Flipping Motion of the Alkylene Bridge in cis-[N,N′-Pentamethylenebis(iminomethylazolato)]M(II) Complexes (M = Pt, Pd) with Hydrogen-Bond-like M···H–C Interactions
Abstract
1. Introduction
2. Materials and Methods
- All Schiff-base ligands L1–3 were synthesized via condensation reactions between the corresponding diamines and pyrrole-2-carbaldehyde. As a representative example, the synthesis of N,N′-bis((1H-pyrrolyl)methylene)-1,5-pentanediamine (L3) is described below. Pyrrole-2-carbaldehyde (0.954 g, 10.0 mmol) and 1,5-pentanediamine (0.513 g, 5.0 mmol) were dissolved in 99% ethanol (50 mL) and refluxed for 20 h in a 100 mL round-bottom flask equipped with a condenser. After the reaction, the solvent was removed under reduced pressure, and the resulting gray solid was dried under vacuum to afford L3 (1.14 g, 4.4 mmol, 88%) without further purification.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brookhart, M.; Green, M.L.H.; Parkin, G. Agostic Interactions in Transition Metal Compounds. Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914. [Google Scholar] [CrossRef]
- Brammer, L. Metals and Hydrogen Bonds. Dalton Trans. 2003, 3145–3157. [Google Scholar] [CrossRef]
- Brookhart, M.; Green, M.L.H. Carbon-Hydrogen-Transition Metal Bonds. J. Organomet. Chem. 1983, 250, 395–408. [Google Scholar] [CrossRef]
- Dawoodi, Z.; Green, M.L.H.; Mtetwa, V.S.B.; Prout, K.; Schultz, A.J.; Williams, J.M.; Koetzle, T.F. Evidence for Carbon–Hydrogen–Titanium Interactions: Synthesis and Crystal Structures of the Agostic Alkyls [TiCl3(Me2PCH2CH2PMe2)R] (R = Et or Me). J. Chem. Soc. Dalton Trans. 1986, 1629–1637. [Google Scholar] [CrossRef]
- Brookhart, M.; Green, M.L.H.; Pardy, R.B.A. Two-Electron, Three-Centre Carbon–Hydrogen–Cobalt Bonds in the Compounds [Co(η-C5Me4R)(η-C2H4)(η-C2H4-µ-H)]BF4, R = Me and Et. J. Chem. Soc. Chem. Commun. 1983, 691–693. [Google Scholar] [CrossRef]
- Brookhart, M.; Lamanna, W.; Humphrey, M.B. Structural Characterization and Fluxional Behavior of Cyclohexenylmanganese Tricarbonyl. Intramolecular Carbon-Hydrogen Bond Activation via a 2-Electron, 3-Center Manganese...Hydrogen...Carbon Interaction. J. Am. Chem. Soc. 1982, 104, 2117–2126. [Google Scholar] [CrossRef]
- Dawoodi, Z.; Green, M.L.H.; Mtetwa, V.S.B.; Prout, K. Evidence for a Direct Bonding Interaction Between Titanium and a β-C–H Moiety in a Titanium–Ethyl Compound; X-ray Crystal Structure of [Ti(Me2PCH2CH2PMe2)EtCl3]. J. Chem. Soc. Chem. Commun. 1982, 802–803. [Google Scholar] [CrossRef]
- Altus, K.M.; Love, J.A. The Continuum of Carbon–Hydrogen (C–H) Activation Mechanisms and Terminology. Commun. Chem. 2021, 4, 173. [Google Scholar] [CrossRef]
- Xu, H.; White, P.B.; Hu, C.; Diao, T. Structure and Isotope Effects of the β-H Agostic (α-Diimine) Nickel Cation as a Polymerization Intermediate. Angew. Chem. Int. Ed. 2017, 56, 1535–1538. [Google Scholar] [CrossRef]
- Grubbs, R.H.; Coates, G.W. α-Agostic Interactions and Olefin Insertion in Metallocene Polymerization Catalysts. Acc. Chem. Res. 1996, 29, 85–93. [Google Scholar] [CrossRef]
- Talarico, G.; Budzelaar, P.H.M. α-Agostic Interactions and Growing Chain Orientation for Olefin Polymerization Catalysts. Organometallics 2016, 35, 47–54. [Google Scholar] [CrossRef]
- Sajjad, M.A.; Christensen, K.E.; Rees, N.H.; Schwerdtfeger, P.; Harrison, J.A.; Nielson, A.J. Chasing the Agostic Interaction in Ligand Assisted Cyclometallation Reactions of Palladium(II). Dalton Trans. 2017, 46, 16126–16138. [Google Scholar] [CrossRef]
- Beck, R.; Camadanli, S.; Klein, H. Spontaneous Bicyclometalation of a Single Cobalt(I) Complex Stabilized by a δ-C–H Agostic Interaction. Eur. J. Inorg. Chem. 2018, 2018, 608–611. [Google Scholar] [CrossRef]
- Yao, W.; Eisenstein, O.; Crabtree, R.H. Interactions Between C–H and N–H Bonds and d8 Square Planar Metal Complexes: Hydrogen Bonded or Agostic? Inorg. Chim. Acta 1997, 254, 105–111. [Google Scholar] [CrossRef]
- Braga, D.; Grepioni, F.; Tedesco, E.; Biradha, K.; Desiraju, G.R. Hydrogen Bonding in Organometallic Crystals. 6. X−H---M Hydrogen Bonds and M---(H−X) Pseudo-Agostic Bonds. Organometallics 1997, 16, 1846–1856. [Google Scholar] [CrossRef]
- Sini, G.; Eisenstein, O.; Yao, W.; Crabtree, R.H. Intermolecular Re–H·H–X Hydrogen Bonding (X =N, C) Involving ReH5(PPh3)3. Inorg. Chim. Acta 1998, 280, 26–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Lewis, J.C.; Bergman, R.G.; Ellman, J.A.; Oldfield, E. NMR Shifts, Orbitals, and M···H−X Bonding in d8 Square Planar Metal Complexes. Organometallics 2006, 25, 3515–3519. [Google Scholar] [CrossRef]
- Scherer, W.; Dunbar, A.C.; Barquera-Lozada, J.E.; Schmitz, D.; Eickerling, G.; Kratzert, D.; Stalke, D.; Lanza, A.; Macchi, P.; Casati, N.P.M.; et al. Anagostic Interactions under Pressure: Attractive or Repulsive? Angew. Chem. Int. Ed. 2015, 54, 2505–2509. [Google Scholar] [CrossRef]
- Komiya, N.; Hosokawa, T.; Adachi, J.; Inoue, R.; Kawamorita, S.; Naota, T. Regiospecific Remote Pt–H Interactions in Oligomethylene-Vaulted (N^C^N)-Pincer PtII Complexes. Eur. J. Inorg. Chem. 2018, 2018, 4771–4778. [Google Scholar] [CrossRef]
- Schmitz, D.; Kalter, M.; Dunbar, A.C.; Vöst, M.; Fischer, A.; Batke, K.; Eickerling, G.; Ruhland, K.; Ebad-Allah, J.; Kuntscher, C.; et al. Pressure-Enhanced C–H Bond Activation in Chloromethane Platinum(II) Complexes. Eur. J. Inorg. Chem. 2020, 2020, 79–83. [Google Scholar] [CrossRef]
- Iglesias-Sigüenza, J.; Ros, A.; Díez, E.; Alcarazo, M.; Álvarez, E.; Fernández, R.; Lassaletta, J.M. Synthesis, Structure and Properties of [1,2,4]Triazolo[4,3-a]Pyridin-3-Ylidene Rhodium and Palladium Complexes. Dalton Trans. 2009, 7113–7120. [Google Scholar] [CrossRef]
- Teci, M.; Brenner, E.; Matt, D.; Toupet, L. N-Heterocyclic Carbenes Functioning as Monoligating Clamps. Eur. J. Inorg. Chem. 2013, 2013, 2841–2848. [Google Scholar] [CrossRef]
- Teci, M.; Brenner, E.; Matt, D.; Gourlaouen, C.; Toupet, L. N-Alkylfluorenyl-Substituted N-Heterocyclic Carbenes as Bimodal Pincers. Dalton Trans. 2015, 44, 9260–9268. [Google Scholar] [CrossRef]
- Race, J.J.; Burnage, A.L.; Boyd, T.M.; Heyam, A.; Martínez-Martínez, A.J.; Macgregor, S.A.; Weller, A.S. ortho-Aryl Substituted DPEphos Ligands: Rhodium Complexes Featuring C–H Anagostic Interactions and B–H Agostic Bonds. Chem. Sci. 2021, 12, 8832–8843. [Google Scholar] [CrossRef]
- Lagunas-Simón, B.; González-Montiel, S.; Salazar-Pereda, V.; Vásquez-Pérez, J.M.; Cruz-Borbolla, J. An Structural Study of Pt•••Hδ–C(Sp3) Anagostic Interaction in Heteroscorpionate Complexes. J. Mol. Struct. 2024, 1300, 137289. [Google Scholar] [CrossRef]
- Bouley, B.S.; Garvey, I.J.; Na, H.; Byeong Chae, J.; Mirica, L.M. Anagostic Axial Interactions Inhibit Cross-Coupling Catalytic Activity in Square Planar Pyridinophane Nickel Complexes. ChemCatChem 2024, 16, e202301677. [Google Scholar] [CrossRef]
- Han, W.; Ryu, H.; Kang, C.; Hong, S. Chiral Biaryl N-Heterocyclic Carbene–Palladium Catalysts with Anagostic C–H···Pd Interaction for Enantioselective Desymmetric C–N Cross-Coupling. Org. Lett. 2024, 26, 9891–9896. [Google Scholar] [CrossRef] [PubMed]
- Komiya, N.; Okada, M.; Fukumoto, K.; Jomori, D.; Naota, T. Highly Phosphorescent Crystals of Vaulted trans-Bis(Salicylaldiminato)Platinum(II) Complexes. J. Am. Chem. Soc. 2011, 133, 6493–6496. [Google Scholar] [CrossRef] [PubMed]
- Komiya, N.; Muraoka, T.; Iida, M.; Miyanaga, M.; Takahashi, K.; Naota, T. Ultrasound-Induced Emission Enhancement Based on Structure-Dependent Homo- and Heterochiral Aggregations of Chiral Binuclear Platinum Complexes. J. Am. Chem. Soc. 2011, 133, 16054–16061. [Google Scholar] [CrossRef]
- Naito, M.; Souda, H.; Koori, H.; Komiya, N.; Naota, T. Binuclear trans-Bis(Β-iminoaryloxy)Palladium(II) Complexes Doubly Linked with Pentamethylene Spacers: Structure-Dependent Flapping Motion and Heterochiral Association Behavior of the Clothespin-Shaped Molecules. Chem. Eur. J. 2014, 20, 6991–7000. [Google Scholar] [CrossRef]
- Naito, M.; Inoue, R.; Iida, M.; Kuwajima, Y.; Kawamorita, S.; Komiya, N.; Naota, T. Control of Metal Arrays Based on Heterometallics Masquerading in Heterochiral Aggregations of Chiral Clothespin-Shaped Complexes. Chem. Eur. J. 2015, 21, 12927–12939. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Kawamorita, S.; Naota, T. Single-Point Remote Control of Flapping Motion in Clothespin-Shaped Bimetallic Palladium Complexes Based on the N(Sp2)–N(Sp3) Interconversion in Amide Functionalities. Chem. Eur. J. 2016, 22, 5712–5726. [Google Scholar] [CrossRef]
- Matsuoka, T.; Li, Z.; Ikeshita, M.; Kawamorita, S.; Naota, T. Linker Length Dependence of the Chromogenic Properties of Polymethylene-Vaulted trans-Bis(2-Aminotroponato)Palladium(II) Complexes. J. Mol. Struct. 2018, 1165, 217–222. [Google Scholar] [CrossRef]
- Le, N.H.-T.; Inoue, R.; Kawamorita, S.; Komiya, N.; Naota, T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis[2-(Iminomethyl)Imidazolato]Platinum(II) Complexes. Inorg. Chem. 2019, 58, 9076–9084. [Google Scholar] [CrossRef]
- Adachi, J.; Mori, T.; Inoue, R.; Naito, M.; Le, N.H.; Kawamorita, S.; Hill, J.P.; Naota, T.; Ariga, K. Emission Control by Molecular Manipulation of Double-Paddled Binuclear PtII Complexes at the Air-Water Interface. Chem. Asian J. 2020, 15, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.; Naito, M.; Sugiura, S.; Le, N.H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S.; Komiya, N.; Hill, J.P.; et al. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. Bull. Chem. Soc. Jpn. 2022, 95, 889–897. [Google Scholar] [CrossRef]
- Ikeshita, M.; Hara, N.; Imai, Y.; Naota, T. Chiroptical Response Control of Planar and Axially Chiral Polymethylene-Vaulted Platinum(II) Complexes Bearing 1,1′-Binaphthyl Frameworks. Inorg. Chem. 2023, 62, 13964–13976. [Google Scholar] [CrossRef]
- Ikeshita, M.; Ma, S.C.; Muller, G.; Naota, T. Linker-Dependent Control of the Chiroptical Properties of Polymethylene-Vaulted trans-Bis[(β-Iminomethyl)Naphthoxy]Platinum(II) Complexes. Dalton Trans. 2024, 53, 7775–7787. [Google Scholar] [CrossRef]
- Ikeshita, M.; Takahashi, K.; Hara, N.; Kawamorita, S.; Komiya, N.; Imai, Y.; Naota, T. Ultrasound-induced Circularly Polarized Luminescence Based on Homochiral Aggregation of Clothespin-shaped Pt(II) Complexes. Responsive Mater. 2024, 2, e20240017. [Google Scholar] [CrossRef]
- Kawamorita, S.; Huang, S.; Yoshida, A.; Suzuki, S.; Naota, T. Aggregation-Induced Phosphorescence of a trans-Bis(iminomethylpyrolato)platinum Complex Bearing a Polymethylene Vaulted Structure: Chain Length–Dependent Solid-State Emission. Chem. Eur. J. 2025, 31, e01670. [Google Scholar] [CrossRef]
- Sauvage, J.-P. Molecular Machines and Motors; Springer: Berlin, Germany, 2001. [Google Scholar]
- Tashiro, K.; Konishi, K.; Aida, T. Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Activities of the Reduced and Oxidized Forms Using Chirality as a Probe. J. Am. Chem. Soc. 2000, 122, 7921–7926. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Klemke, J.W.; Getahun, Z.; DeGrado, W.F.; Gai, F. Temperature-Dependent Helix−Coil Transition of an Alanine Based Peptide. J. Am. Chem. Soc. 2001, 123, 9235–9238. [Google Scholar] [CrossRef]
- Hiraoka, S.; Shiro, M.; Shionoya, M. Heterotopic Assemblage of Two Different Disk-Shaped Ligands through Trinuclear Silver(I) Complexation: Ligand Exchange-Driven Molecular Motion. J. Am. Chem. Soc. 2004, 126, 1214–1218. [Google Scholar] [CrossRef]
- Muraoka, T.; Kinbara, K.; Aida, T. Mechanical Twisting of a Guest by a Photoresponsive Host. Nature 2006, 440, 512–515. [Google Scholar] [CrossRef]
- Nawara, A.J.; Shima, T.; Hampel, F.; Gladysz, J.A. Gyroscope-like Molecules Consisting of PdX2 /PtX2 Rotators Encased in Three-Spoke Stators: Synthesis via Alkene Metathesis, and Facile Substitution and Demetalation. J. Am. Chem. Soc. 2006, 128, 4962–4963. [Google Scholar] [CrossRef]
- Ihalainen, J.A.; Bredenbeck, J.; Pfister, R.; Helbing, J.; Chi, L.; Van Stokkum, I.H.M.; Woolley, G.A.; Hamm, P. Folding and Unfolding of a Photoswitchable Peptide from Picoseconds to Microseconds. Proc. Natl. Acad. Sci. USA 2007, 104, 5383–5388. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Feringa, B.L.; Browne, W.R. (Eds.) Molecular Switches, 1st ed.; Wiley-VCH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Rodríguez-Molina, B.; Pérez-Estrada, S.; Garcia-Garibay, M.A. Amphidynamic Crystals of a Steroidal Bicyclo[2.2.2]Octane Rotor: A High Symmetry Group That Rotates Faster than Smaller Methyl and Methoxy Groups. J. Am. Chem. Soc. 2013, 135, 10388–10395. [Google Scholar] [CrossRef]
- Johnson, C.K. ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations; Report ORNL-3794; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1965. [Google Scholar] [CrossRef]
- Burnett, M.N.; Johnson, C.K. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations; Report ORNL-6895; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1996. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. NBO 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2018. [Google Scholar]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD–Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Alvarez, S. A Cartography of the van Der Waals Territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.-X. Isokinetic Relationship, Isoequilibrium Relationship, and Enthalpy−Entropy Compensation. Chem. Rev. 2001, 101, 673–696. [Google Scholar] [CrossRef]
- Rekharsky, M.V.; Mori, T.; Yang, C.; Ko, Y.H.; Selvapalam, N.; Kim, H.; Sobransingh, D.; Kaifer, A.E.; Liu, S.; Isaacs, L.; et al. A Synthetic Host-Guest System Achieves Avidin-Biotin Affinity by Overcoming Enthalpy–Entropy Compensation. Proc. Natl. Acad. Sci. USA 2007, 104, 20737–20742. [Google Scholar] [CrossRef] [PubMed]
- Chodera, J.D.; Mobley, D.L. Entropy-Enthalpy Compensation: Role and Ramifications in Biomolecular Ligand Recognition and Design. Annu. Rev. Biophys. 2013, 42, 121–142. [Google Scholar] [CrossRef]
- Ryde, U. A Fundamental View of Enthalpy–Entropy Compensation. Med. Chem. Commun. 2014, 5, 1324–1336. [Google Scholar] [CrossRef]
- Peccati, F.; Jiménez-Osés, G. Enthalpy–Entropy Compensation in Biomolecular Recognition: A Computational Perspective. ACS Omega 2021, 6, 11122–11130. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | |
---|---|---|---|---|
formula | C13H16N6Pt | C13H16N6Pt | C15H18N4Pt | C15H18N4Pd |
Mr | 451.40 | 451.40 | 449.42 | 360.73 |
T/K | 113 | 113 | 113 | 113 |
crystal color habit | orange, block | green, needle | orange, block | yellow, platelet |
crystal size/mm | 0.10 × 0.06 × 0.01 | 0.20 × 0.02 × 0.02 | 0.15 × 0.15 × 0.05060 | 0.30 × 0.30 × 0.30 |
crystal system | triclinic | orthorhombic | monoclinic | Monoclinic |
space group | P (#2) | Pna21 (#33) | P21/c (#14) | P21/c (#14) |
a/Å | 13.0625(14) | 25.6960(17) | 10.3311(9) | 10.4099(1) |
b/Å | 13.4045(15) | 15.9774(10) | 9.4394(7) | 9.4219(1) |
c/Å | 17.397(2) | 21.4286(14) | 28.708(2) | 28.687(4) |
α/° | 109.644(3) | 90 | 90 | 90 |
β/° | 109.117(2) | 90 | 99.521(2) | 99.844(3) |
γ/° | 90.4613(10) | 90 | 90 | 90 |
V/Å3 | 2686.7(5) | 8797.6(10) | 2761.0(4) | 2772.2(6) |
Z | 6 | 24 | 8 | 8 |
ρcalcd/g•cm–3 | 1.674 | 2.045 | 2.162 | 1.728 |
μ (MoKα)/cm–1 | 78.024 | 95.310 | 101.187 | 13.349 |
F(000) | 1284.00 | 5136.00 | 1712.00 | 1456.00 |
2θmax/° | 55.5 | 55.0 | 55.0 | 55.0 |
No. of reflns measd | 50,200 | 81,522 | 49,807 | 43,300 |
No. of obsd reflns | 12,354 | 19,932 | 6315 | 6159 |
No. variables | 541 | 847 | 361 | 361 |
R1 (I > 2σ(I)) [a] | 0.0466 | 0.0492 | 0.0576 | 0.0293 |
wR2 (all reflns) [b] | 0.1496 | 0.1350 | 0.1380 | 0.0989 |
Goodness of fit | 0.467 | 1.093 | 1.153 | 1.180 |
Structural Parameters | 1 | 2 | 3 | 4 |
---|---|---|---|---|
N1–Pt/Pd | 2.094 | 2.091 | 2.089 | 2.100 |
N2–Pt/Pd | 2.094 | 2.090 | 2.087 | 2.095 |
N3–Pt/Pd | 2.027 | 2.029 | 2.033 | 2.031 |
N4–Pt/Pd | 2.027 | 2.029 | 2.034 | 2.032 |
H(γ1)–Pt/Pd | 2.887 | 2.891 | 2.892 | 2.881 |
∠C(γ)-H(γ1)-Pt/Pd | 123.0 | 122.8 | 123.3 | 124.0 |
∠N1-Pt/Pd-N2 | 102.5 | 102.5 | 102.1 | 101.3 |
∠N1-Pt/Pd-N3 | 78.79 | 78.90 | 78.87 | 79.79 |
∠N2-Pt/Pd-N4 | 78.81 | 78.89 | 78.83 | 79.74 |
∠N3-Pt/Pd-N4 | 99.90 | 99.69 | 100.2 | 99.26 |
∠N3-Pt/Pd-N4-C2 | 1.30 | −1.17 | −5.37 | −5.29 |
∠N4-Pt/Pd-N3-C1 | 1.23 | −1.41 | −5.78 | −5.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawamorita, S.; Nishino, M.; Le, N.H.-T.; Nakamura, K.; Naota, T. Flipping Motion of the Alkylene Bridge in cis-[N,N′-Pentamethylenebis(iminomethylazolato)]M(II) Complexes (M = Pt, Pd) with Hydrogen-Bond-like M···H–C Interactions. AppliedChem 2025, 5, 25. https://doi.org/10.3390/appliedchem5040025
Kawamorita S, Nishino M, Le NH-T, Nakamura K, Naota T. Flipping Motion of the Alkylene Bridge in cis-[N,N′-Pentamethylenebis(iminomethylazolato)]M(II) Complexes (M = Pt, Pd) with Hydrogen-Bond-like M···H–C Interactions. AppliedChem. 2025; 5(4):25. https://doi.org/10.3390/appliedchem5040025
Chicago/Turabian StyleKawamorita, Soichiro, Mitsuhiro Nishino, Ngoc Ha-Thu Le, Kazuki Nakamura, and Takeshi Naota. 2025. "Flipping Motion of the Alkylene Bridge in cis-[N,N′-Pentamethylenebis(iminomethylazolato)]M(II) Complexes (M = Pt, Pd) with Hydrogen-Bond-like M···H–C Interactions" AppliedChem 5, no. 4: 25. https://doi.org/10.3390/appliedchem5040025
APA StyleKawamorita, S., Nishino, M., Le, N. H.-T., Nakamura, K., & Naota, T. (2025). Flipping Motion of the Alkylene Bridge in cis-[N,N′-Pentamethylenebis(iminomethylazolato)]M(II) Complexes (M = Pt, Pd) with Hydrogen-Bond-like M···H–C Interactions. AppliedChem, 5(4), 25. https://doi.org/10.3390/appliedchem5040025