Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (493)

Search Parameters:
Keywords = MWCNT-enhanced

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1974 KB  
Article
A Flexible Electrochemical Sensor Based on Porous Ceria Hollow Microspheres Nanozyme for Sensitive Detection of H2O2
by Jie Huang, Xuanda He, Shuang Zou, Keying Ling, Hongying Zhu, Qijia Jiang, Yuxuan Zhang, Zijian Feng, Penghui Wang, Xiaofei Duan, Haiyang Liao, Zheng Yuan, Yiwu Liu and Jinghua Tan
Biosensors 2025, 15(10), 664; https://doi.org/10.3390/bios15100664 - 2 Oct 2025
Abstract
The development of cost-effective and highly sensitive hydrogen peroxide (H2O2) biosensors with robust stability is critical due to the pivotal role of H2O2 in biological processes and its broad utility across various applications. In this work, [...] Read more.
The development of cost-effective and highly sensitive hydrogen peroxide (H2O2) biosensors with robust stability is critical due to the pivotal role of H2O2 in biological processes and its broad utility across various applications. In this work, porous ceria hollow microspheres (CeO2-phm) were synthesized using a solvothermal synthesis method and employed in the construction of an electrochemical biosensor for H2O2 detection. The resulting CeO2-phm featured a uniform pore size centered at 3.4 nm and a high specific surface area of 168.6 m2/g. These structural attributes contribute to an increased number of active catalytic sites and promote efficient electrolyte penetration and charge transport, thereby enhancing its electrochemical sensing performance. When integrated into screen-printed carbon electrodes (CeO2-phm/cMWCNTs/SPCE), the CeO2-phm/cMWCNTs/SPCE-based biosensor exhibited a wide linear detection range from 0.5 to 450 μM, a low detection limit of 0.017 μM, and a high sensitivity of 2070.9 and 2161.6 μA·mM−1·cm−2—surpassing the performance of many previously reported H2O2 sensors. In addition, the CeO2-phm/cMWCNTs/SPCE-based biosensor possesses excellent anti-interference performance, repeatability, reproducibility, and stability. Its effectiveness was further validated through successful application in real sample analysis. Hence, CeO2-phm with solvothermal synthesis has great potential applications as a sensing material for the quantitative determination of H2O2. Full article
(This article belongs to the Special Issue Advances in Nanozyme-Based Biosensors)
Show Figures

Figure 1

19 pages, 52316 KB  
Article
Microstructural Evolution and Mechanical Properties of Hybrid Al6060/TiB2–MWCNT Composites Fabricated by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling
by Maxat Abishkenov, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev and Siman Kulidan
Appl. Sci. 2025, 15(19), 10427; https://doi.org/10.3390/app151910427 - 25 Sep 2025
Abstract
This work presents a comprehensive study on the fabrication, microstructural evolution, and mechanical performance of hybrid aluminum matrix composites based on Al6060 alloy reinforced with ~2 wt.% TiB2 and ~1 wt.% multi-walled carbon nanotubes (MWCNTs). The composites were produced via ultrasonically assisted [...] Read more.
This work presents a comprehensive study on the fabrication, microstructural evolution, and mechanical performance of hybrid aluminum matrix composites based on Al6060 alloy reinforced with ~2 wt.% TiB2 and ~1 wt.% multi-walled carbon nanotubes (MWCNTs). The composites were produced via ultrasonically assisted stir casting followed by radial-shear rolling (RSR). The combined processing route enabled a uniform distribution of reinforcing phases and significant grain refinement in the aluminum matrix. SEM, EDS, XRD, and EBSD analyses revealed that TiB2 particles acted as nucleation centers and grain boundary pinning agents, while MWCNTs provided a network structure that suppressed agglomeration of ceramic particles and enhanced interfacial load transfer. As a result, hybrid composites demonstrated a submicron-grained structure with reduced anisotropy. Mechanical testing confirmed that yield strength (YS) and ultimate tensile strength (UTS) increased by 67% and 38%, respectively, in the cast state compared to unreinforced Al6060, while after RSR processing, YS exceeded 115 MPa and UTS reached 164 MPa, with elongation preserved at 14%. Microhardness increased from 50.2 HV0.2 (base alloy) to 82.2 HV0.2 (hybrid composite after RSR). The combination of ultrasonic melt treatment and RSR thus provided a synergistic effect, enabling simultaneous strengthening and ductility retention. These findings highlight the potential of hybrid Al6060/TiB2–MWCNT composites for structural applications requiring a balance of strength, ductility, and wear resistance. Full article
Show Figures

Figure 1

21 pages, 4005 KB  
Article
Synergistic and Antagonistic Effects of Hybridization and MWCNT Reinforcement on the Solid Particle Erosion of Glass/Carbon Fiber Composites
by Seyit Mehmet Demet
Polymers 2025, 17(18), 2434; https://doi.org/10.3390/polym17182434 - 9 Sep 2025
Cited by 1 | Viewed by 613
Abstract
A systematic investigation into the solid particle erosion (SPE) of monolithic, sandwich-type hybrid and multi-scale (Multi Wallet Carbon Nanotube (MWCNT)-reinforced) glass/carbon fiber composites was performed confirming to the ASTM G76-18 standard, utilizing angular alumina erodent (~600 µm) at 34 m/s across key impingement [...] Read more.
A systematic investigation into the solid particle erosion (SPE) of monolithic, sandwich-type hybrid and multi-scale (Multi Wallet Carbon Nanotube (MWCNT)-reinforced) glass/carbon fiber composites was performed confirming to the ASTM G76-18 standard, utilizing angular alumina erodent (~600 µm) at 34 m/s across key impingement angles of 30°, 45°, 60°, and 90°. The analysis reveals a profound performance dichotomy dictated by the governing wear mechanism. At the shear-dominated 30° angle, where maximum material loss was observed, hybridization consistently enhanced erosion resistance relative to both monolithic benchmarks. This synergy, however, contrasts sharply with the nuanced behavior under the 90° impact-dominant regime; here, although strategically hybridizing a brittle CFRP with tougher glass fibers reduced the erosion rate (ER) by a remarkable ~50%, this benefit was compromised by the matrix embrittlement induced by MWCNT incorporation. This work clarifies the difference between shear-dominated erosion in the ductile regime and fracture toughness under impact-dominated conditions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

13 pages, 2093 KB  
Proceeding Paper
Multi-Objective Optimization of Micromachining Parameters for Titanium Alloy Ti-3Al-2.5V Using Grey Relational Analysis
by Sivakumar Nallappan Sellappan, Manivel Chinnappandi, Pradeep Kumar Jeyaraj, Senthil Kumar Shanmugam P. Seethalakshmi, Zaid Sulaiman and Abd Rahman Abdul RahimSulaiman
Eng. Proc. 2025, 107(1), 51; https://doi.org/10.3390/engproc2025107051 - 3 Sep 2025
Viewed by 428
Abstract
This research investigates the multi-objective optimization of micro-milling processes for the titanium alloy Ti-3Al-2.5V (grade 9) through the application of grey relational analysis. The incorporation of nanometer-sized particles in hybrid machining lubricants plays a crucial role in improving heat transfer during machining. The [...] Read more.
This research investigates the multi-objective optimization of micro-milling processes for the titanium alloy Ti-3Al-2.5V (grade 9) through the application of grey relational analysis. The incorporation of nanometer-sized particles in hybrid machining lubricants plays a crucial role in improving heat transfer during machining. The approach aims to increase the efficiency and effectiveness of micro-milling by addressing various performance metrics simultaneously, leading to better machining results for this titanium alloy. Additionally, the integration of nanoparticles into the machining lubricant significantly improves the lubrication properties, reducing friction during the machining process. The study analyzed four machining parameters: machining speed, rate of feed, axial depth of cut, and the weight percentage concentration of hybrid machining lubricants Multi-wall Carbon Nano Tube and Alumina Oxide (MWCNT and Al2O3). The machining nanolubricant was formulated by adding 1% and 2% volume concentrations of MWCNT and Al2O3 nanoparticles to the industrial machining fluid. In this machining context, the friction between the machining tool and the Ti-3Al-2.5V work piece is a vital factor influencing the output quality. The results demonstrate that the chosen machining parameters and machining lubricants have a direct impact on the coefficient of friction and surface roughness. The study concludes that utilizing machining nanolubrication for machining Ti-3Al-2.5V (grade 9) significantly enhances the quality compared with traditional machining lubricants. Full article
Show Figures

Figure 1

14 pages, 2674 KB  
Article
Thermal and Electrical Properties of Cement-Based Materials Reinforced with Nano-Inclusions
by Spyridoula G. Farmaki, Panagiota T. Dalla, Dimitrios A. Exarchos, Konstantinos G. Dassios and Theodore E. Matikas
Nanomanufacturing 2025, 5(3), 13; https://doi.org/10.3390/nanomanufacturing5030013 - 1 Sep 2025
Viewed by 472
Abstract
This study explores the influence of various nano-inclusions on the electrical and thermal properties of cement-based materials. Specifically, it investigates the incorporation of Multi-Walled Carbon Nanotubes (MWCNTs) and Graphene Nanoplatelets (GNPs) as reinforcement materials in cement composites. These advanced nanomaterials enhance the mechanical [...] Read more.
This study explores the influence of various nano-inclusions on the electrical and thermal properties of cement-based materials. Specifically, it investigates the incorporation of Multi-Walled Carbon Nanotubes (MWCNTs) and Graphene Nanoplatelets (GNPs) as reinforcement materials in cement composites. These advanced nanomaterials enhance the mechanical strength, durability, and functional properties of cementitious matrices. A series of experimental tests was conducted to evaluate the thermal and electrical behavior of nano-reinforced concrete, employing nondestructive evaluation techniques, such as Infrared Thermography (IRT) and Electrical Resistivity measurements. The results indicate that increasing the concentration of nanomaterials significantly improves both the thermal and electrical conductivity of the composites. Optimum performance was observed at a CNT dosage of 0.6% and a GNP dosage of 1.2% by weight of cement in cement paste, while in concrete, both nanomaterials showed a significant decrease in resistivity beginning at 1.0%, with optimal performance at 1.2%. The study also emphasizes the critical role of proper dispersion techniques, such as ultrasonication, in achieving a homogeneous distribution of nanomaterials within the cement matrix. These findings highlight the potential of carbon nanotubes (CNTs) and GNPs to enhance the multifunctional properties of cement-based materials, paving the way for their application in smart and energy-efficient construction applications. Full article
Show Figures

Figure 1

19 pages, 4150 KB  
Article
Multiwalled Carbon Nanotube Reinforced Electrospun Biodegradable Polybutylene Succinate: Electromagnetic Shielding, Thermal and Mechanical Properties
by Usman Saeed, Hisham Bamufleh, Abdulrahim Alzahrani, Aqeel Ahmad Taimoor, Sami Ullah Rather, Hesham Alhumade, Walid M. Alalayah and Hamad AlTuraif
Polymers 2025, 17(17), 2381; https://doi.org/10.3390/polym17172381 - 31 Aug 2025
Viewed by 621
Abstract
An environmentally friendly biodegradable and flexible polymer with exceptional mechanical, thermal and electromagnetic interference shielding is urgently needed to reduce environmental pollutants and electromagnetic waves to preserve human health. The paper presents our study where we developed biodegradable electrospun nanocomposite by employing polybutylene [...] Read more.
An environmentally friendly biodegradable and flexible polymer with exceptional mechanical, thermal and electromagnetic interference shielding is urgently needed to reduce environmental pollutants and electromagnetic waves to preserve human health. The paper presents our study where we developed biodegradable electrospun nanocomposite by employing polybutylene succinate (PBS) with multiwalled carbon nanotubes (MWCNTs). The crystallization temperature Tc and melting temperature Tm of electrospun PBS/MWCNT composites with 3 wt% of MWCNTs was increased noticeably by 4 °C and 5 °C. The tensile strength increased by about 2.61 ± 0.15 MPA and the elastic modulus increased by about 0.72 ± 0.02 GPa with the addition of 3% MWCNT in polybutylene succinate. The increase in MWCNT content from 0.5 to 3 wt% led to an enhanced storage modulus and electrical properties 5 to 8 times higher in comparison to PBS. Moreover, the MWCNT was tested in different concentrations in PBS for electromagnetic interference shielding (EMI) and the most applicable results were obtained when the MWCNT was 3% which is capable of providing 25.5 db EMI shielding efficiency. The percolation threshold capability of PBS/MWCNT electrospun nanocomposites was 0.94 wt% and has significant entanglement of the MWCNTs and MWCNT network in the PBS matrix for conductive pathways. The study offers a viable process for creating an electrospun PBS/MWCNT composite that is lightweight, biodegradable and has exceptional electromagnetic shielding capabilities. Full article
(This article belongs to the Special Issue Preparation and Application of Biodegradable Polymers)
Show Figures

Figure 1

24 pages, 4207 KB  
Article
Acute Toxicity of Metal Oxide Nanoparticles—Role of Intracellular Localization In Vitro in Lung Epithelial Cells
by Andrey Boyadzhiev and Sabina Halappanavar
Int. J. Mol. Sci. 2025, 26(17), 8451; https://doi.org/10.3390/ijms26178451 - 30 Aug 2025
Viewed by 516
Abstract
Endocytic uptake and lysosomal localization are suggested to be the key mechanisms underlying the toxicity of metal oxide nanoparticles (MONPs), with dissolution in the acidic milieu driving the response. In this study, we aimed to investigate if MONPs of varying solubility are similarly [...] Read more.
Endocytic uptake and lysosomal localization are suggested to be the key mechanisms underlying the toxicity of metal oxide nanoparticles (MONPs), with dissolution in the acidic milieu driving the response. In this study, we aimed to investigate if MONPs of varying solubility are similarly sequestered intracellularly, including in lysosomes and the role of the acidic lysosomal milieu on toxicity induced by copper oxide (CuO) nanoparticles (NPs), nickel oxide (NiO) NPs, aluminum oxide (Al2O3) NPs, and titanium dioxide (TiO2) NPs of varying solubility in FE1 lung epithelial cells. Mitsui-7 multi-walled carbon nanotubes (MWCNTs) served as contrasts against particles. Enhanced darkfield hyperspectral imaging (EDF-HSI) with fluorescence microscopy was used to determine their potential association with lysosomes. The v-ATPase inhibitor Bafilomycin A1 (BaFA1) was used to assess the role of lysosomal acidification on toxicity. The results showed co-localization of all MONPs with lysosomes, with insoluble TiO2 NPs showing the greatest co-localization. However, only acute toxicity induced by soluble CuO NPs was affected by the presence of BaFA1, showing a 14% improvement in relative survival. In addition, all MONPs were found to be associated with large actin aggregates; however, treatment with insoluble TiO2 NPs, but not soluble CuO NPs, impaired the organization of F-actin and α-tubulin. These results indicate that MONPs are sequestered similarly intracellularly; however, the nature or magnitude of their toxicity is not similarly impacted by it. Future studies involving a broader variety of NPs are needed to fully understand the role of differential sequestration of NPs on cellular toxicity. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

12 pages, 5061 KB  
Article
A Programmable Soft Electrothermal Actuator Based on a Functionally Graded Structure for Multiple Deformations
by Fan Bu, Feng Zhu, Zhengyan Zhang and Hanbin Xiao
Polymers 2025, 17(17), 2288; https://doi.org/10.3390/polym17172288 - 24 Aug 2025
Viewed by 650
Abstract
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, [...] Read more.
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, restricting their long-term stability and actuation versatility. In this study, we present a programmable soft electrothermal actuator based on a functionally graded structure composed of polydimethylsiloxane (PDMS)/multiwalled carbon nanotube (MWCNTs) composite material and an embedded EGaIn conductive circuit. Rheological and mechanical characterization confirms the enhancement of viscosity, modulus, and tensile strength with increasing MWCNTs content, confirming that the gradient structure improves mechanical performance. The device shows excellent actuation performance (bending angle up to 117°), fast response (8 s), and durability (100 cycles). The actuator achieves L-shaped, U-shaped, and V-shaped bending deformations through circuit pattern design, demonstrating precise programmability and reconfigurability. This work provides a new strategy for realizing programmable, multimodal deformation in soft systems and offers promising applications in adaptive robotics, smart devices, and human–machine interfaces. Full article
Show Figures

Figure 1

13 pages, 3699 KB  
Article
Effects of Multi-Walled Carbon Nanotubes on Mechanical Properties and Microstructure of Ordinary Portland Cement–Sulfoaluminate Cement Repair Mortar
by Qun Zhou, Runzhuo Cao and Xiaodong Ma
Materials 2025, 18(16), 3748; https://doi.org/10.3390/ma18163748 - 11 Aug 2025
Viewed by 479
Abstract
Multi-walled carbon nanotubes (MWCNTs) with high thermal conductivity and electrical conductivity are frequently considered as ideal nano-reinforced materials for the future. This paper investigated the potential application of MWCNTs in ordinary Portland cement–sulfoaluminate cement (OPC-SAC) repair mortar by analyzing mechanical and microstructural changes [...] Read more.
Multi-walled carbon nanotubes (MWCNTs) with high thermal conductivity and electrical conductivity are frequently considered as ideal nano-reinforced materials for the future. This paper investigated the potential application of MWCNTs in ordinary Portland cement–sulfoaluminate cement (OPC-SAC) repair mortar by analyzing mechanical and microstructural changes caused by MWCNTs. The test results revealed that MWCNTs greatly increased the strength of OPC-SAC binary repair mortar in the early days, and promoted sustained growth of long-term strength. The 10.39%/9.3 MPa increases in compressive strength can be attributed to 0.10 wt.% MWCNTs. MWCNTs promotes hydration of OPC-SAC composites through functional groups and nucleation effects, resulting in more C-S-H gels and AFt crystals. The X-ray computed tomography (X-CT), mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM) results indicate that the nanofibers (MWCNTs) optimize the microstructure and microstructure of the composites. The nanofibers with high aspect ratio results enhance the crosslinking between hydration products, improve complexity (higher Ds) and integrity (more crosslinking sites), and reduce the formation and propagation of microcracks through bridging. The filling effect of nanoparticles refines the pore and reduces the pore volume, especially the volume of medium capillary pores. It is precisely these combined actions that improve the engineering performance of OPC-SAC binary repair mortar. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

23 pages, 4238 KB  
Article
Tuning Nanofibrous Sensor Performance in Selective Detection of B-VOCs by MIP-NP Loading
by Antonella Macagnano, Fabricio Nicolas Molinari, Simone Serrecchia, Paolo Papa, Anna Rita Taddei and Fabrizio De Cesare
Nanomaterials 2025, 15(16), 1220; https://doi.org/10.3390/nano15161220 - 9 Aug 2025
Viewed by 884
Abstract
In this study, we investigate the effect of varying the loading of molecularly imprinted polymer nanoparticles (MIP-NPs) on the morphology and sensing performance of electrospun nanofibres for the selective detection of linalool, a representative plant-emitted monoterpene. The proposed strategy combines two synergistic technologies: [...] Read more.
In this study, we investigate the effect of varying the loading of molecularly imprinted polymer nanoparticles (MIP-NPs) on the morphology and sensing performance of electrospun nanofibres for the selective detection of linalool, a representative plant-emitted monoterpene. The proposed strategy combines two synergistic technologies: molecular imprinting, to introduce chemical selectivity, and electrospinning, to generate high-surface-area nanofibrous sensing layers with tuneable architecture. Linalool-imprinted MIP-NPs were synthesized via precipitation polymerization using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA), yielding spherical particles with an average diameter of ~135 nm. These were embedded at increasing concentrations into a polyvinylpyrrolidone (PVP) matrix containing multi-walled carbon nanotubes (MWCNTs) and processed into nanofibrous mats by electrospinning. Atomic force microscopy (AFM) revealed that MIP content modulates fibre roughness and network morphology. Electrical sensing tests performed under different relative humidity (RH) conditions showed that elevated humidity (up to 60% RH) improves response stability by enhancing ion-mediated charge transport. The formulation with the highest MIP-NP loading exhibited the best performance, with a detection limit of 8 ppb (±1) and 84% selectivity toward linalool over structurally related terpenes (α-pinene and R-(+)-limonene). These results demonstrate a versatile sensing approach in which performance can be precisely tuned by adjusting MIP content, enabling the development of humidity-tolerant, selective VOC sensors for environmental and plant-related applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

13 pages, 1265 KB  
Article
Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials
by Attila Bata, Ferenc Ronkay, Caizhi Zhang and Péter Gerse
Polymers 2025, 17(16), 2178; https://doi.org/10.3390/polym17162178 - 8 Aug 2025
Viewed by 542
Abstract
In this study, we developed polypropylene-based nanocomposites using different (0.3, 0.5, and 1 wt%) fillers of multi-walled carbon nanotubes (MWCNTs), with a particular focus on their applicability as lining materials for Type IV hydrogen storage tanks. The aim of this research was to [...] Read more.
In this study, we developed polypropylene-based nanocomposites using different (0.3, 0.5, and 1 wt%) fillers of multi-walled carbon nanotubes (MWCNTs), with a particular focus on their applicability as lining materials for Type IV hydrogen storage tanks. The aim of this research was to improve the thermal stability and rheological behavior of PP, while also evaluating the recyclability of the resulting composites in order to support sustainability goals. A realistic recycling approach was simulated by producing original and regranulated (REG) samples using a twin-screw extruder. Thermal analysis showed that the incorporation of MWCNTs promoted crystallization, increasing both the degree of crystallinity and lamellar thickness, which are beneficial factors in terms of reducing gas permeability. Rheological tests showed increased storage and loss moduli in both nanocomposites and their recycled counterparts, especially at low frequencies. It is noteworthy that in REG samples with 0.3 and 1 wt% content, the zero-shear viscosity increased by approximately 50% and 90%, respectively, compared to pure PP. In our research, we produced nanocomposites that could offer significant advances in the field of hydrogen storage and liner materials, while the results of the regranulated composites could further enhance the sustainability of our materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

33 pages, 8038 KB  
Article
Antifouling and Desalination Enhancement of Forward Osmosis-Based Thin Film Composite Membranes via Functionalized Multiwalled Carbon Nanotubes Mixed Matrix Polyethersulfone Substrate
by Hamza E. Almansouri, Mohamed Edokali, Mazrul N. Abu Seman, Ellora Priscille Ndia Ntone, Che Ku Mohammad Faizal Che Ku Yahya and Abdul Wahab Mohammad
Membranes 2025, 15(8), 240; https://doi.org/10.3390/membranes15080240 - 8 Aug 2025
Viewed by 784
Abstract
The growing scarcity of freshwater worldwide has increased interest in forward osmosis (FO) membranes as a promising solution for water desalination and wastewater treatment. This study investigates the enhancement of thin-film composite (TFC) FO membranes via the incorporation of carboxyl-functionalized multiwalled carbon nanotubes [...] Read more.
The growing scarcity of freshwater worldwide has increased interest in forward osmosis (FO) membranes as a promising solution for water desalination and wastewater treatment. This study investigates the enhancement of thin-film composite (TFC) FO membranes via the incorporation of carboxyl-functionalized multiwalled carbon nanotubes (COOH-MWCNTs) into the polyethersulfone (PES) support layer. The membranes were fabricated using a combination of phase inversion and interfacial polymerization techniques, with COOH-MWCNTs incorporated into the membrane support layers at different concentrations (0–0.75 wt.%). Comprehensive characterization was carried out using various analytical methods and mechanical testing to evaluate the physicochemical and structural properties of the membranes. The modified membranes demonstrated improved hydrophilicity, enhanced mechanical and thermal stability, and improved surface charge properties. Performance tests using a 1 M NaCl draw solution showed that the optimized membrane (0.5 wt.% COOH-MWCNTs) attained a 161% enhancement in water flux (7.48 LMH) compared to the unmodified membrane (2.86 LMH), while also reducing internal concentration polarization (ICP). The antifouling properties were also significantly improved, with a flux recovery rate of 91.92%, attributed to enhanced electrostatic repulsion as well as surface and microstructural modifications. Despite a moderate rise in reverse solute flux, the specific reverse solute flux (Js/Jw) remained within acceptable limits. These findings highlight the potential of COOH-MWCNT-modified membranes in enhancing FO desalination performance, offering a promising option for next-generation water purification technologies. Full article
Show Figures

Figure 1

32 pages, 6746 KB  
Article
Tribo-Electric Performance of Nano-Enhanced Palm Oil-Based Glycerol Grease for Electric Vehicle Bearings
by Amany A. Abozeid, May M. Youssef, Tamer F. Megahed, Mostafa El-Helaly, Florian Pape and Mohamed G. A. Nassef
Lubricants 2025, 13(8), 354; https://doi.org/10.3390/lubricants13080354 - 8 Aug 2025
Cited by 1 | Viewed by 835
Abstract
Rolling Bearings are crucial components for induction motors and generators in electric vehicles (EVs), as their performance considerably influences the system’s operational reliability and safety. However, the commercial greases used for bearing lubrication in EV motors pose a detrimental impact on the environment. [...] Read more.
Rolling Bearings are crucial components for induction motors and generators in electric vehicles (EVs), as their performance considerably influences the system’s operational reliability and safety. However, the commercial greases used for bearing lubrication in EV motors pose a detrimental impact on the environment. In addition, they are ineffective in mitigating the effect of electric discharges on rolling surfaces leading to premature bearing failures. This study investigates the viability of a developed eco-friendly grease from palm olein as the base oil and glycerol monostearate as the thickener, enhanced with conductive multi-walled carbon nanotubes (MWCNTs) for EV motor bearings prone to electrical currents. Chemical–physical, tribological, and electrical tests were conducted on the developed grease samples without and with MWCNTs at 1 wt.%, 2 wt.%. and 3 wt.% concentrations and results were compared to lithium and sodium greases. Palm grease samples demonstrated a lower EDM voltage range reaching 1.0–2.2 V in case of 3 wt.% MWCNTs blends, indicating better electrical conductivity and protecting the bearing surfaces from electric-related faults. These findings were further confirmed using vibrations measurement and SEM-EDX analysis of the electrically worn bearings. Bearings lubricated with palm grease blends exhibited lower vibration levels. Palm grease with 2 wt.% MWCNTs reduced vibration amplitudes by 28.4% (vertical) and 32.3% (horizontal). Analysis of bearing damaged surfaces revealed enhanced damaged surface morphology for MWCNT-enhanced palm grease as compared to surface lubricated by commercial greases. The results of this work indicate that the proposed bio-grease is a promising candidate for future application in the field of next-generation electric mobility systems. Full article
(This article belongs to the Special Issue Tribology in Vehicles)
Show Figures

Figure 1

12 pages, 5474 KB  
Article
Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
by Yaojia Mou, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu and Ji’an Duan
Materials 2025, 18(15), 3707; https://doi.org/10.3390/ma18153707 - 7 Aug 2025
Viewed by 833
Abstract
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection [...] Read more.
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa−1), broad operational bandwidth (50–600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems. Full article
(This article belongs to the Special Issue Advanced Materials for Flexible Sensing Applications and Electronics)
Show Figures

Figure 1

12 pages, 2164 KB  
Article
Preparation of Inverse-Loaded MWCNTs@Fe2O3 Composites and Their Impact on Glycidyl Azide Polymer-Based Energetic Thermoplastic Elastomer
by Shuo Pang, Yihao Lv, Shuxia Liu, Chao Sang, Bixin Jin and Yunjun Luo
Polymers 2025, 17(15), 2080; https://doi.org/10.3390/polym17152080 - 30 Jul 2025
Viewed by 360
Abstract
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant [...] Read more.
As a novel carbon material, multi-walled carbon nanotubes (MWCNTs) have attracted significant research interest in energetic applications due to their high aspect ratio and exceptional physicochemical properties. However, their inherent structural characteristics and poor dispersion severely limit their practical utilization in solid propellant formulations. To address these challenges, this study developed an innovative reverse-engineering strategy that precisely confines MWCNTs within a three-dimensional Fe2O3 gel framework through a controllable sol-gel process followed by low-temperature calcination. This advanced material architecture not only overcomes the traditional limitations of MWCNTs but also creates abundant Fe-C interfacial sites that synergistically catalyze the thermal decomposition of glycidyl azide polymer-based energetic thermoplastic elastomer (GAP-ETPE). Systematic characterization reveals that the MWCNTs@Fe2O3 nanocomposite delivers exceptional catalytic performance for azido group decomposition, achieving a >200% enhancement in decomposition rate compared to physical mixtures while simultaneously improving the mechanical strength of GAP-ETPE-based propellants by 15–20%. More importantly, this work provides fundamental insights into the rational design of advanced carbon-based nanocomposites for next-generation energetic materials, opening new avenues for the application of nanocarbons in propulsion systems. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Figure 1

Back to TopTop