Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = MSRE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7290 KB  
Article
Assessing Pacific Madrone Blight with UAS Remote Sensing Under Different Skylight Conditions
by Michael C. Winfield, Michael G. Wing, Julia H. Wood, Savannah Graham, Anika M. Anderson, Dustin C. Hawks and Adam H. Miller
Remote Sens. 2025, 17(18), 3141; https://doi.org/10.3390/rs17183141 - 10 Sep 2025
Viewed by 1257
Abstract
We investigated the relationship between foliar blight, tree structure, and spectral signatures in a Pacific Madrone (Arbutus menziesii) orchard in Oregon using unoccupied aerial system (UAS) multispectral imagery and ground surveying. Aerial data were collected under both cloudy and sunny conditions [...] Read more.
We investigated the relationship between foliar blight, tree structure, and spectral signatures in a Pacific Madrone (Arbutus menziesii) orchard in Oregon using unoccupied aerial system (UAS) multispectral imagery and ground surveying. Aerial data were collected under both cloudy and sunny conditions using a six-band sensor (red, green, blue, near-infrared, red edge, and longwave infrared), and ground surveying recorded foliar blight and tree height for 29 trees. We observed band- and index-dependent spectral variation within crowns and between lighting conditions. The Normalized Difference Vegetation Index (NDVI), Modified Simple Ratio Index Red Edge (MSRE), and Red Edge Chlorophyll Index (RECI) showed higher consistency across lighting changes (adjusted R2 ≈ 0.95), while the Green Chlorophyll Index (GCI), Modified Simple Ratio Index (MSR), and Green Normalized Difference Vegetation Index (GNDVI) showed slightly lower consistency (adjusted R2 ≈ 0.92) but greater sensitivity to blight under cloudy skies. Diffuse skylight increased blue and near-infrared reflectance, reduced red, and enhanced blight detection using GCI, MSR, and GNDVI. Tree height was inversely related to blight presence (p < 0.005), and spectral variation within crowns was significant (p < 0.01), suggesting a role for canopy architecture. The support vector machine classification of tree crowns achieved 92.5% accuracy (kappa = 0.87). Full article
(This article belongs to the Special Issue Plant Disease Detection and Recognition Using Remotely Sensed Data)
Show Figures

Graphical abstract

20 pages, 6269 KB  
Article
Global Hypomethylation as Minimal Residual Disease (MRD) Biomarker in Esophageal and Esophagogastric Junction Adenocarcinoma
by Elisa Boldrin, Maria Assunta Piano, Alice Volpato, Rita Alfieri, Monica Franco, Tiziana Morbin, Annalisa Masier, Stefano Realdon, Genny Mattara, Giovanna Magni, Antonio Rosato, Pierluigi Pilati, Alberto Fantin and Matteo Curtarello
Cancers 2025, 17(16), 2668; https://doi.org/10.3390/cancers17162668 - 15 Aug 2025
Viewed by 529
Abstract
Background/Objectives: Esophageal and esophagogastric junction adenocarcinoma (EADC-EGJA), which mainly develops from Barrett’s esophagus (BE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD), has a poor prognosis and several unmet clinical needs, among which is the detection of minimal residual disease (MRD) after endoscopic/surgical [...] Read more.
Background/Objectives: Esophageal and esophagogastric junction adenocarcinoma (EADC-EGJA), which mainly develops from Barrett’s esophagus (BE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD), has a poor prognosis and several unmet clinical needs, among which is the detection of minimal residual disease (MRD) after endoscopic/surgical resection. Long interspersed nuclear element-1 (LINE-1), a surrogate marker of global methylation, is considered an emerging biomarker for MRD monitoring. The aim of this study was to determine, by LINE-1 methylation analysis, at which carcinogenesis step global methylation is affected and whether this biomarker could be followed in longitudinal to monitor the disease behavior post-surgery. Methods: Cell-free DNA of 90 patients with non-dysplastic Barrett’s esophagus (NDBE), HGD/early EADC-EGJA, or locally advanced/advanced EADC-EGJA were analyzed for LINE-1 methylation, by Methylation-Sensitive Restriction Enzyme droplet digital PCR (MSRE-ddPCR). Twenty-six patients were longitudinally studied by repetitive blood sampling. Results: Global hypomethylation increased during carcinogenesis, with significant difference between locally advanced/advanced EADC-EGJA and NDBE patients (p = 0.028). Longitudinal cases confirmed the rareness of hypomethylation in NDBE cases. The majority of HGD/early EADC-EGJA and locally advanced/advanced EADC-EGJA patients showed methylation changes after resection according to clinical status. Conclusions: This study suggests that global hypomethylation occurs just prior to cancer invasiveness and that it is a promising biomarker to monitor MRD. Full article
(This article belongs to the Special Issue Circulating Tumour DNA and Liquid Biopsy in Oncology)
Show Figures

Graphical abstract

19 pages, 2227 KB  
Article
A Comparative Study of Fission Yield Libraries Between ORIGEN2 and ENDF/B-VIII.0 for Molten Salt Reactor Burnup Calculation
by Yunfei Zhang, Guifeng Zhu, Yang Zou, Jian Guo, Bo Zhou, Rui Yan and Ao Zhang
Energies 2025, 18(13), 3562; https://doi.org/10.3390/en18133562 - 6 Jul 2025
Viewed by 782
Abstract
As a promising nuclear technology, molten salt reactors (MSRs) have a bright future in the energy sector due to their unique advantages such as high efficiency, safety, and fuel flexibility. However, the accurate analysis of fission products in MSRs requires reliable fission yield [...] Read more.
As a promising nuclear technology, molten salt reactors (MSRs) have a bright future in the energy sector due to their unique advantages such as high efficiency, safety, and fuel flexibility. However, the accurate analysis of fission products in MSRs requires reliable fission yield data. Current reactor burnup analysis often uses the ORIGEN2 code, whose fission yield libraries mainly originate from the outdated 1970s ENDF/B-VI nuclear database, thus risking data obsolescence. This study evaluates ORIGEN2’s fission yield libraries (THERMAL, PWRU, PWRU50) against the modern ENDF/B-VIII.0 library. Through a comprehensive comparative analysis of Oak Ridge National Laboratory’s Molten Salt Reactor Experiment (MSRE) model, numerical simulations reveal library-dependent differences in MSR burnup characteristics. The PWRU library best matches ENDF/B-VIII.0 for U-235-fueled cases in keff results, while the PWRU50 library has minimal keff deviation in U-233-fueled setups. Moreover, in both fuel cases, the fission yield library was found to significantly affect the activity of key radionuclides, including Kr-85, Kr-85m, I-133m, Cs-136, Sn-123, Sn-125, Sn-127, Sb-124, Sb-125, Cd-115m, Te-125m, Te-129m, etc. Additionally, the fission gas decay heat power calculated via the ORIGEN2 library is over 20% lower than that from the ENDF/B-VIII.0 library tens of days after shutdown, mainly due to differences in long-lived Kr-85 production. These findings highlight the need to update traditional fission yield libraries in burnup codes. For next-generation MSR designs, this is crucial to ensure accurate safety assessments and the effective development of this promising energy technology. Full article
(This article belongs to the Special Issue Molten Salt Reactors: Innovations and Challenges in Nuclear Energy)
Show Figures

Figure 1

25 pages, 17509 KB  
Article
Development and Application of a Sensitivity and Uncertainty Analysis Framework for Safety Analysis of Molten Salt Reactors
by Haijun Liu, Rui Li, Xiandi Zuo, Maosong Cheng, Shichao Chen and Zhimin Dai
Energies 2025, 18(9), 2179; https://doi.org/10.3390/en18092179 - 24 Apr 2025
Viewed by 714
Abstract
To provide reliable safety margins in reactor design and safety analysis, the best estimate plus uncertainty (BEPU) analysis, which is recommended by the International Atomic Energy Agency (IAEA), has drawn increasing attention worldwide. In order to systematically evaluate the sensitivity and uncertainty in [...] Read more.
To provide reliable safety margins in reactor design and safety analysis, the best estimate plus uncertainty (BEPU) analysis, which is recommended by the International Atomic Energy Agency (IAEA), has drawn increasing attention worldwide. In order to systematically evaluate the sensitivity and uncertainty in the design and safety analysis of molten salt reactors (MSRs), a sensitivity and uncertainty analysis framework has been developed by integrating the reactor system safety analysis code RELAP5-TMSR with the data analysis code RAVEN. The framework is tested using the transient scenarios of the molten salt reactor experiment (MSRE): reactivity insertion accident (RIA) and station blackout (SBO). The testing results demonstrate that the proposed framework effectively conducts sensitivity and uncertainty analysis. Sensitivity analyses identify key input parameters, including the primary exchanger parameters, air radiator parameters, initial temperatures, delayed neutron parameters and volumetric heat capacity of the INOR-8 alloy. Uncertainty quantification provides 95% confidence intervals for the figures of merit (FOMs) and the steady-state and RIA scenarios remained within safety limits. The developed framework enables automated, efficient, and high-capacity sensitivity and uncertainty analysis across multiple parameters and transient scenarios. The systematic analysis provides sensitivity indicators and uncertainty distributions, offering quantitative insights into the safety margins and supporting the design and safety analysis of MSRs. Full article
(This article belongs to the Special Issue Advances in Nuclear Power Plants and Nuclear Safety)
Show Figures

Figure 1

20 pages, 2473 KB  
Article
Antimicrobial-Resistance and Virulence-Associated Genes of Pasteurella multocida and Mannheimia haemolytica Isolated from Polish Dairy Calves with Symptoms of Bovine Respiratory Disease
by Agnieszka Lachowicz-Wolak, Aleksandra Chmielina, Iwona Przychodniak, Magdalena Karwańska, Magdalena Siedlecka, Małgorzata Klimowicz-Bodys, Kamil Dyba and Krzysztof Rypuła
Microorganisms 2025, 13(3), 491; https://doi.org/10.3390/microorganisms13030491 - 22 Feb 2025
Viewed by 1560
Abstract
Bovine respiratory disease causes significant economic losses in cattle farming due to mortality, treatment costs, and reduced productivity. It involves viral and bacterial infections, with Pasteurella multocida and Mannheimia haemolytica key bacterial pathogens. These bacteria contribute to severe pneumonia and are often found [...] Read more.
Bovine respiratory disease causes significant economic losses in cattle farming due to mortality, treatment costs, and reduced productivity. It involves viral and bacterial infections, with Pasteurella multocida and Mannheimia haemolytica key bacterial pathogens. These bacteria contribute to severe pneumonia and are often found together. Poland has one of the highest levels of antimicrobial use in food-producing animals among European Union countries. A total of 70 bacterial strains were analyzed, 48 P. multocida and 22 M. haemolytica, collected from affected calves’ respiratory tracts. The bacterial species were confirmed molecularly using PCR, which was also employed to detect antimicrobial resistance and virulence-associated genes. Antimicrobial susceptibility was determined using the broth microdilution method. Antimicrobial resistance varied between the two bacterial species studied. The highest resistance in P. multocida was to chlortetracycline 79.2% (38/48) and oxytetracycline 81.3% (39/48), while M. haemolytica showed 63.6% (14/22) resistance to penicillin and tilmicosin. The highest susceptibility was found for fluoroquinolones: P. multocida demonstrated 91.7% (44/48) susceptibility to enrofloxacin and 87.5% (42/48) to danofloxacin, while 77.3% (17/22) of M. haemolytica were susceptible to both tested fluoroquinolones. The tetH and tetR genes were observed only in P. multocida, at frequencies of 20.8% (10/48) and 16.7% (8/48), respectively. Both species carried the mphE and msrE genes, though at lower frequencies. All M. haemolytica contained the lkt, gs60, and gcp genes. All P. multocida carried the sodA gene, while the hgbB and ompH genes were present in 37.5% (18/48) and 20.8% (10/48) of strains, respectively. The highest resistance was observed against the most commonly used antibiotics in the European Union, although the resistance differed between the studied bacterial species and each strain exhibited the presence of at least one virulence gene. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

18 pages, 6983 KB  
Article
Multiscale Convolution-Based Efficient Channel Estimation Techniques for OFDM Systems
by Nahyeon Kwon, Bora Yoon and Junghyun Kim
Electronics 2025, 14(2), 307; https://doi.org/10.3390/electronics14020307 - 14 Jan 2025
Cited by 2 | Viewed by 1418
Abstract
With the advancement of wireless communication technology, the significance of efficient and accurate channel estimation methods has grown substantially. Recently, deep learning-based methods are being adopted to estimate channels with higher precision than traditional methods, even in the absence of prior channel statistics. [...] Read more.
With the advancement of wireless communication technology, the significance of efficient and accurate channel estimation methods has grown substantially. Recently, deep learning-based methods are being adopted to estimate channels with higher precision than traditional methods, even in the absence of prior channel statistics. In this paper, we propose two deep learning-based channel estimation models, CAMPNet and MSResNet, which are designed to consider channel characteristics from a multiscale perspective. The convolutional attention and multiscale parallel network (CAMPNet) accentuates critical channel characteristics by utilizing parallel multiscale features and convolutional attention, while the multiscale residual network (MSResNet) integrates information across various scales through cross-connected multiscale convolutional structures. Both models are designed to perform robustly in environments with complex frequency domain information and various Doppler shifts. Experimental results demonstrate that CAMPNet and MSResNet achieve superior performance compared to existing channel estimation methods within various channel models. Notably, the proposed models show exceptional performance in high signal-to-noise ratio (SNR) environments, achieving up to a 48.98% reduction in mean squared error(MSE) compared to existing methods at an SNR of 25dB. In experiments evaluating the generalization capabilities of the proposed models, they show greater stability and robustness compared to existing methods. These results suggest that deep learning-based channel estimation models have the potential to overcome the limitations of existing methods, offering high performance and efficiency in real-world communication environments. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 3759 KB  
Article
An MSRE-Assisted Glycerol-Enhanced RPA-CRISPR/Cas12a Method for Methylation Detection
by Zhiquan Lu, Zilu Ye, Ping Li, Yike Jiang, Sanyang Han and Lan Ma
Biosensors 2024, 14(12), 608; https://doi.org/10.3390/bios14120608 - 12 Dec 2024
Cited by 2 | Viewed by 1854
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed. Methods: We propose a novel DNA methylation assay based on methylation-sensitive restriction endonuclease (MSRE) HhaI digestion and Glycerol-enhanced recombinase polymerase amplification (RPA)-CRISPR/Cas12a detection (HGRC). MSRE has a fast digestion rate, and HhaI specifically cleaves unmethylated DNA at a specific locus, leaving the methylated target intact to trigger the downstream RPA-Cas12a detection step, generating a fluorescence signal. Moreover, the detection step was supplemented with glycerol for the separation of Cas12a-containing components and RPA- and template-containing components, which avoids over-consumption of the template and, thus, enhances the amplification efficiency and detection sensitivity. Results: The HGRC method exhibits excellent performance in the detection of a CNE2-specific methylation locus with a (limit of detection) LOD of 100 aM and a linear range of 100 aM to 100 fM. It also responds well to different methylation levels and is capable of distinguishing methylation levels as low as 0.1%. Moreover, this method can distinguish NPC cells from normal cells by detecting methylation in cellular genomes. This method provides a rapid and sensitive approach for NPC detection and also holds good application prospects for other cancers and diseases featuring DNA methylation as a biomarker. Full article
Show Figures

Figure 1

19 pages, 1474 KB  
Article
Molecular Characterization of MDR and XDR Clinical Strains from a Tertiary Care Center in North India by Whole Genome Sequence Analysis
by Uzma Tayyaba, Shariq Wadood Khan, Asfia Sultan, Fatima Khan, Anees Akhtar, Geetha Nagaraj, Shariq Ahmed and Bhaswati Bhattacharya
J. Oman Med. Assoc. 2024, 1(1), 29-47; https://doi.org/10.3390/joma1010005 - 24 Sep 2024
Cited by 1 | Viewed by 1563
Abstract
Whole genome sequencing (WGS) has the potential to greatly enhance AMR (Anti-microbial Resistance) surveillance. To characterize the prevalent pathogens and dissemination of various AMR-genes, 73 clinical isolates were obtained from blood and respiratory tract specimens, were characterized phenotypically by VITEK-2 (bioMerieux), and 23 [...] Read more.
Whole genome sequencing (WGS) has the potential to greatly enhance AMR (Anti-microbial Resistance) surveillance. To characterize the prevalent pathogens and dissemination of various AMR-genes, 73 clinical isolates were obtained from blood and respiratory tract specimens, were characterized phenotypically by VITEK-2 (bioMerieux), and 23 selected isolates were genotypically characterized by WGS (Illumina). AST revealed high levels of resistance with 50.7% XDR, 32.9% MDR, and 16.4% non-MDR phenotype. A total of 11 K. pneumoniae revealed six sequence types, six K-locus, and four O-locus types, with ST437, KL36, and O4 being predominant types, respectively. They carried ESBL genes CTX-M-15 (90.9%), TEM-1D (72.7%), SHV-11 (54.5%), SHV-1, SHV-28, OXA-1, FONA-5, and SFO-1; NDM-5 (72.7%) and 63.6%OXA48-like carbapenamases; 90.9%OMP mutation; dfrA12, sul-1, ermB, mphA, qnrB1, gyrA831, and pmrB1 for other groups. Virulence gene found were Yerisiniabactin (90.9%), aerobactin, RmpADC, and rmpA2. Predominant plasmid replicons were Col(pHAD28), IncFII, IncFIB(pQil), and Col440. A total of seven XDR A. baumannii showed single MLST type(2) and single O-locus type(OCL-1); with multiple AMR-genes: blaADC-73, blaOXA-66, blaOXA-23, blaNDM-1, gyrA, mphE, msrE, and tetB. Both S. aureus tested were found to be ST22, SCCmec IVa(2B), and spa type t309; multiple AMR-genes: blaZ, mecA, dfrC, ermC, and aacA-aphD. Non-MDR Enterococcus faecalis sequenced was ST 946, with multiple virulence genes. This study documents for the first-time prevalent virulence genes and MLST types, along with resistance genes circulating in our center. Full article
Show Figures

Figure 1

16 pages, 3079 KB  
Article
Pterostilbene Reverses Epigenetic Silencing of Nrf2 and Enhances Antioxidant Response in Endothelial Cells in Hyperglycemic Microenvironment
by Kannan Harithpriya, Kumar Ganesan and Kunka Mohanram Ramkumar
Nutrients 2024, 16(13), 2045; https://doi.org/10.3390/nu16132045 - 27 Jun 2024
Cited by 9 | Viewed by 3336
Abstract
The epigenetic regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal redox transcription factor, plays a crucial role in maintaining cellular homeostasis. Recent research has underscored the significance of epigenetic modifications of Nrf2 in the pathogenesis of diabetic foot ulcers (DFUs). [...] Read more.
The epigenetic regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal redox transcription factor, plays a crucial role in maintaining cellular homeostasis. Recent research has underscored the significance of epigenetic modifications of Nrf2 in the pathogenesis of diabetic foot ulcers (DFUs). This study investigates the epigenetic reversal of Nrf2 by pterostilbene (PTS) in human endothelial cells in a hyperglycemic microenvironment (HGM). The activation potential of PTS on Nrf2 was evaluated through ARE-Luciferase reporter assays and nuclear translocation studies. Following 72 h of exposure to an HGM, mRNA expression and protein levels of Nrf2 and its downstream targets NAD(P)H quinone oxidoreductase 1 (NQO1), heme-oxygenase 1(HO-1), superoxide dismutase (SOD), and catalase (CAT) exhibited a decrease, which was mitigated in PTS-pretreated endothelial cells. Epigenetic markers, including histone deacetylases (HDACs class I–IV) and DNA methyltransferases (DNMTs 1/3A and 3B), were found to be downregulated under diabetic conditions. Specifically, Nrf2-associated HDACs, including HDAC1, HDAC2, HDAC3, and HDAC4, were upregulated in HGM-induced endothelial cells. This upregulation was reversed in PTS-pretreated cells, except for HDAC2, which exhibited elevated expression in endothelial cells treated with PTS in a hyperglycemic microenvironment. Additionally, PTS was observed to reverse the activity of the methyltransferase enzyme DNMT. Furthermore, CpG islands in the Nrf2 promoter were hypermethylated in cells exposed to an HGM, a phenomenon potentially counteracted by PTS pretreatment, as shown by methyl-sensitive restriction enzyme PCR (MSRE-qPCR) analysis. Collectively, our findings highlight the ability of PTS to epigenetically regulate Nrf2 expression under hyperglycemic conditions, suggesting its therapeutic potential in managing diabetic complications. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

19 pages, 3554 KB  
Article
Metagenomic Investigation of the Short-Term Temporal and Spatial Dynamics of the Bacterial Microbiome and the Resistome Downstream of a Wastewater Treatment Plant in the Iskar River in Bulgaria
by Deyan Donchev, Ivan N. Ivanov, Ivan Stoikov and Monika Ivanova
Microorganisms 2024, 12(6), 1250; https://doi.org/10.3390/microorganisms12061250 - 20 Jun 2024
Cited by 4 | Viewed by 2374
Abstract
Waste Water Treatment Plants (WWTP) aim to reduce contamination in effluent water; however, studies indicate antimicrobial resistance genes (ARGs) persist post-treatment, potentially leading to their spread from human populated areas into the environment. This study evaluated the impact of a large WWTP serving [...] Read more.
Waste Water Treatment Plants (WWTP) aim to reduce contamination in effluent water; however, studies indicate antimicrobial resistance genes (ARGs) persist post-treatment, potentially leading to their spread from human populated areas into the environment. This study evaluated the impact of a large WWTP serving 125,000 people on the Iskar River in Bulgaria, by characterizing the spatial and short-term temporal dynamics in bacterial community dynamics and resistance profiles of the surface water. Pairs of samples were collected biweekly on four dates from two different locations, one about 800 m after the WWTP effluents and the other 10 km downstream. Taxonomic classification revealed the dominance of Pseudomonodota and Bacteriodota, notably the genera Flavobacterium, Aquirufa, Acidovorax, Polynucleobacter, and Limnohabitans. The taxonomic structure corresponded with both lentic and lotic freshwater habitats, with Flavobacterium exhibiting a significant decrease over the study period. Principal Coordinate Analysis revealed statistically significant differences in bacterial community composition between samples collected on different dates. Differential abundance analysis identified notable enrichment of Polynucleobacter and Limnohabitans. There were shifts within the enriched or depleted bacterial taxa between early and late sampling dates. High relative abundance of the genes erm(B), erm(F), mph(E), msr(E) (macrolides); tet(C), tet(O), tet(W), tet(Q) and tet(X) (tetracyclines); sul1 and sul2 (sulphonamides); and cfxA3, cfxA6 (beta-lactams) were detected, with trends of increased presence in the latest sampling dates and in the location closer to the WWTP. Of note, genes conferring resistance to carbapenems blaOXA-58 and blaIMP-33-like were identified. Co-occurrence analysis of ARGs and mobile genetic elements on putative plasmids showed few instances, and the estimated human health risk score (0.19) according to MetaCompare2.0 was low. In total, 29 metagenome-assembled genomes were recovered, with only a few harbouring ARGs. This study enhances our understanding of freshwater microbial community dynamics and antibiotic resistance profiles, highlighting the need for continued ARGs monitoring. Full article
(This article belongs to the Special Issue Water Microorganisms Associated with Human Health)
Show Figures

Graphical abstract

15 pages, 3530 KB  
Article
Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment
by Miguel Galarde-López, Maria Elena Velazquez-Meza, Elizabeth Ernestina Godoy-Lozano, Berta Alicia Carrillo-Quiroz, Patricia Cornejo-Juárez, Alejandro Sassoé-González, Alfredo Ponce-de-León, Pedro Saturno-Hernández and Celia Mercedes Alpuche-Aranda
Microorganisms 2024, 12(6), 1231; https://doi.org/10.3390/microorganisms12061231 - 19 Jun 2024
Cited by 8 | Viewed by 2624
Abstract
The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February [...] Read more.
The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February to March 2020. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize bacterial abundance and antimicrobial resistance gene analysis. The main bacterial phyla found in all the samples were as follows: Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria. At the species level, ESKAPEE bacteria such as E. coli relative abundance decreased between raw and treated wastewater, but S. aureus, A. baumannii, and P. aeruginosa increased, as did the persistence of K. pneumoniae in both raw and treated wastewater. A total of 172 different ARGs were detected; blaOXA, blaVEB, blaKPC, blaGES, mphE, mef, erm, msrE, AAC(6′), ant(3″), aadS, lnu, PBP-2, dfrA, vanA-G, tet, and sul were found at the highest abundance and persistence. This study demonstrates the ability of ESKAPEE bacteria to survive tertiary treatment processes of hospital wastewater, as well as the persistence of clinically important antimicrobial resistance genes that are spreading in the environment. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

25 pages, 707 KB  
Article
The Effects of Sunflower and Maize Crop Residue Extracts as a New Ingredient on the Quality Properties of Pork Liver Pâtés
by Milica Glišić, Marija Bošković Cabrol, Nikola Čobanović, Marija Starčević, Stevan Samardžić, Ivona Veličković and Zoran Maksimović
Foods 2024, 13(5), 788; https://doi.org/10.3390/foods13050788 - 3 Mar 2024
Cited by 7 | Viewed by 3235
Abstract
The present study aimed to evaluate the antioxidant capacity of ethanolic extracts from post-harvest sunflower and maize stalk residues, and their impact on the chemical composition, physicochemical parameters, lipid oxidative stability, microbiological properties, and sensory characteristics of pork liver pâtés over a 90-day [...] Read more.
The present study aimed to evaluate the antioxidant capacity of ethanolic extracts from post-harvest sunflower and maize stalk residues, and their impact on the chemical composition, physicochemical parameters, lipid oxidative stability, microbiological properties, and sensory characteristics of pork liver pâtés over a 90-day storage period. Four formulations were prepared: a control group (CON), a batch with butylated hydroxytoluene as a synthetic antioxidant (BHT), 1% ethanolic extract from sunflower residues (SSRE), and 1% ethanolic extract from maize residues (MSRE). The MSRE had a higher total phenol content and showed better antioxidant activity relative to the SSRE (p < 0.01). The addition of SSRE decreased the lightness and increased the redness in the pork liver pâtés, with these pâtés showing the highest total color difference compared to the control (p < 0.01). The crop extracts increased the n-6 and total PUFA contents in pâtés and improved the PUFA/SFA ratio (p < 0.01). Formulations containing crop residue extracts showed higher TBARs and POV values than the control and BHT group (p < 0.01), indicating a pro-oxidant effect and accelerated lipid oxidation in pâtés during storage. As far as microbiological quality, the presence of crop residue extracts decreased the total viable count, lactic acid bacteria, and psychotropic aerobic bacteria (p < 0.01). The incorporation of crop extracts in the pork pâtés impaired their sensory quality, particularly color, odor, aroma, and flavor, and decreased their overall acceptability. These results indicated that, while the crop residue extracts were not as effective as synthetic antioxidants in preserving the lipid stability of pâtés, they demonstrated potential for enhancing the microbial quality of this type of meat product. Full article
(This article belongs to the Special Issue Plant Extracts as Functional Food Ingredients)
Show Figures

Figure 1

14 pages, 2555 KB  
Article
A Consistent One-Dimensional Multigroup Diffusion Model for Molten Salt Reactor Neutronics Calculations
by Mohamed Elhareef, Zeyun Wu and Massimiliano Fratoni
J. Nucl. Eng. 2023, 4(4), 654-667; https://doi.org/10.3390/jne4040041 - 6 Oct 2023
Cited by 4 | Viewed by 2639
Abstract
Molten Salt Reactors (MSRs) have recently gained resurged research and development interest in the advanced reactor community. Several computational tools are being developed to capture the strong neutronics/thermal-hydraulics coupling effect in this special reactor configuration. This paper presents a consistent one-dimensional (1D) multigroup [...] Read more.
Molten Salt Reactors (MSRs) have recently gained resurged research and development interest in the advanced reactor community. Several computational tools are being developed to capture the strong neutronics/thermal-hydraulics coupling effect in this special reactor configuration. This paper presents a consistent one-dimensional (1D) multigroup neutron diffusion model for MSR analysis, with the primary aim for fast and accurate calculations for long transients, as well as sensitivity and uncertainty analysis of the reactor. A fictitious radial leakage cross section is introduced in the model to properly account for the radial leakage effects of the reactor. The leakage cross section and other consistent neutronics parameters are generated with the Monte Carlo code Serpent using high-fidelity three-dimensional (3D) models. The accuracy of the 1D consistent model is verified by the reference solution from the Monte Carlo model on the Molten Salt Reactor Experiment (MSRE) configuration. The 1D consistent model successfully reproduced the integrated flux from the 3D model and the reactor multiplication factor keff with the error in the range of 95 to 397 pcm (per cent mille), depending on discretized energy group structures. The developed model is also extended to estimate the reactivity loss due to fuel circulation in MSRE. The estimate of reactivity loss in dynamics analysis is in great agreement with the experimental data. This model functions as the first step in the development of a 1D fully neutronics/thermal-hydraulics coupled model for short- and long-term MSRE transient analysis. Full article
Show Figures

Figure 1

11 pages, 1260 KB  
Article
Resistome and Genome Analysis of an Extensively Drug-Resistant Klebsiella michiganensis KMIB106: Characterization of a Novel KPC Plasmid pB106-1 and a Novel Cointegrate Plasmid pB106-IMP Harboring blaIMP-4 and blaSHV-12
by Linjing Wang, Haijun Chen, Wanting Liu, Ling Yang, Zhenbo Xu and Dingqiang Chen
Antibiotics 2023, 12(9), 1463; https://doi.org/10.3390/antibiotics12091463 - 20 Sep 2023
Cited by 3 | Viewed by 2085
Abstract
Klebsiella michiganensis is a recently emerging human pathogen causing nosocomial infections. This study aimed to characterize the complete genome sequence of a clinical Klebsiella michiganensis strain KMIB106 which exhibited extensive drug-resistance. The whole genome of the strain was sequenced using PacBio RS III [...] Read more.
Klebsiella michiganensis is a recently emerging human pathogen causing nosocomial infections. This study aimed to characterize the complete genome sequence of a clinical Klebsiella michiganensis strain KMIB106 which exhibited extensive drug-resistance. The whole genome of the strain was sequenced using PacBio RS III systems and Illumina Nextseq 500. Annotation, transposable elements and resistance gene identification were analyzed by RAST, prokka and Plasmid Finder, respectively. According to the results, KMIB106 was resistant to multiple antimicrobials, including carbapenems, but it remained susceptible to aztreonam. The genome of KMIB106 consisted of a single chromosome and three predicted plasmids. Importantly, a novel KPC plasmid pB106-1 was found to carry the array of resistance genes in a highly different order in its variable regions, including mphA, msrE, mphE, ARR-3, addA16, sul1, dfrA27, tetD and fosA3. Plasmid pB106-2 is a typical IncFII plasmid with no resistant gene. Plasmid pB106-IMP consists of the IncN and IncX3 backbones, and two resistance genes, blaIMP-4 and blaSHV-12, were identified. Our study for the first time reported an extensively drug-resistant Klebsiella michiganensis strain recovered from a child with a respiratory infection in Southern China, which carries three mega plasmids, with pB106-1 firstly identified to carry an array of resistance genes in a distinctive order, and pB106-IMP identified as a novel IncN-IncX3 cointegrate plasmid harboring two resistance genes blaIMP-4 and blaSHV-12. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

7 pages, 597 KB  
Communication
First Detection and Molecular Characterization of Pseudomonas aeruginosa blaNDM-1 ST308 in Greece
by Katerina Tsilipounidaki, Christos-George Gkountinoudis, Zoi Florou, George C. Fthenakis, Vivi Miriagou and Efthymia Petinaki
Microorganisms 2023, 11(9), 2159; https://doi.org/10.3390/microorganisms11092159 - 26 Aug 2023
Cited by 12 | Viewed by 2565
Abstract
The objective of the present study is to report the detection and the molecular characterization of nine blaNDM-1-positive Pseudomonas aeruginosa isolates, all of which belonged to the epidemic high-risk international clone ST308, and all were isolated from patients in a tertiary [...] Read more.
The objective of the present study is to report the detection and the molecular characterization of nine blaNDM-1-positive Pseudomonas aeruginosa isolates, all of which belonged to the epidemic high-risk international clone ST308, and all were isolated from patients in a tertiary care hospital in Central Greece from May to July 2023.The isolates were characterized by whole genome sequencing to obtain multi-locus sequencing typing (MLST) and identify the blaNDM1-environment and resistome and virulence genes content. In silico MLST analysis showed that all isolates belonged to the high-risk ST308 international clone. All strains possessed 22 different genes, encoding resistance to various antimicrobial agents. Whole genome sequencing revealed that the blaNDM-1 was chromosomally located within the integrative and conjugative element ICETn43716385 and that it was part of one cassette along with two other resistance genes, floR and msrE. Two additional resistance cassettes were also found in the genome, which included the arrays of aph(6)-Id, aph(3″)-Ib, floR, sul2 and aadA10, qnrVC1, aac(3)-Id, dfrB5, aac(6′)-II. Additionally, the strains possessed various virulence genes, e.g., aprA, exoU, lasA, lasB, toxA, and estA. All of the isolates shared identical genomes, which showed 98% similarity with the P. aeruginosa ST308 genome (acc. no CP020703), previously reported from Singapore. To our knowledge, this is the first report of ST308 blaNDM-1-positive P. aeruginosa isolation in Europe, which indicates the transmission dynamics of this high-risk clone. Full article
(This article belongs to the Special Issue ß-Lactamases 2.0)
Show Figures

Figure 1

Back to TopTop