State-of-the-Art Eye Disease Research and Treatment in Japan

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 221

Special Issue Editor


E-Mail Website
Guest Editor
Department of Ophthalmology, National Defense Medical College, Saitama 359-8513, Japan
Interests: ocular immunology; ocular inflammation; uveitis; diabetic retinopathy; age-related macular degeneration; inflammaging

Special Issue Information

Dear Colleagues,

Recent breakthroughs in imaging technology, such as advanced microscopy and optical coherence tomography, coupled with comprehensive cell-based molecular biological analysis using next-generation sequencing, have significantly advanced our understanding of the underlying mechanisms of ocular diseases. These technological advancements have revolutionized the field of ophthalmology, leading to rapid changes in diagnostic and therapeutic approaches for a wide range of eye conditions. This Special Issue compiles cutting-edge research from Japan, focusing on innovative techniques and strategies for the early detection, accurate diagnosis, and effective treatment of various eye diseases, including age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis.

Prof. Dr. Masaru Takeuchi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ocular diseases
  • age-related macular degeneration
  • diabetic retinopathy
  • glaucoma
  • uveitis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3775 KiB  
Article
Enhanced M2 Polarization of Retinal Microglia in Streptozotocin-Induced Diabetic Mice upon Autoimmune Stimulation
by Yoshiaki Nishio, Hideaki Someya, Kozo Harimoto, Tomohito Sato, Masataka Ito and Masaru Takeuchi
Biomedicines 2025, 13(9), 2049; https://doi.org/10.3390/biomedicines13092049 - 22 Aug 2025
Abstract
Background: This study aimed to investigate the impact of the diabetic environment on the development of experimental autoimmune uveoretinitis (EAU) and the activation status of microglia in the eye. Methods: EAU was induced in wild-type (WT) and streptozotocin (STZ)-induced diabetic mice (STZ-EAU mice). [...] Read more.
Background: This study aimed to investigate the impact of the diabetic environment on the development of experimental autoimmune uveoretinitis (EAU) and the activation status of microglia in the eye. Methods: EAU was induced in wild-type (WT) and streptozotocin (STZ)-induced diabetic mice (STZ-EAU mice). Disease severity was assessed using funduscopy, optical coherence tomography (OCT), and histopathological analysis. The proportions of Th1, Th17, and regulatory T cells in the spleen were analyzed by flow cytometry. Retinal microglia were quantified using immunohistochemistry. To further characterize retinal cell populations and gene expression profiles, single-cell RNA sequencing (scRNA-seq) was performed. Results: STZ-EAU mice exhibited significant reductions in both the incidence and severity of EAU compared with WT-EAU mice. These were accompanied by a decreased proportion of Th1 cells, which are crucial for EAU pathogenesis, in the spleens of STZ-EAU mice. Retinal microglial accumulation was markedly reduced in STZ-EAU mice compared with WT-EAU mice. scRNA-seq analysis revealed a significant change in the microglial phenotype in STZ-EAU mice, characterized by decreased expression of MHC class I/II and the suppression of antigen presentation signaling pathways. Activated microglia in STZ-EAU mice showed reduced gene expression of M1 markers (CD68, CD74, and IL1B) and increased gene expression of M2 markers (MSR1, CD163, and MRC1), suggesting a shift toward an anti-inflammatory M2 phenotype. Conclusions: EAU is suppressed in STZ-induced diabetic mice, likely due to alterations in microglial polarization toward an M2 phenotype. These results suggest a decrease in T cell responses to pathogens in a diabetic environment, which could be one of the underlying factors for the increased susceptibility to infection in diabetic patients. Inhibiting the M2 polarization of microglia may reduce the susceptibility to infection in patients with diabetes. Full article
(This article belongs to the Special Issue State-of-the-Art Eye Disease Research and Treatment in Japan)
Show Figures

Figure 1

Back to TopTop