Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = MHC-II

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3583 KB  
Article
Flipping Motion of the Alkylene Bridge in cis-[N,N′-Pentamethylenebis(iminomethylazolato)]M(II) Complexes (M = Pt, Pd) with Hydrogen-Bond-like M···H–C Interactions
by Soichiro Kawamorita, Mitsuhiro Nishino, Ngoc Ha-Thu Le, Kazuki Nakamura and Takeshi Naota
AppliedChem 2025, 5(4), 25; https://doi.org/10.3390/appliedchem5040025 - 30 Sep 2025
Abstract
Hydrogen-bond-like M···H–C interactions in square-planar d8 metal complexes have recently gained attention as structure-directing elements and design motifs in asymmetric catalysis. In this study, we explore these weak interactions not as static features, but as key modulators of molecular motion. We synthesized [...] Read more.
Hydrogen-bond-like M···H–C interactions in square-planar d8 metal complexes have recently gained attention as structure-directing elements and design motifs in asymmetric catalysis. In this study, we explore these weak interactions not as static features, but as key modulators of molecular motion. We synthesized four cis-[N,N′-pentamethylenebis(iminomethylazolato)]M(II) (M = Pt, Pd), including iminomethyl-2-imidazole, iminomethyl-5-imidazole, and iminomethylpyrrolato Pt(II) complexes and an iminomethylpyrrolato Pd(II) analog. All complexes display reversible flipping of the alkylene bridge across the coordination plane, with the M···H–C interaction alternately engaging from above or below. This dynamic motion was characterized by variable-temperature 1H NMR spectroscopy, revealing activation parameters for the flipping process. X-ray crystallography confirmed geometries consistent with hydrogen-bond-like interactions, while NBO analysis based on DFT calculations provided insight into their electronic nature. Interestingly, although Pt and Pd display comparable M···H–C distances, solvent effects dominate the flipping kinetics over metal identity. These findings highlight the role of hydrogen-bond-like M···H–C interactions not only in structural stabilization, but also in regulating conformational dynamics. Full article
(This article belongs to the Special Issue Organic Synthesis: Novel Catalysts, Strategies, and Applications)
Show Figures

Figure 1

11 pages, 2186 KB  
Article
MyD88 Plays an Important Role in UVB-Induced Suppression of Dendritic Cell Activity, T Cell Function, and Cutaneous Immune Response
by Mohammad Asif Sherwani, Carlos Alberto Mier Aguilar, Charlotte McRae, Gelare Ghajar-Rahimi, Aisha Anwaar, Ahmed Omar Jasser, Ariq Chandra, Hui Xu and Nabiha Yusuf
Int. J. Mol. Sci. 2025, 26(19), 9361; https://doi.org/10.3390/ijms26199361 - 25 Sep 2025
Abstract
Ultraviolet B (UVB) radiation triggers DNA damage and immune suppression, establishing conditions favorable for skin carcinogenesis. Previous studies have shown that a downstream adaptor for Toll-like receptors (TLRs), myeloid differentiation primary response 88 (MyD88), plays a role in UVB-induced DNA damage and immunosuppression. [...] Read more.
Ultraviolet B (UVB) radiation triggers DNA damage and immune suppression, establishing conditions favorable for skin carcinogenesis. Previous studies have shown that a downstream adaptor for Toll-like receptors (TLRs), myeloid differentiation primary response 88 (MyD88), plays a role in UVB-induced DNA damage and immunosuppression. However, specific mechanisms for the effects on dendritic cells and T cells remain poorly understood. The objective of this study is to determine the role of MyD88 and TIR-domain-containing adaptor inducing interferon-β (TRIF), another key TLR downstream adaptor, in UVB-induced suppression of dendritic cell activity and T cell function. MyD88−/−, Trif−/−, and wild-type (WT) mice were evaluated for UVB-induced effects on dendritic cell, T cells, and contact hypersensitivity responses in skin. MyD88−/− mice exhibited significant resistance to UVB-induced immune suppression, compared to Trif−/− mice and wild-type controls. The MyD88 deficiency significantly reduced UVB-induced Treg cells that were CD4+CD25+Foxp3+ and produced interleukin (IL)-10. Moreover, it significantly inhibited the UVB-induced suppression of IL-12/IL-23 producing CD11c+ dendritic cells. Further experiments confirmed that MyD88 conditional knockout (MyD88fl/flXCD11c.Cre) mice were protected against UVB-induced immune suppression. Dendritic cells from MyD88 genomic or conditional knockout mice were resistant to UVB-induced reduction of major histocompatibility complex (MHC) class II antigens. These findings show that MyD88 plays a key role in UVB-induced immune suppression. The deficiency in the MyD88 gene inhibits UVB-induced suppression of CD11c+ dendritic cell (DC) activity and reduces UVB-induced development of Treg cells. Our studies demonstrate a new mechanism for MyD88-mediated regulation of UVB-induced immune suppression. Full article
Show Figures

Figure 1

13 pages, 886 KB  
Article
The Acute Immune Response in Sheep Following Immunization with Toxoplasma gondii Tachyzoites or Parasite-Derived Glycoconjugates
by Patrícia Oliveira Meira-Santos, Gabriela Cruz Piedade, Maria Tereza Guedes, Dan Loureiro, José Tadeu Raynal, Roberto Meyer, Letícia Vicentini, Luiz Soares, Blima Fux and Ricardo Wagner Portela
Vet. Sci. 2025, 12(10), 928; https://doi.org/10.3390/vetsci12100928 - 24 Sep 2025
Viewed by 109
Abstract
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of [...] Read more.
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of the acute immune response in eighteen sheep experimentally exposed to live tachyzoites or immunized with parasite-derived glycoconjugates (GlyC). Animals were divided into three groups and injected with saline solution, tachyzoites, or glycoconjugates combined with an adjuvant. Infected sheep developed specific IgM antibodies against both lysate and glycoconjugate antigens from day 4, and IgG against glycoconjugates from day 12 post-infection. Glycoconjugate-immunized sheep produced IgM against lysate antigens from day 4, and IgG against both antigens from day 12. Flow cytometry revealed a significant increase in circulating CD8+ T cells and a reduction in MHC class II+ cells on day 60 in the infected group. These findings demonstrate the early humoral and cellular immune response profiles following infection or GlyC immunization. This supports their future application in diagnostic tests or as vaccine candidates against toxoplasmosis in sheep. Full article
(This article belongs to the Special Issue Detection of Parasitic Diseases in Livestock)
Show Figures

Figure 1

15 pages, 1283 KB  
Article
Elevated Levels of sLAG-3 as a Possible Biomarker in Graves’ Disease With and Without Thyroid Eye Disease: A Prospective Observational Case–Control Study
by Katarzyna Cieplińska, Emilia Niedziela, Edyta Jagielska, Iwona Pałyga, Anna Słuszniak and Aldona Kowalska
Medicina 2025, 61(9), 1664; https://doi.org/10.3390/medicina61091664 - 13 Sep 2025
Viewed by 412
Abstract
Background and Objectives: The pathogenesis of thyroid eye disease (TED) is driven by interactions between orbital fibroblasts and immune cells. Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint molecule with a similar structure to the T lymphocyte CD4 receptor but with higher affinity [...] Read more.
Background and Objectives: The pathogenesis of thyroid eye disease (TED) is driven by interactions between orbital fibroblasts and immune cells. Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint molecule with a similar structure to the T lymphocyte CD4 receptor but with higher affinity for MHC class II, and LAG-3–MHC class II interaction inhibits T lymphocyte activity. Lymphocytes shed LAG-3, generating soluble LAG-3 (sLAG-3), whose function is unclear. We investigated sLAG-3 involvement in Graves’ disease (GD) and GD-associated TED pathogenesis. Materials and Methods: Patients with GD-associated TED (n = 47) and GD without TED (n = 35) were enrolled alongside 37 healthy controls (HCs). Peripheral blood serum sLAG-3 levels were measured using enzyme-linked immunosorbent assays and compared across the three groups. The effect of intravenous glucocorticosteroid (IVGC) treatment (12 weeks) on sLAG-3 concentrations in patients with GD-associated TED was monitored, and associations of sLAG-3 levels with clinical characteristics were analyzed. Disease activity before and after IVGC treatment was assessed using Clinical Activity Score. Results: Relative to those in HCs, serum sLAG-3 levels were significantly higher in GD patients both with (p < 0.001) and without (p = 0.0129) TED. No significant difference in sLAG-3 levels was observed between the two patient groups (p = 1.000), and no significant change in sLAG-3 levels was detected in patients with TED after IVGC therapy (p = 0.0536). Conclusions: The higher sLAG-3 levels in patients compared to HCs suggest that sLAG-3 dysregulation may contribute to GD and GD with orbitopathy development and the pathomechanisms underlying these conditions. Metalloproteinase-mediated cleavage of LAG-3 from the lymphocyte surface enables T lymphocyte proliferation and activation, while released sLAG-3 may enhance the immune response. Further studies of sLAG-3’s mechanisms of action are needed to establish clear cut-off values and to define the diagnostic role of sLAG-3 in GD diagnosis. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

13 pages, 8964 KB  
Article
Immunopeptidome Landscape During Brucella melitensis Infection in Mice
by Jing Jin, Yaming Sheng, Tingting Li, Kang Wang, Fanghao Geng, Yi Li and Jianfeng Gao
Int. J. Mol. Sci. 2025, 26(18), 8874; https://doi.org/10.3390/ijms26188874 - 12 Sep 2025
Viewed by 358
Abstract
Mouse bone marrow-derived dendritic cells (BMDCs) were infected in vitro with the recombinant Brucella melitensis M5+gfp strain. The immunopeptidome of Brucella melitensis M5+gfp, which presented peptides bound to MHC class II molecules on their surface, was isolated and characterized. BMDCs [...] Read more.
Mouse bone marrow-derived dendritic cells (BMDCs) were infected in vitro with the recombinant Brucella melitensis M5+gfp strain. The immunopeptidome of Brucella melitensis M5+gfp, which presented peptides bound to MHC class II molecules on their surface, was isolated and characterized. BMDCs infected with Brucella melitensis M5+gfp were subjected to hypotonic lysis. The associated immunopeptidome was then isolated and characterized using co-immunoprecipitation (Co-IP) coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS). A total of 289 MHC-II-bound Brucella melitensis M5+gfp peptide sequences were identified, mapping to 183 distinct proteins. We successfully define the Brucella melitensis M5+gfp immunopeptidome presented by MHC-II on infected BMDCs. The source proteins of these peptides exhibited significant abundance and functional, structural, and pathway diversity. This study demonstrates that during antigen presentation by antigen-presenting cells (APCs), Brucella melitensis peptides presented by MHC-II originate from a broad repertoire of proteins, not limited to surface antigens. This complex immunopeptidome, shaped by active selection mechanisms, provides diverse targets for host immune recognition. These findings establish a foundation for further investigation into the transfer of comprehensive immune information between immune cells and the elicitation of immune responses. This work also paves the way for identifying specific T-cell receptors involved in recognition and immune activation, thereby facilitating the analysis of adaptive immunity’s molecular basis. Furthermore, this study provides an innovative approach for immunopeptidome analysis, providing a crucial theoretical foundation for developing novel Brucella melitensis subunit vaccines. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 3271 KB  
Article
Ectopic HLA-II Expression in ESCC: Exploration of Its Relationship with Neoantigen Burden and Patient Survival
by Yupei Ji, Zhizhong Wang, Zhenguo Cheng, Shuangshuang Lu, Nick R. Lemoine, Renato Baleeiro, Louisa S. Chard Dunmall and Yaohe Wang
Cells 2025, 14(17), 1403; https://doi.org/10.3390/cells14171403 - 8 Sep 2025
Viewed by 412
Abstract
Ectopic expression of human leukocyte antigen class II (HLA-II) on tumor cells correlates with anti-tumor immunity and prognosis in various cancers, but its role in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: HLA-II expression was evaluated in 34 ESCC tissue sections and [...] Read more.
Ectopic expression of human leukocyte antigen class II (HLA-II) on tumor cells correlates with anti-tumor immunity and prognosis in various cancers, but its role in esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: HLA-II expression was evaluated in 34 ESCC tissue sections and a 102-sample tissue microarray (TMA) using immunohistochemistry (IHC) and in 10 ESCC cell lines via flow cytometry. Transcriptome sequencing of KYSE270, KYSE180, KYSE450, and KYSE510 was performed to investigate HLA-II regulatory mechanisms, while tumor samples from 104 ESCC patients were analyzed for neoantigen load. The prognostic significance of neoantigen burden was assessed using Cox regression. Results: HLA-II was ectopically expressed in ESCC, with positivity rates of 20.59% (34 tissues) and 25.49% (TMA). Among 10 ESCC cell lines, only KYSE270 exhibited spontaneous HLA-II expression. Transcriptome analysis revealed 1278 KYSE270-specific genes enriched in immune-related pathways (e.g., “Cytokine–cytokine receptor interaction”), suggesting immune-mediated HLA-II regulation. IFN-γ stimulation induced HLA-II expression in KYSE180, KYSE450, and KYSE510, indicating broader inducible HLA-II potential. In 104 patients, MHC-II-restricted neoantigen burden varied widely (0–75) and lacked direct correlation with HLA-II expression. Additionally, MHC-II-restricted neoantigen load was not significantly associated with overall survival (p > 0.05). Conclusion: Ectopic HLA-II expression in ESCC may influence the tumor immune microenvironment, while the prognostic value of MHC-II-restricted neoantigen burden in ESCC remains unclear, providing potential implications for immunotherapy strategies. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

23 pages, 3749 KB  
Article
Differential Gene Expression and Protein–Protein Interaction Networks in Bovine Leukemia Virus Infected Cattle: An RNA-Seq Study
by Ana S. González-Méndez, Mohammad Mehdi Akbarin, Fernando Cerón-Téllez, Gabriel Eduardo Acevedo-Jiménez, Cecilia Rodríguez-Murillo, Víctor David González-Fernández, Lucero de María Ávila-De la Vega, Marisela Leal-Hernández and Hugo Ramírez Álvarez
Pathogens 2025, 14(9), 887; https://doi.org/10.3390/pathogens14090887 - 4 Sep 2025
Viewed by 499
Abstract
Introduction: Bovine leukemia virus is a single-stranded RNA virus that targets B cell CD5+ lymphocytes in cattle. Only a tiny percentage of individuals develop malignant lymphoproliferative disorders, while most remain healthy carriers or experience persistent lymphocytosis. The exact mechanisms leading to lymphoma [...] Read more.
Introduction: Bovine leukemia virus is a single-stranded RNA virus that targets B cell CD5+ lymphocytes in cattle. Only a tiny percentage of individuals develop malignant lymphoproliferative disorders, while most remain healthy carriers or experience persistent lymphocytosis. The exact mechanisms leading to lymphoma development are complex and not fully understood. RNA-seq analysis of cows’ peripheral blood leukocytes (PBLs) with and without Bovine leukemia virus (BLV) antibodies was conducted to gain a deeper understanding of molecular events beyond BLV infection. Method: Eighteen samples were selected, and their RNA was sequenced. For gene expression analysis and protein–protein network interactions, three groups were selected, including healthy negative samples (CT, n = 7), asymptomatic carriers (AC, n = 5), and persistent lymphocytosis (PL, n = 6), to provide the differentially expressed gene (DEG) and protein–protein interaction network (PPIN) outputs. Results: Our results demonstrated that in comparison to CT, ACs upregulated TLR7 and transcription activation factors. In the CT vs. PL group, MHC class II, transcription activation factors, and anti-inflammatory cytokines increased, while the acute-phase proteins, antiviral receptors, and inflammatory cytokines decreased. Additionally, antiviral receptors, acute-phase proteins, and inflammatory receptors were downregulated in the PL versus the AC groups. Moreover, PPINs analysis suggested that nuclear receptor corepressor 1 (NCOR1), serine/arginine repetitive matrix 2 (SRRM2), LUC7 like 3 pre-mRNA splicing factor (LUC7L3), TWIST neighbor (TWISTNB), U6 small nuclear RNA and mRNA degradation associated (LSM4), eukaryotic translation elongation factor 2 (EEF2), ubiquitin C (UBC), CD74, and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNP A2B1) are possible hub gene candidates in the PL group. Conclusions: Our results suggest that innate and cellular immune responses are more loose in severe BLV infectious conditions, while the PPINs revealed that new protein interactions are necessary for oncogenesis. Full article
(This article belongs to the Special Issue New Insights into Viral Infections of Domestic Animals)
Show Figures

Figure 1

23 pages, 1289 KB  
Article
Development and Clinical Validation of a Skin Test for In Vivo Assessment of SARS-CoV-2 Specific T-Cell Immunity
by Tikhon V. Savin, Vladimir V. Kopat, Elena D. Danilenko, Alexey A. Churin, Anzhelika M. Milichkina, Edward S. Ramsay, Ilya V. Dukhovlinov, Andrey S. Simbirtsev and Areg A. Totolian
Viruses 2025, 17(9), 1186; https://doi.org/10.3390/v17091186 - 29 Aug 2025
Viewed by 706
Abstract
A novel skin test for an in vivo assessment of SARS-CoV-2-specific T-cell immunity was developed using CoronaDermPS, a multiepitope recombinant polypeptide encompassing MHC II–binding CD4+ T-cell epitopes of the SARS-CoV-2 structural proteins (S, E, M) and full length nucleocapsid (N). In silico epitope [...] Read more.
A novel skin test for an in vivo assessment of SARS-CoV-2-specific T-cell immunity was developed using CoronaDermPS, a multiepitope recombinant polypeptide encompassing MHC II–binding CD4+ T-cell epitopes of the SARS-CoV-2 structural proteins (S, E, M) and full length nucleocapsid (N). In silico epitope prediction and modeling guided antigen design, which was expressed in Escherichia coli, was purified (>95% purity) and formulated for intradermal administration. Preclinical evaluation in guinea pigs, mice, and rhesus macaques demonstrated a robust delayed type hypersensitivity (DTH) response at optimal doses (10–75 µg), with no acute or chronic toxicity, mutagenicity, or adverse effects on reproductive organs. An integrated clinical analysis included 374 volunteers stratified by vaccination status (EpiVacCorona, Gam-COVID-Vac, CoviVac) prior to COVID-19 infection (Wuhan/Alpha, Delta, Omicron variants), and SARS-CoV-2–naïve controls. Safety assessments across phase I–II trials recorded 477 adverse events, of which >88% were mild and self-limiting; no severe or anaphylactic reactions occurred. DTH responses were measured at 24 h, 72 h, and 144 h post-injection by papule and hyperemia measurements. Overall, 282/374 participants (75.4%) exhibited a positive skin test. Receiver operating characteristic analysis yielded an overall AUC of 0.825 (95% CI: 0.726–0.924), sensitivity 79.5% (95% CI: 75.1–83.3%), and specificity 85.5% (95% CI: 81.8–88.7%), with comparable diagnostic accuracy across vaccine, and variant subgroups (AUC range 0.782–0.870). CoronaDerm-PS–based skin testing offers a simple, reproducible, and low-cost method for qualitative evaluation of T-cell–mediated immunity to SARS-CoV-2, independent of specialized laboratory equipment (Eurasian Patent No. 047119). Its high safety profile and consistent performance across diverse cohorts support its utility for mass screening and monitoring of cellular immune protection following infection or vaccination. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

16 pages, 3954 KB  
Article
Liposomal Doxorubicin, but Not Platinum-Taxane, Supports MHC-II Expression and Immune Maturation in the Ovarian Tumor Microenvironment
by Hyojae Lee, Xiao-Lei Chen, Duygu Ozmadenci, Elise Tahon, Terrance J. Haanan, Breana Hill, Safir Ullah Khan, Antonia Boyer, David D. Schlaepfer and Dwayne Stupack
Cancers 2025, 17(17), 2827; https://doi.org/10.3390/cancers17172827 - 29 Aug 2025
Viewed by 608
Abstract
Background: Ovarian cancer is an immunologically cold tumor that is treated with surgery and a chemotherapy regimen of platinum agents with taxanes. Paradoxically, elevated levels of several immune markers are effective at predicting prognosis for patients with ovarian cancer, though it is not [...] Read more.
Background: Ovarian cancer is an immunologically cold tumor that is treated with surgery and a chemotherapy regimen of platinum agents with taxanes. Paradoxically, elevated levels of several immune markers are effective at predicting prognosis for patients with ovarian cancer, though it is not clear how chemotherapy might influence this. Chemotherapy elicits immunogenic cell death, yet tumor-controlling doses of chemotherapy are also immunotoxic. Objectives: To evaluate interactions of chemotherapy with the immune system, we studied the impact of chemotherapy in an aggressive mouse model of ovarian cancer developed within our lab. Methods: Using a single-cell transcriptomics sequencing approach, supported by flow cytometry, we evaluated the influence of a first-line therapy, cisplatin and docetaxel, and a second-line therapy, pegylated liposomal doxorubicin (PLD), on control of tumor growth and on tumor-associated immune populations of cells. Results: Both chemotherapy approaches were effective at controlling tumor growth and selectively depleted tumor cells from distinct transcriptional clusters. Both chemotherapies also resulted in relative increases in immune populations compared to untreated tumor-bearing mice, but immune populations from PLD-treated mice were more abundant and expressed a greater fraction of maturity-associated transcripts and increased proportions of tumor resident macrophage populations. PLD treatment selectively upregulated MHC class II on tumor cells, and this could be replicated in vitro across ovarian cancer cell lines and in patient tumor cells ex vivo. Conclusions: Altogether, the results support the notion that PLD has a greater capacity for immunopotentiation, which may be important to consider if immunotherapy approaches are adapted for ovarian tumors in the future. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

17 pages, 2651 KB  
Article
BI-5756 Reduces Graft-Versus-Host Disease Through CB1-Mediated Treg Upregulation
by Sena Kim, Abdul-Jalil Dania, Sora Lim and Jaebok Choi
Molecules 2025, 30(17), 3517; https://doi.org/10.3390/molecules30173517 - 28 Aug 2025
Viewed by 593
Abstract
Cannabinoid receptor 1 (CB1) has been implicated in multiple inflammatory diseases by regulating pro-inflammatory mediators or altering immune cell polarization. However, the expression and direct functional role of CB1 in T cells remain largely unexplored. Here, we demonstrate that primary murine T cells [...] Read more.
Cannabinoid receptor 1 (CB1) has been implicated in multiple inflammatory diseases by regulating pro-inflammatory mediators or altering immune cell polarization. However, the expression and direct functional role of CB1 in T cells remain largely unexplored. Here, we demonstrate that primary murine T cells express CB1 and that its novel agonist, BI-5756, directly increases the frequencies of regulatory T cells (Tregs) in primary murine pan T cells after activation. In addition, BI-5756 exhibits an in vivo protective effect against graft-versus-host disease (GvHD), an allogeneic T cell-mediated inflammatory complication after allogeneic hematopoietic cell transplantation (allo-HCT), resulting in an improved overall survival with enhanced platelet recovery and reconstitution of bone marrow-derived B and T cells. BI-5756 also directly suppresses tumor cell growth and upregulates MHC I, MHC II, and CD80 on tumor cells, which may subsequently enhance T cell-mediated anti-tumor responses in mixed lymphocyte reaction with A20 cells. The ability of BI-5756 to increase Tregs was significantly abrogated by rimonabant, a potent and selective CB1 antagonist, suggesting that the immunomodulatory effect of BI-5756 is mediated via CB1. In summary, BI-5756, a potent CB1 agonist, increases Tregs while preserving anti-tumor responses in vitro and effectively reduces GvHD in vivo. Full article
(This article belongs to the Special Issue The Role of Cannabinoids in Human Health)
Show Figures

Figure 1

19 pages, 3775 KB  
Article
Enhanced M2 Polarization of Retinal Microglia in Streptozotocin-Induced Diabetic Mice upon Autoimmune Stimulation
by Yoshiaki Nishio, Hideaki Someya, Kozo Harimoto, Tomohito Sato, Masataka Ito and Masaru Takeuchi
Biomedicines 2025, 13(9), 2049; https://doi.org/10.3390/biomedicines13092049 - 22 Aug 2025
Viewed by 596
Abstract
Background: This study aimed to investigate the impact of the diabetic environment on the development of experimental autoimmune uveoretinitis (EAU) and the activation status of microglia in the eye. Methods: EAU was induced in wild-type (WT) and streptozotocin (STZ)-induced diabetic mice (STZ-EAU mice). [...] Read more.
Background: This study aimed to investigate the impact of the diabetic environment on the development of experimental autoimmune uveoretinitis (EAU) and the activation status of microglia in the eye. Methods: EAU was induced in wild-type (WT) and streptozotocin (STZ)-induced diabetic mice (STZ-EAU mice). Disease severity was assessed using funduscopy, optical coherence tomography (OCT), and histopathological analysis. The proportions of Th1, Th17, and regulatory T cells in the spleen were analyzed by flow cytometry. Retinal microglia were quantified using immunohistochemistry. To further characterize retinal cell populations and gene expression profiles, single-cell RNA sequencing (scRNA-seq) was performed. Results: STZ-EAU mice exhibited significant reductions in both the incidence and severity of EAU compared with WT-EAU mice. These were accompanied by a decreased proportion of Th1 cells, which are crucial for EAU pathogenesis, in the spleens of STZ-EAU mice. Retinal microglial accumulation was markedly reduced in STZ-EAU mice compared with WT-EAU mice. scRNA-seq analysis revealed a significant change in the microglial phenotype in STZ-EAU mice, characterized by decreased expression of MHC class I/II and the suppression of antigen presentation signaling pathways. Activated microglia in STZ-EAU mice showed reduced gene expression of M1 markers (CD68, CD74, and IL1B) and increased gene expression of M2 markers (MSR1, CD163, and MRC1), suggesting a shift toward an anti-inflammatory M2 phenotype. Conclusions: EAU is suppressed in STZ-induced diabetic mice, likely due to alterations in microglial polarization toward an M2 phenotype. These results suggest a decrease in T cell responses to pathogens in a diabetic environment, which could be one of the underlying factors for the increased susceptibility to infection in diabetic patients. Inhibiting the M2 polarization of microglia may reduce the susceptibility to infection in patients with diabetes. Full article
(This article belongs to the Special Issue State-of-the-Art Eye Disease Research and Treatment in Japan)
Show Figures

Figure 1

26 pages, 6717 KB  
Article
A Pan-H5N1 Multiepitope DNA Vaccine Construct Targeting Some Key Proteins of the Clade 2.3.4.4b Using AI-Assisted Epitope Mapping and Molecular Docking
by Nithyadevi Duraisamy, Abid Ullah Shah, Mohd Yasir Khan, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(9), 1152; https://doi.org/10.3390/v17091152 - 22 Aug 2025
Viewed by 922
Abstract
The presently used vaccines do not offer solid immunity/protection against the currently circulating strains of the H5N1 viruses. We aim to design a pan-H5N1 vaccine that protects birds against the presently circulating clade 2.3.4.4b in chickens. We used AI tools, including epitope mapping, [...] Read more.
The presently used vaccines do not offer solid immunity/protection against the currently circulating strains of the H5N1 viruses. We aim to design a pan-H5N1 vaccine that protects birds against the presently circulating clade 2.3.4.4b in chickens. We used AI tools, including epitope mapping, molecular docking, and immune simulation, to design a multiepitope DNA vaccine including the top-ranked B and T cell epitopes within four major proteins (HA, NA, NP, and M2) of H5N1 clade 2.3.4.4b. We selected the top-ranked 12 epitopes and linked them together using linkers. The designed vaccine is linked to IL-18 as an adjuvant. The molecular docking results showed a high binding affinity of those predicted epitopes from the MHC I and MHC II classes of molecules with chicken alleles. The immune simulation results showed that the designed vaccine has the potential to stimulate the host immune response, including antibody and cell-mediated immunity in chickens and other birds. We believe this vaccine is going to be a universal vaccine that offers good protection against HPAI-H5N1 clade 2.3.4.4b. We are reporting the successful molecular cloning of a recombinant multiepitope-based vaccine spanning some key epitopes within some key proteins of the currently circulating H5N1 clade 2.3.4.4b. These designed vaccines could be a great positive impact on the protection of birds and various species of animals, as well as humans, against the HP-H5N1 influenza virus. Further studies are required to validate this vaccine candidate in chickens. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

28 pages, 4843 KB  
Article
Human Adipose-Stem-Cell-Derived Small Extracellular Vesicles Modulate Behavior and Glial Cells in Young and Aged Mice Following TBI
by Salma S. Abdelmaboud, Lauren D. Moss, Charles Hudson, Rekha Patel, Marta Avlas, Jessica Wohlfahrt, Tiara Wolf, Jennifer Guergues, Stanley M. Stevens, Niketa A. Patel and Paula C. Bickford
Cells 2025, 14(17), 1304; https://doi.org/10.3390/cells14171304 - 22 Aug 2025
Viewed by 793
Abstract
Traumatic brain injury (TBI) is a major cause of long-term neurological impairment, with aging amplifying vulnerability and worsening recovery. Older individuals face greater cognitive and motor deficits post-TBI and respond less effectively to treatments, as both aging and TBI independently elevate neuroinflammation and [...] Read more.
Traumatic brain injury (TBI) is a major cause of long-term neurological impairment, with aging amplifying vulnerability and worsening recovery. Older individuals face greater cognitive and motor deficits post-TBI and respond less effectively to treatments, as both aging and TBI independently elevate neuroinflammation and cognitive decline. This study evaluated the therapeutic effects of human adipose-derived stem cell small extracellular vesicles (hASC-sEVs) on neurological recovery and neuroinflammation in a mouse model of TBI. Male C57BL/6 mice (3, 15, and 20 months old) underwent controlled cortical impact (CCI) and received intranasal hASC-sEVs 48 h post-injury; control groups received PBS. A dose–response study at 7 days post injury (dpi) identified 20 µg as the optimal therapeutic dose, improving motor function, reducing neuroinflammation, and enhancing neurogenesis. This was followed by a 30-dpi study assessing cognitive function, neuroinflammation, neurogenesis, and proteomic changes in microglia and astrocytes via mass spectrometry. hASC-sEV treatment significantly improved behavioral outcomes and reduced neuroinflammatory markers (GFAP, IBA-1, and MHC-II), with reduced efficacy observed in older mice. Proteomics revealed that hASC-sEVs reduce inflammatory proteins (TNF-α, IL-1β, IFNG, CCL2) and modulated mitochondrial dysfunction and reactive oxygen species. These results highlight hASC-sEVs as a promising cell-free therapy for improving TBI outcomes, especially in aging populations. Full article
(This article belongs to the Special Issue Glial Cells: Physiological and Pathological Perspective)
Show Figures

Figure 1

17 pages, 3699 KB  
Article
The Role of MHC-II Diversity over Enclosure Design in Gut Microbiota Structuring of Captive Bengal Slow Lorises
by Rong Jiang, Xiaojia Zhang, Lei Xie, Yan Zhang, Changjun Zeng, Yongfang Yao, Huailiang Xu, Caoyang Yang, Xiao Wang, Qingyong Ni, Meng Xie and Chuanren Li
Biology 2025, 14(8), 1094; https://doi.org/10.3390/biology14081094 - 21 Aug 2025
Viewed by 485
Abstract
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive [...] Read more.
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive individuals, aiming to improve ex situ management. Using standardized conditions across three enclosure types, we characterized DRB1e2 polymorphism via targeted sequencing and analyzed fecal microbiota using 16S rRNA gene amplicon sequencing. Results demonstrated that high DRB1e2 polymorphism significantly reduced microbial community evenness. Specific genotypes showed distinct microbial associations: G9 strongly correlated with beneficial short-chain fatty acid producers like Fructobacillus, and G2 positively correlated with Bifidobacterium spp., while G2, G3, and G4 correlated negatively with Buchnera (a nutrient-provisioning symbiont). Genotypes and polymorphism collectively explained 9.77% of microbiota variation, exceeding the weaker (5.15%), though significant, influence of enclosure type on β-diversity. These findings reveal that host DRB1e2 variation is a primary driver shaping gut microbiota structure and taxon abundance in captive slow lorises, providing evidence for MHC-mediated host–microbe co-adaptation. This offers a genetically informed framework for optimizing conservation strategies, such as tailoring diets or probiotics to specific genotypes, to enhance gut health and population viability. Full article
Show Figures

Figure 1

15 pages, 1929 KB  
Article
Direct oHSV Infection Induces DC Maturation and a Tumor Therapeutic Response
by Doyeon Kim, Michael Kelly, Jack Hedberg, Alexia K. Martin, Ilse Hernandez-Aguirre, Yeaseul Kim, Lily R. Cain, Ravi Dhital and Kevin A. Cassady
Viruses 2025, 17(8), 1134; https://doi.org/10.3390/v17081134 - 19 Aug 2025
Viewed by 921
Abstract
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of [...] Read more.
Oncolytic herpes simplex virus (oHSV) is a promising cancer immunotherapy that induces tumor cell lysis and stimulates anti-tumor immunity. Our previous single-cell RNA sequencing analysis of oHSV-treated medulloblastoma tumors revealed expansion and activation of tumor-infiltrating dendritic cells (DCs), and direct oHSV infection of DCs within the brain. While the therapeutic effects of oHSVs have been primarily attributed to tumor cell infection, we hypothesize that direct infection of DCs also contributes to therapeutic efficacy by promoting DC maturation and immune activation. Although the oHSV infection in DCs was abortive, it led to increased expression of major histocompatibility complex (MHC) class I/II and co-stimulatory molecules. oHSV-infected DCs activated naïve CD4+ and CD8+ T cells, inducing expression of CD69 and CD25. These primed T cells exhibited enhanced cytotoxicity against CT-2A glioma cells. Adoptive transfer of oHSV-infected DCs via subcutaneous injection near inguinal lymph nodes delayed tumor growth in a syngeneic CT-2A glioma model, independent of tumor viral replication and lysis. Mechanistically, our in vitro studies demonstrate that oHSV can directly infect and functionally activate DCs, enabling them to prime effective anti-tumor T cell responses. This study highlights the anti-tumor potential of leveraging oHSV-infected DCs to augment viroimmunotherapy as a cancer therapeutic. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop