. 2022, 814, 152491. [Google Scholar] [CrossRef]
- Thapa, S.; Li, B.; Fu, D.L.; Shi, X.F.; Tang, B.; Qi, H.; Wang, K. Trend analysis of climatic variables and their relation to snow cover and water availability in the Central Himalayas: A case study of Langtang Basin, Nepal. Theor. Appl. Climatol. 2020, 140, 891–903. [Google Scholar] [CrossRef]
- Azizi, A.H.; Akhtar, F. Analysis of spatiotemporal variation in the snow cover in Western Hindukush-Himalaya region. Geocarto Int. 2022, 37, 6602–6624. [Google Scholar] [CrossRef]
- Entezami, H.; Mojarrad, F.; Shahabi, H.; Ghaderpour, E. Spatiotemporal Variability in Snow and Land Cover in Sefid-Rud Basin, Iran. Sustainability 2024, 16, 9381. [Google Scholar] [CrossRef]
- Luan, W.B.; Zhang, X.L.; Xiao, P.F.; Wang, H.D.; Chen, S.Y. Binary and Fractional MODIS Snow Cover Mapping Boosted by Machine Learning and Big Landsat Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4305714. [Google Scholar] [CrossRef]
- Stillinger, T.; Rittger, K.; Raleigh, M.S.; Michell, A.; Davis, R.E.; Bair, E.H. Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. Cryosphere 2023, 17, 567–590. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Wu, Y. Automated glacier snow line altitude calculation method using landsat series images in the Google earth engine platform. Remote Sens. 2022, 14, 2377. [Google Scholar] [CrossRef]
- Notarnicola, C. Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020. Sci. Rep. 2022, 12, 13731. [Google Scholar] [CrossRef] [PubMed]
- Bernat, M.; Miles, E.S.; Kneib, M.; Fujita, K.; Sasaki, O.; Shaw, T.E.; Pellicciotti, F. Precipitation phase drives seasonal and decadal snowline changes in high mountain Asia. Environ. Res. Lett. 2025, 20, 064039. [Google Scholar] [CrossRef]
- Bharati, P.; Deb, P.; Hunt, K.M.R. Pacific Decadal Oscillation-driven interdecadal variability of snowfall over the Karakoram and the Western Himalayas. Weather Clim. Dyn. 2025, 6, 197–210. [Google Scholar] [CrossRef]
- Bahrami-Pichaghchi, H.; Aghelpour, P. An estimation and multi-step ahead prediction study of monthly snow cover area, based on efficient atmospheric-oceanic dynamics. Clim. Dyn. 2023, 60, 743–765. [Google Scholar] [CrossRef]
- Umirbekov, A.; Peña-Guerrero, M.D.; Müller, D. Regionalization of climate teleconnections across Central Asian mountains improves the predictability of seasonal precipitation. Environ. Res. Lett. 2022, 17, 055002. [Google Scholar] [CrossRef]
- Dou, M.Y.; Duan, K.Q.; Chen, R.; Li, L. Precipitation phase shift variations under a warming climate over the Qilian Mountain, China in the 21st century. J. Hydrol.-Reg. Stud. 2025, 57, 102151. [Google Scholar] [CrossRef]
- Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Balsamo, G. Varying snow and vegetation signatures of surface-albedo feedback on the Northern Hemisphere land warming. Environ. Res. Lett. 2021, 16, 034023. [Google Scholar] [CrossRef]
- Peng, X.Q.; Frauenfeld, O.W.; Huang, Y.; Chen, G.Q.; Wei, G.; Li, X.J.; Tian, W.W.; Yang, G.S.; Zhao, Y.H.; Mu, C.C. The thermal effect of snow cover on ground surface temperature in the Northern Hemisphere. Environ. Res. Lett. 2024, 19, 044015. [Google Scholar] [CrossRef]
- Jing, W.Q.; Wang, J.F. A Dynamics of Surface Temperature Forced by Solar Radiation. Geophys. Res. Lett. 2023, 50, e2022GL101222. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.G.; Hu, G.J.; Wang, J.W.; Sang, G.Q.; Li, J. Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Zhao:, P.; He, Z.B.; Du, J. Implications of elevation-dependent warming to water resources over the Chinese Qilian Mountains. J. Water Clim. Change 2023, 14, 239–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, E.; Zhu, G.; Wang, Y.; Li, R.; Miao, Y.; Qi, X.; Wang, Q.; Jiao, Y.; Wang, Q.; Zhao, L. Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis. Remote Sens. 2025, 17, 2497. https://doi.org/10.3390/rs17142497
Huang E, Zhu G, Wang Y, Li R, Miao Y, Qi X, Wang Q, Jiao Y, Wang Q, Zhao L. Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis. Remote Sensing. 2025; 17(14):2497. https://doi.org/10.3390/rs17142497
Chicago/Turabian StyleHuang, Enwei, Guofeng Zhu, Yuhao Wang, Rui Li, Yuxin Miao, Xiaoyu Qi, Qingyang Wang, Yinying Jiao, Qinqin Wang, and Ling Zhao. 2025. "Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis" Remote Sensing 17, no. 14: 2497. https://doi.org/10.3390/rs17142497
APA StyleHuang, E., Zhu, G., Wang, Y., Li, R., Miao, Y., Qi, X., Wang, Q., Jiao, Y., Wang, Q., & Zhao, L. (2025). Long-Term Snow Cover Change in the Qilian Mountains (1986–2024): A High-Resolution Landsat-Based Analysis. Remote Sensing, 17(14), 2497. https://doi.org/10.3390/rs17142497