Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = MLVA/VNTR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1888 KiB  
Article
Molecular Typing of Pseudomonas aeruginosa Isolates Collected in Abidjan Hospitals (Côte d’Ivoire) Using the Multiple-Locus Variable Number of Tandem Repeats Method
by Christiane Essoh, Yolande Hauck, Timothée Ouassa, Daouda Touré, Richmond Djatchi, Guillaume Yao Loukou, Simon-Pierre Assanvo N’Guetta, Gilles Vergnaud and Christine Pourcel
Diagnostics 2024, 14(20), 2284; https://doi.org/10.3390/diagnostics14202284 - 14 Oct 2024
Viewed by 1303
Abstract
Background/objectives: Pseudomonas aeruginosa can cause community-acquired infections affecting various body sites. The present retrospective study investigated the genetic diversity of 173 isolates (166 clinical, 7 environmental) of P. aeruginosa collected from clinical pathology laboratories in Abidjan, Côte d’Ivoire (2001–2011). Methods: Multiple-Locus Variable [...] Read more.
Background/objectives: Pseudomonas aeruginosa can cause community-acquired infections affecting various body sites. The present retrospective study investigated the genetic diversity of 173 isolates (166 clinical, 7 environmental) of P. aeruginosa collected from clinical pathology laboratories in Abidjan, Côte d’Ivoire (2001–2011). Methods: Multiple-Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) using 13 loci was applied to all isolates and compared to published MLVA data. The antibiotics status of the isolates was compiled when available and compared to published profiles. Results: Among 95 isolates analyzed for their antibiotics status, 14 displayed concerning resistance profiles: five multidrug-resistant (MDR) and nine extensively drug-resistant (XDR). MLVA typing revealed a high genetic diversity (>130 genotypes), with many genotypes represented by a single strain. Notably, thirteen clusters (≥4 related isolates) were observed. Some clusters displayed close genetic relatedness to isolates from France, Korea, and well-studied strains (ST560, LES and PA14). Comparative analysis suggested the presence of international high-risk MDR clones (CC233, CC111) in Côte d’Ivoire. Importantly, MLVA clustering revealed a close relationship of CC235-MDR strains with a locally identified cluster (group 9). Conclusions: These findings support MLVA as a reliable and cost-effective tool for low-resource settings, allowing the selection of relevant strains for future whole genome sequence analyses. This approach can improve outbreak investigations and public health interventions aimed at curbing MDR P. aeruginosa transmission within hospitals and at the national level. Full article
Show Figures

Figure 1

8 pages, 1990 KiB  
Communication
Evaluation of a Multilocus Variable-Number Tandem-Repeat Analysis Scheme for Typing Ochrobactrum anthropi
by Yihan Wu, Liping Wang, Xiachun Hui and Guozhong Tian
Microorganisms 2024, 12(6), 1211; https://doi.org/10.3390/microorganisms12061211 - 16 Jun 2024
Viewed by 1159
Abstract
Ochrobactrum anthropi (O. anthropi) is found in water, soil, plants and animals. Even though it has low virulence, it has increasingly been found to cause a number of infectious diseases in people with low immunity. The identification of O. anthropi mainly [...] Read more.
Ochrobactrum anthropi (O. anthropi) is found in water, soil, plants and animals. Even though it has low virulence, it has increasingly been found to cause a number of infectious diseases in people with low immunity. The identification of O. anthropi mainly uses biochemical methods, such as the API 20NE or Vitek-2. The typing studies of O. anthropi have mainly utilized PFGE, rep-PCR, AFLP, 16s rDNA sequencing, RecA-PCR RFLP, and MALDI-TOF MS. This study aims to evaluate the polymorphisms of variable-number tandem-repeats (VNTRs) within genomic DNA of O. anthropi strains. The tandem repeats (TRs) in genomic DNA are discovered using Tandem Repeat Finder software (version 4.09). Twelve different VNTRs are designated and assigned to the nomenclature. The primers for PCR of 12 loci are designed. The PCR product size is converted to the number of tandem repeats in every locus. The relatedness of 65 O. anthropi strains from geographically different countries are analyzed by means of 12-variable-number tandem-repeat analysis(MLVA-12). A total of 51 different genotypes are found in 65 O. anthropi strains. These strains, which were collected from the same environmental samples, hospitals, and countries, are clustered within the same or closely genotypes. The MLVA-12 assay has a good discriminatory power for species determination, typing of O. anthropi, and inferring the origin of bacteria. Full article
(This article belongs to the Special Issue Genomics Approaches in Microbial Ecology)
Show Figures

Figure 1

13 pages, 1239 KiB  
Article
Antimicrobial Resistance and Genomic Characterization of Salmonella Infantis from Different Sources
by Angela Michela Immacolata Montone, Anna Cutarelli, Maria Francesca Peruzy, Immacolata La Tela, Roberta Brunetti, Maria Gerarda Pirofalo, Veronica Folliero, Anna Balestrieri, Nicoletta Murru and Federico Capuano
Int. J. Mol. Sci. 2023, 24(6), 5492; https://doi.org/10.3390/ijms24065492 - 13 Mar 2023
Cited by 15 | Viewed by 3298
Abstract
The epidemiology of Salmonella Infantis is complex in terms of its distribution and transmission. The continuous collection and analysis of updated data on the prevalence and antimicrobic resistance are essential. The present work aimed to investigate the antimicrobial resistance and the correlation among [...] Read more.
The epidemiology of Salmonella Infantis is complex in terms of its distribution and transmission. The continuous collection and analysis of updated data on the prevalence and antimicrobic resistance are essential. The present work aimed to investigate the antimicrobial resistance and the correlation among S. Infantis isolates from different sources through the multiple-locus variable-number of tandem repeat (VNTR) analysis (MLVA). A total of 562 Salmonella strains isolated from 2018 to 2020 from poultry, humans, swine, water buffalo, mussels, cattle, and wild boar were serotyped, and 185 S. Infantis strains (32.92%) were identified. S. Infantis was commonly isolated in poultry and, to a lesser extent, in other sources. The isolates were tested against 12 antimicrobials, and a high prevalence of resistant strains was recorded. S. Infantis showed high resistance against fluoroquinolones, ampicillin, and tetracycline, which are commonly used in human and veterinary medicine. From all S. Infantis isolates, five VNTR loci were amplified. The use of MLVA was not sufficient to understand the complexity of the epidemiological relationships between S. Infantis strains. In conclusion, an alternative methodology to investigate genetic similarities and differences among S. Infantis strains is needed. Full article
(This article belongs to the Special Issue Antibiotic Resistance: Appearance, Evolution, and Spread 2.0)
Show Figures

Figure 1

16 pages, 4325 KiB  
Article
Improvement and Validation of a Multi-Locus Variable Number of Tandem Repeats Analysis (MLVA8+) for Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae
by Deyan Donchev, Ivan N. Ivanov, Ivan Stoikov, Stefana Sabtcheva, Yordan Kalchev, Marianna Murdjeva, Elina Dobreva and Rumyana Hristova
Microorganisms 2023, 11(2), 444; https://doi.org/10.3390/microorganisms11020444 - 10 Feb 2023
Cited by 1 | Viewed by 2860
Abstract
The genotyping of the multidrug-resistant Klebsiella pneumoniae species complex is essential to identify outbreaks and to track their source and spread. The aim of this study was to improve and extend the typeability, availability, cost and time efficiency of an existing multi-locus VNTR [...] Read more.
The genotyping of the multidrug-resistant Klebsiella pneumoniae species complex is essential to identify outbreaks and to track their source and spread. The aim of this study was to improve and extend the typeability, availability, cost and time efficiency of an existing multi-locus VNTR analysis (MLVA). A modified scheme (MLVA8+) was adopted and validated for strain-level differentiation of the three Klebsiella species involved in human pathology. A diverse set of 465 K. pneumoniae clinical isolates from 22 hospitals and 3 outpatient laboratories in Bulgaria were studied, where 315 were carbapenem-resistant. The MLVA8+ typeability was significantly improved and the typing data were validated against 158 isolates which were previously typed by WGS. The MLVA8+ results were highly concordant with the classic 7-locus MLST and the novel K. variicola MLST, but had greater congruency coefficients (adjusted Wallace). A major advantage was the differentiation of the hybrid cluster ST258 into its corresponding clades. Furthermore, the applicability of MLVA8+ was demonstrated by conducting a retrospective investigation of the intra-hospital spread of blaKPC-, blaNDM- and blaOXA-48-like producers. The MLVA8+ has improved utility and extended typing scope to K. variicola and K. quasipneumoniae, while its cost and time-to-result were reduced. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 2813 KiB  
Article
Multispecies Q Fever Outbreak in a Mixed Dairy Goat and Cattle Farm Based on a New Bovine-Associated Genotype of Coxiella burnetii
by Benjamin U. Bauer, Michael R. Knittler, T. Louise Herms, Dimitrios Frangoulidis, Svea Matthiesen, Dennis Tappe, Martin Runge and Martin Ganter
Vet. Sci. 2021, 8(11), 252; https://doi.org/10.3390/vetsci8110252 - 26 Oct 2021
Cited by 17 | Viewed by 6173
Abstract
A Q fever outbreak on a dairy goat and cattle farm was investigated with regard to the One Health concept. Serum samples and vaginal swabs from goats with different reproductive statuses were collected. Cows, cats, and a dog were investigated with the same [...] Read more.
A Q fever outbreak on a dairy goat and cattle farm was investigated with regard to the One Health concept. Serum samples and vaginal swabs from goats with different reproductive statuses were collected. Cows, cats, and a dog were investigated with the same sample matrix. The farmer’s family was examined by serum samples. Ruminant sera were analyzed with two phase-specific enzyme-linked immunoassays (ELISAs). Dominant immunoglobulin G (IgG) phase II levels reflected current infections in goats. The cows had high IgG phase I and II levels indicating ongoing infections. Feline, canine, and human sera tested positive by indirect fluorescent antibody test (IFAT). Animal vaginal swabs were analyzed by qPCR to detect C. burnetii, and almost all tested positive. A new cattle-associated C. burnetii genotype C16 was identified by the Multiple-Locus Variable-number tandem repeat Analysis (MLVA/VNTR) from ruminant samples. Additionally, a possible influence of 17ß-estradiol on C. burnetii antibody response was evaluated in goat sera. Goats in early/mid-pregnancy had significantly lower levels of phase-specific IgGs and 17ß-estradiol than goats in late pregnancy. We conclude that the cattle herd may have transmitted C. burnetii to the pregnant goat herd, resulting in a Q fever outbreak with one acute human case. The influence of placentation and maternal pregnancy hormones during pregnancy on the immune response is discussed. Full article
(This article belongs to the Special Issue One Health Approach to Veterinary Medicine)
Show Figures

Figure 1

9 pages, 1155 KiB  
Article
High Prevalence and New Genotype of Coxiella burnetii in Ticks Infesting Camels in Somalia
by Dimitrios Frangoulidis, Claudia Kahlhofer, Ahmed Shire Said, Abdinasir Yusuf Osman, Lidia Chitimia-Dobler and Yassir Adam Shuaib
Pathogens 2021, 10(6), 741; https://doi.org/10.3390/pathogens10060741 - 12 Jun 2021
Cited by 11 | Viewed by 4388
Abstract
Coxiella burnetii is the causative agent of Q fever. It can infect animals, humans, and birds, as well as ticks, and it has a worldwide geographical distribution. To better understand the epidemiology of C. burnetii in Somalia, ticks infesting camels were collected from [...] Read more.
Coxiella burnetii is the causative agent of Q fever. It can infect animals, humans, and birds, as well as ticks, and it has a worldwide geographical distribution. To better understand the epidemiology of C. burnetii in Somalia, ticks infesting camels were collected from five different regions, including Bari, Nugaal, Mudug, Sool, and Sanaag, between January and March 2018. Collected ticks were tested for C. burnetii and Coxiella-like endosymbiont DNA by using IS1111, icd, and Com1-target PCR assays. Moreover, sequencing of the 16S-rRNA was conducted. Molecular characterization and typing were done by adaA-gene analysis and plasmid-type identification. Further typing was carried out by 14-marker Multi-Locus Variable-Number Tandem Repeats (MLVA/VNTR) analysis. The investigated ticks (n = 237) were identified as Hyalomma spp. (n = 227, 95.8%), Amblyomma spp. (n = 8, 3.4%), and Ripicephalus spp. (n = 2, 0.8%), and 59.1% (140/237) of them were positive for Coxiella spp. While Sanger sequencing and plasmid-type identification revealed a C. burnetii that harbours the QpRS-plasmid, MLVA/VNTR genotyping showed a new genotype which was initially named D21. In conclusion, this is the first report of C. burnetii in ticks in Somalia. The findings denote the possibility that C. burnetii is endemic in Somalia. Further epidemiological studies investigating samples from humans, animals, and ticks within the context of “One Health” are warranted. Full article
(This article belongs to the Collection Updates on Rickettsia and Coxiella)
Show Figures

Figure 1

10 pages, 1946 KiB  
Article
Investigation on Anthrax in Bangladesh during the Outbreaks of 2011 and Definition of the Epidemiological Correlations
by Domenico Galante, Viviana Manzulli, Luigina Serrecchia, Pietro Di Taranto, Martin Hugh-Jones, M. Jahangir Hossain, Valeria Rondinone, Dora Cipolletta, Lorenzo Pace, Michela Iatarola, Francesco Tolve, Angela Aceti, Elena Poppa and Antonio Fasanella
Pathogens 2021, 10(4), 481; https://doi.org/10.3390/pathogens10040481 - 15 Apr 2021
Cited by 5 | Viewed by 3437
Abstract
In 2011, in Bangladesh, 11 anthrax outbreaks occurred in six districts of the country. Different types of samples were collected from May to September in the six districts where anthrax had occurred in order to detect and type Bacillus anthracis (B. anthracis) strains. [...] Read more.
In 2011, in Bangladesh, 11 anthrax outbreaks occurred in six districts of the country. Different types of samples were collected from May to September in the six districts where anthrax had occurred in order to detect and type Bacillus anthracis (B. anthracis) strains. Anthrax was detected in 46.6% of the samples analysed, in particular in soils, but also in bone samples, water, animal feed, and rumen ingesta of dead animals. Canonical single nucleotide polymorphisms (CanSNPs) analysis showed that all the isolates belonged to the major lineage A, sublineage A.Br.001/002 of China and Southeast Asia while the multi-locus variable number of tandem repeats (VNTRs) analysis (MLVA) with 15 VNTRs demonstrated the presence of five genotypes, of which two resulted to be new genotypes. The single nucleotide repeats (SNRs) analysis showed 13 SNR types; nevertheless, due to its higher discriminatory power, the presence of two isolates with different SNR-type polymorphisms was detected within two MLVA genotypes. This study assumes that soil is not the only reason for the spread of the disease in Bangladesh; contaminated feed and water can also play an important role in the epidemiology of anthrax. Possible explanations for these epidemiological relationships are discussed. Full article
(This article belongs to the Special Issue The Advanced Research on Bacillus Anthracis)
Show Figures

Figure 1

19 pages, 1141 KiB  
Article
Molecular Epidemiology of Xanthomonas euvesicatoria Strains from the Balkan Peninsula Revealed by a New Multiple-Locus Variable-Number Tandem-Repeat Analysis Scheme
by Taca Vancheva, Nevena Bogatzevska, Penka Moncheva, Sasa Mitrev, Christian Vernière and Ralf Koebnik
Microorganisms 2021, 9(3), 536; https://doi.org/10.3390/microorganisms9030536 - 5 Mar 2021
Cited by 12 | Viewed by 4066
Abstract
Bacterial spot of pepper and tomato is caused by at least three species of Xanthomonas, among them two pathovars of Xanthomonas euvesicatoria, which are responsible for significant yield losses on all continents. In order to trace back the spread of bacterial [...] Read more.
Bacterial spot of pepper and tomato is caused by at least three species of Xanthomonas, among them two pathovars of Xanthomonas euvesicatoria, which are responsible for significant yield losses on all continents. In order to trace back the spread of bacterial spot pathogens within and among countries, we developed the first multilocus variable number of tandem repeat analyses (MLVA) scheme for pepper- and tomato-pathogenic strains of X. euvesicatoria. In this work, we assessed the repeat numbers by DNA sequencing of 16 tandem repeat loci and applied this new tool to analyse a representative set of 88 X. euvesicatoria pepper strains from Bulgaria and North Macedonia. The MLVA-16 scheme resulted in a Hunter–Gaston Discriminatory Index (HGDI) score of 0.944 and allowed to resolve 36 MLVA haplotypes (MTs), thus demonstrating its suitability for high-resolution molecular typing. Strains from the different regions of Bulgaria and North Macedonia were found to be widespread in genetically distant clonal complexes or singletons. Sequence types of the variable number of tandem repeats (VNTR) amplicons revealed cases of size homoplasy and suggested the coexistence of different populations and different introduction events. The large geographical distribution of MTs and the existence of epidemiologically closely related strains in different regions and countries suggest long dispersal of strains on pepper in this area. Full article
Show Figures

Figure 1

16 pages, 1081 KiB  
Article
Genetic Diversity and Distribution of Virulence-Associated Genes in Y. enterocolitica and Y. enterocolitica-Like Isolates from Humans and Animals in Poland
by Katarzyna Morka, Ewa Wałecka-Zacharska, Justyna Schubert, Bartłomiej Dudek, Anna Woźniak-Biel, Maciej Kuczkowski, Alina Wieliczko, Jarosław Bystroń, Jacek Bania and Gabriela Bugla-Płoskońska
Pathogens 2021, 10(1), 65; https://doi.org/10.3390/pathogens10010065 - 13 Jan 2021
Cited by 12 | Viewed by 3278
Abstract
Yersinia enterocolitica, widespread within domestic and wild-living animals, is a foodborne pathogen causing yersiniosis. The goal of this study was to assess a genetic similarity of Y. enterocolitica and Y. enterocolitica-like strains isolated from different hosts using Multiple Locus Variable-Number Tandem Repeat [...] Read more.
Yersinia enterocolitica, widespread within domestic and wild-living animals, is a foodborne pathogen causing yersiniosis. The goal of this study was to assess a genetic similarity of Y. enterocolitica and Y. enterocolitica-like strains isolated from different hosts using Multiple Locus Variable-Number Tandem Repeat Analysis (MLVA) and Pulsed-Field Gel Electrophoresis (PFGE) methods, and analyze the prevalence of virulence genes using multiplex-Polymerase Chain Reaction (PCR) assays. Among 51 Yersinia sp. strains 20 virulotypes were determined. The most common virulence genes were ymoA, ureC, inv, myfA, and yst. Yersinia sp. strains had genes which may contribute to the bacterial invasion and colonization of the intestines as well as survival in serum. One wild boar Y. enterocolitica 1A strain possessed ail gene implying the possible pathogenicity of 1A biotype. Wild boar strains, represented mainly by 1A biotype, were not classified into the predominant Variable-Number Tandem Repeats (VNTR)/PFGE profile and virulotype. There was a clustering tendency among VNTR/PFGE profiles of pig origin, 4/O:3, and virulence profile. Pig and human strains formed the most related group, characterized by ~80% of genetic similarity what suggest the role of pigs as a potential source of infection for the pork consumers. Full article
Show Figures

Figure 1

15 pages, 2115 KiB  
Article
Comparison of Coxiella burnetii Excretion between Sheep and Goats Naturally Infected with One Cattle-Associated Genotype
by Benjamin Bauer, Louise Prüfer, Mathias Walter, Isabel Ganter, Dimitrios Frangoulidis, Martin Runge and Martin Ganter
Pathogens 2020, 9(8), 652; https://doi.org/10.3390/pathogens9080652 - 13 Aug 2020
Cited by 30 | Viewed by 4284
Abstract
The main reservoir of Coxiella (C.) burnetii are ruminants. They shed the pathogen through birth products, vaginal mucus, faeces and milk. A direct comparison of C. burnetii excretions between naturally infected sheep and goats was performed on the same farm to investigate species-specific [...] Read more.
The main reservoir of Coxiella (C.) burnetii are ruminants. They shed the pathogen through birth products, vaginal mucus, faeces and milk. A direct comparison of C. burnetii excretions between naturally infected sheep and goats was performed on the same farm to investigate species-specific differences. The animals were vaccinated with an inactivated C. burnetii phase I vaccine at the beginning of the study period for public health reasons. Vaginal and rectal swabs along with milk specimens were taken monthly during the lambing period and once again at the next lambing season. To estimate the environmental contamination of the animals’ housings, nasal swabs from every animal were taken simultaneously. Moreover, dust samples from the windowsills and straw beddings were collected. All samples were examined by qPCR targeting the IS1111 gene and the MLVA/VNTR typing method was performed. Whole genome sequencing was applied to determine the number of IS1111 copies followed by a calculation of C. burnetii genome equivalents of each sample. The cattle-associated genotype C7 was detected containing 29 IS1111 copies. Overall, goats seem to shed more C. burnetii through vaginal mucus and in particular shed more and for longer via the rectal route than sheep. This is supported by the larger quantities of C. burnetii DNA detected in caprine nasal swabs and environmental samples compared to the ovine ones. Transmission of C. burnetii from cattle to small ruminants must also be considered. Full article
(This article belongs to the Special Issue Q Fever)
Show Figures

Figure 1

15 pages, 2830 KiB  
Article
MLVA-16 Genotyping of Brucella abortus and Brucella melitensis Isolates from Different Animal Species in Egypt: Geographical Relatedness and the Mediterranean Lineage
by Gamal Wareth, Mohamed El-Diasty, Falk Melzer, Gernot Schmoock, Shawky A. Moustafa, Mohamed El-Beskawy, Dali F. Khater, Mahmoud E.R. Hamdy, Hoda M. Zaki, Ana Cristina Ferreira, Loukia V. Ekateriniadou, Evridiki Boukouvala, Mostafa Y. Abdel-Glil, Ahmed M.S. Menshawy, Marta Pérez Sancho, Sonia Sakhria, Mathias W. Pletz and Heinrich Neubauer
Pathogens 2020, 9(6), 498; https://doi.org/10.3390/pathogens9060498 - 22 Jun 2020
Cited by 39 | Viewed by 5149
Abstract
Brucellosis is a common zoonotic disease in Egypt. However, there are limited data available on the genetic diversity of brucellae circulating in Egypt and other Mediterranean areas. One hundred and nine Brucella (B.) strains were isolated from different animal species in [...] Read more.
Brucellosis is a common zoonotic disease in Egypt. However, there are limited data available on the genetic diversity of brucellae circulating in Egypt and other Mediterranean areas. One hundred and nine Brucella (B.) strains were isolated from different animal species in thirteen Egyptian governorates. Multi-locus variable number tandem repeats (VNTRs) analysis (MLVA-16) was employed to determine the geographical relatedness and the genetic diversity of a panel of selected Egyptian strains (n = 69), with strains originating from Italy (n = 49), Portugal (n = 52), Greece (n = 63), and Tunisia (n = 4). Egyptian B. melitensis strains clustered into two main clusters containing 21 genotypes. Egyptian B. abortus strains clustered into three main clusters containing nine genotypes. The genotypes were irregularly distributed over time and space in the study area. Egyptian strains of B. melitensis showed MLVA-16 patterns closer to that of Italian strains. Egyptian B. abortus strains isolated from cattle share the same genotype with strains from Portugal and similar to strains from Italy with low genetic diversity. Strains with similar MLVA patterns isolated from different governorates highlight the movement of the pathogen among governorates. Hence, it may also reflect the long endemicity of brucellosis in Egypt with earlier dispersal of types and great local genetic diversity. Open markets may contribute to cross-species transmission and dissemination of the new types nationwide. The presence of West Mediterranean lineages of B. melitensis and relatedness of B. abortus strains from the studied countries is a result of the socio-historical connections among the Mediterranean countries. Transnational eradication of brucellosis in the Mediterranean basin is highly demanded. Full article
(This article belongs to the Section Animal Pathogens)
Show Figures

Figure 1

12 pages, 1258 KiB  
Article
Genomic Comparison of Salmonella Enteritidis Strains Isolated from Laying Hens and Humans in the Abruzzi Region during 2018
by Lisa Di Marcantonio, Anna Janowicz, Katiuscia Zilli, Romina Romantini, Stefano Bilei, Daniela Paganico, Tiziana Persiani, Guido Di Donato and Elisabetta Di Giannatale
Pathogens 2020, 9(5), 349; https://doi.org/10.3390/pathogens9050349 - 5 May 2020
Cited by 9 | Viewed by 3100
Abstract
Salmonellosis is a major cause of bacterial foodborne infection. Since 2016, an increased number of cases of gastroenteritis caused by Salmonella enterica serovar Enteritidis linked to eggs produced in Poland has been reported in Europe. In Italy, S. Enteritidis is one of the [...] Read more.
Salmonellosis is a major cause of bacterial foodborne infection. Since 2016, an increased number of cases of gastroenteritis caused by Salmonella enterica serovar Enteritidis linked to eggs produced in Poland has been reported in Europe. In Italy, S. Enteritidis is one of the three most commonly reported serotypes, associated mainly with the consumption of contaminated eggs and derived products. In our work, we analysed 61 strains of S. Enteritidis obtained from humans and farms in the Abruzzi region, Italy, in 2018. We used Multiple-Loci Variable-Number Tandem Repeat (VNTR) analysis (MLVA)-based typing and Whole-Genome Sequencing (WGS) tools to identify closely related strains and perform cluster analysis. We found two clusters of genetically similar strains. The first one was present in the local farms and isolated from human cases and had single-linkage distance of no more than two core genes and less than five Single-Nucleotide Polymorphisms (SNPs). The second cluster contained strains isolated from humans and from a dessert (tiramisù) sample that shared identical core genome and were assigned the same SNP address. Cluster 2 isolates were found to be genetically similar to an S. Enteritidis strain from a multi-country outbreak linked to Polish eggs. Full article
(This article belongs to the Special Issue Foodborne Pathogens—Genome Sequencing Collection)
Show Figures

Figure 1

11 pages, 934 KiB  
Article
Transmission Network of Deer-Borne Mycobacterium bovis Infection Revealed by a WGS Approach
by Lorraine Michelet, Cyril Conde, Maxime Branger, Thierry Cochard, Franck Biet and Maria Laura Boschiroli
Microorganisms 2019, 7(12), 687; https://doi.org/10.3390/microorganisms7120687 - 12 Dec 2019
Cited by 6 | Viewed by 3544
Abstract
Bovine tuberculosis (TB) is a zoonotic disease, mainly caused by Mycobacterium bovis. France was declared officially TB free in 2001, however, the disease persists in livestock and wildlife. Among wild animals, deer are particularly susceptible to bovine TB. Here, a whole genome [...] Read more.
Bovine tuberculosis (TB) is a zoonotic disease, mainly caused by Mycobacterium bovis. France was declared officially TB free in 2001, however, the disease persists in livestock and wildlife. Among wild animals, deer are particularly susceptible to bovine TB. Here, a whole genome sequence (WGS) analysis was performed on strains with the same genetic profile—spoligotype SB0121, Multiple Loci VNTR Analysis (MLVA) 6 4 5 3 11 2 5 7—isolated from different types of outbreaks, including from deer or cattle herds, or zoological or hunting parks where the presence of infected deer was a common trait in most of them. The results of the phylogeny based on the SNP calling shows that two sub-clusters co-exist in France, one related to deer bred to be raised as livestock, and the other to hunting parks and zoos. The persistence over almost 30 years of sporadic cases due to strains belonging to these clusters highlights the deficiency in the surveillance of captive wildlife and the need for better monitoring of animals, especially before movement between parks or herds. Full article
(This article belongs to the Special Issue Epidemiology of Zoonotic Diseases)
Show Figures

Figure 1

17 pages, 1619 KiB  
Article
Whole Genome Sequencing for Tracing Geographical Origin of Imported Cases of Human Brucellosis in Sweden
by Lorena Sacchini, Tara Wahab, Elisabetta Di Giannatale, Katiuscia Zilli, Anna Abass, Giuliano Garofolo and Anna Janowicz
Microorganisms 2019, 7(10), 398; https://doi.org/10.3390/microorganisms7100398 - 26 Sep 2019
Cited by 28 | Viewed by 4306
Abstract
Human infections with Brucella melitensis are occasionally reported in Sweden, despite the fact that the national flocks of sheep and goats are officially free from brucellosis. The aim of our study was to analyze 103 isolates of B. melitensis collected from patients in [...] Read more.
Human infections with Brucella melitensis are occasionally reported in Sweden, despite the fact that the national flocks of sheep and goats are officially free from brucellosis. The aim of our study was to analyze 103 isolates of B. melitensis collected from patients in Sweden between 1994 and 2016 and determine their putative geographic origin using whole genome sequencing (WGS)-based tools. The majority of the strains were assigned to East Mediterranean and African lineages. Both in silico Multiple Loci VNTR (Variable Number of Tandem Repeats) Analysis (MLVA) and core genome Multilocus Sequence Typing (cgMLST) analyses identified countries of the Middle East as the most probable source of origin of the majority of the strains. Isolates collected from patients with travel history to Iraq or Syria were often associated with genotypes from Turkey, as the cgMLST profiles from these countries clustered together. Sixty strains were located within a distance of 20 core genes to related genotypes from the publicly available database, and for eighteen isolates, the closest genotype was different by more than 50 loci. Our study showed that WGS based tools are effective in tracing back the geographic origin of infection of patients with unknown travel status, provided that public sequences from the location of the source are available. Full article
(This article belongs to the Special Issue Epidemiology of Zoonotic Diseases)
Show Figures

Figure 1

Back to TopTop