Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = M. × giganteus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3134 KiB  
Article
Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO)
by Roland Jacks Ekila, Tatjana Stevanovic and Denis Rodrigue
Polymers 2025, 17(12), 1695; https://doi.org/10.3390/polym17121695 - 18 Jun 2025
Viewed by 376
Abstract
Electrospinning is a simple technique to produce fibers with small diameters. These fibers can be made from different polymers, but the focus is now on biobased materials. In this work, the lignin obtained from Miscanthus x giganteus, an herbaceous plant, was isolated [...] Read more.
Electrospinning is a simple technique to produce fibers with small diameters. These fibers can be made from different polymers, but the focus is now on biobased materials. In this work, the lignin obtained from Miscanthus x giganteus, an herbaceous plant, was isolated by an Organosolv process leading to a high purity (90%), which is essential for its electrospinning. This lignin also had a carbon content of 72.2% with 24.8% oxygen and a low nitrogen content (1%). The isolated lignin was then solubilized in dimethyl sulfoxide (DMSO). Finally, an optimization step showed that a stable process was possible using a 62% lignin solution in DMSO with a needle-to-collector distance of 20 cm, a flow rate of 0.3 mL/h, a voltage of 25 kV, and a humidity of 35%. Nevertheless, lignin concentrations between 55 and 63% were studied to determine the effect of this parameter on the final fibers. A morphological analysis (SEM-EDX) enabled us to understand both the evolution of the diameter and the effect of dimethyl sulfoxide on the electrospun fibers. This study showed that electrospinning of the lignin obtained from Miscanthus x giganteus was possible, even without any additives. Full article
(This article belongs to the Collection Electrospun Nanofibers)
Show Figures

Figure 1

17 pages, 1402 KiB  
Article
A Comparative Study on the Mycelium and Fruiting Body of Meripilus giganteus: Chemical Composition and Biological Activity
by Katarzyna Sułkowska-Ziaja, Mateusz Korczyński, Monika Trepa, Agnieszka Galanty, Jan Lazur, Paweł Kubica, Katarzyna Kała, Paweł Paśko and Bożena Muszyńska
Curr. Issues Mol. Biol. 2025, 47(5), 302; https://doi.org/10.3390/cimb47050302 - 25 Apr 2025
Viewed by 866
Abstract
Meripilus giganteus (Pers.) P. Karst. is a basidiomycete fungus known for its bioactive properties, including antioxidant, antimicrobial, and cytotoxic effects. Although research has largely focused on fruiting bodies, mycelium obtained through in vitro culture offers a sustainable and potentially scalable source of bioactive [...] Read more.
Meripilus giganteus (Pers.) P. Karst. is a basidiomycete fungus known for its bioactive properties, including antioxidant, antimicrobial, and cytotoxic effects. Although research has largely focused on fruiting bodies, mycelium obtained through in vitro culture offers a sustainable and potentially scalable source of bioactive metabolites. This study aimed to compare the chemical composition and biological activity of extracts from the fruiting bodies and mycelium of M. giganteus. Key compound groups were analyzed using high-performance liquid chromatography (HPLC), and biological activity was assessed through DPPH and ABTS antioxidant assays and MTT-based cytotoxicity testing on human gastrointestinal cancer and normal colon epithelial cell lines. The results revealed distinct metabolite profiles between fungal forms and demonstrated that solvent type strongly influenced extraction efficiency. Cytotoxicity assays indicated moderate activity of both extract types, with some selectivity towards colorectal cancer cell lines. These findings suggest that M. giganteus mycelium may serve as a promising alternative to fruiting bodies for the production of antioxidant and potentially chemopreventive compounds. Further studies are recommended to optimize cultivation and extraction conditions to enhance both metabolite yield and biological activity. Full article
Show Figures

Figure 1

16 pages, 3131 KiB  
Article
Culture of Flower Buds and Ovaries in Miscanthus × giganteus
by Przemysław Kopeć, Kamila Laskoś and Agnieszka Płażek
Agronomy 2025, 15(4), 962; https://doi.org/10.3390/agronomy15040962 - 15 Apr 2025
Viewed by 551
Abstract
Miscanthus × giganteus (Greef and Deuter ex Hodkinson and Renvoize) is a perennial, rhizomatous grass that has gained significant attention as an industrial crop, particularly as a bioenergy feedstock. It is a natural interspecific hybrid with 57 chromosomes (2n = 3x [...] Read more.
Miscanthus × giganteus (Greef and Deuter ex Hodkinson and Renvoize) is a perennial, rhizomatous grass that has gained significant attention as an industrial crop, particularly as a bioenergy feedstock. It is a natural interspecific hybrid with 57 chromosomes (2n = 3x = 57). Due to its sterility, M. × giganteus has limited genetic variability, making traditional breeding methods ineffective for its improvement. Consequently, alternative approaches are being explored to enhance its cultivation and utility. The study aimed to investigate the potential for M. × giganteus plant regeneration through ovary and flower bud cultures. Indirect in vitro regeneration of M. × giganteus plants was successfully achieved using flower bud cultures. Embryogenic-like callus was derived from explants originating from inflorescences that had undergone a four-day pretreating at 10 °C. The most effective medium for callus induction was a modified MS medium supplemented with 5 mg·dm−3 dicamba, 0.2 mg dm−3 6-benzylaminopurine, 30 g dm−3 sucrose, and solidified with 8 g dm−3 agar or agarose. The optimal conditions for callus induction were achieved by culturing in the dark. The regenerated plants exhibited the characteristic chromosome number of the species, confirming that the regenerants did not develop from embryo sac cells. In contrast, ovary culture failed to produce callus or regenerated plants, highlighting its ineffectiveness for M. × giganteus regeneration. These findings underscore the potential of flower bud culture as a successful in vitro regeneration method while demonstrating the limitations of ovary culture for this species. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

14 pages, 285 KiB  
Article
The Effect of Waste Organic Matter on the Soil Chemical Composition After Three Years of Miscanthus × giganteus Cultivation in East-Central Poland
by Elżbieta Malinowska and Paweł Kania
Sustainability 2025, 17(6), 2532; https://doi.org/10.3390/su17062532 - 13 Mar 2025
Cited by 1 | Viewed by 534
Abstract
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped [...] Read more.
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped into a landfill decomposes and emits greenhouse gases. This can be reduced through its application to energy crops, which not only has a positive impact on the environment but also improves the soil quality and increases yields. However, organic waste with increased content of heavy metals, when applied to the soil, can also pose a threat. Using Miscanthus × giganteus M 19 as a test plant, an experiment with a randomized block design was established in four replications in Central–Eastern Poland in 2018. Various combinations of organic waste (municipal sewage sludge and spent mushroom substrate) were applied, with each dose containing 170 kg N ha−1. After three years (in 2020), the soil content of total nitrogen (Nt) and carbon (Ct) was determined by elemental analysis, with the total content of P, K, Ca, Mg, S, Na, Fe, Mn, Mo, Zn, Ni, Pb, Cr, Cd, and Cu determined by optical emission spectrometry, after wet mineralization with aqua regia. For the available forms of P and K, the Egner–Riehm method was used, and the Schachtschabel method was used for the available forms of Mg. The total content of bacteria, actinomycetes, and fungi was also measured. The application of municipal sewage sludge (SS) alone and together with spent mushroom substrate (SMS) improved the microbiological composition of the soil and increased the content of Nt and Ct and the available forms of P2O5 and Mg more than the application of SMS alone. SMS did not contaminate the soil with heavy metals. In the third year, their content was higher after SS than after SMS application, namely for Cd by 12.2%, Pb by 18.7%, Cr by 25.3%, Zn by 16.9%, and Ni by 14.7%. Full article
55 pages, 12058 KiB  
Article
Who Eats the Grass? Grazing Pressure and Interactions Between Wild Kangaroos, Feral Goats and Rabbits, and Domestic Sheep on an Arid Australian Rangeland
by Ingrid Witte and David B. Croft
Wild 2025, 2(1), 5; https://doi.org/10.3390/wild2010005 - 26 Feb 2025
Cited by 1 | Viewed by 2070
Abstract
This study examined the grazing pressure and interactions between four species of wild kangaroos (Red Kangaroo Osphranter rufus, Common Wallaroo O. robustus, Eastern Grey Kangaroo Macropus giganteus, Western Grey Kangaroo M. fuliginosus), free-ranging feral goats (Capra hircus) [...] Read more.
This study examined the grazing pressure and interactions between four species of wild kangaroos (Red Kangaroo Osphranter rufus, Common Wallaroo O. robustus, Eastern Grey Kangaroo Macropus giganteus, Western Grey Kangaroo M. fuliginosus), free-ranging feral goats (Capra hircus) and European rabbits (Oryctolagus cuniculus), and stocked Merino sheep (Ovis aries). The study site comprised two contiguous pairs of stocked and unstocked paddocks, one a sloping run-off zone, the other a flat run-on zone, covering a total area of 2158 ha. These paddocks on Fowlers Gap Station in far north-western New South Wales, Australia, are representative of the arid chenopod (Family: Chenopodiaceae) shrublands stocked with sheep. Sheep and red kangaroos dominate the mammalian herbivores by biomass. The study examined the relative grazing pressure exerted by the seven species of mammalian herbivores in stocked and unstocked conditions, where only sheep were confined, across a three-year period that included rain-deficient (drought) months. The effects of climate (especially rainfall and temperature) and herbivore density on the standing biomass of pasture were teased out at a macro-scale. Herbivory at a micro-scale was examined using open and exclosed plots with detection of herbivore species by fecal deposition and time-lapse videography. Sheep exerted the highest grazing pressure and there was no compensatory increase in grazing pressure by other herbivores in unstocked paddocks. Rainfall was a key driver of pasture biomass and condition and loss by senescence typically outweighed grazing pressure. Grazing effects at a micro-scale were plot-specific and complex. The results are discussed in relation to the sustainable management of rangelands for production and wildlife. Full article
Show Figures

Figure 1

22 pages, 3581 KiB  
Article
Impact of Hot Water Extraction on the Compaction Efficiency and Material Properties of Miscanthus giganteus in Pellet Production
by Kamil Roman, Julia Dasiewicz and Monika Marchwicka
Materials 2024, 17(24), 6137; https://doi.org/10.3390/ma17246137 - 15 Dec 2024
Cited by 2 | Viewed by 862
Abstract
The present study aimed to determine the effect of material modification by hot water extraction (HWE) on the compaction efficiency of shredded Miscanthus giganteus stalks in the pellet production process. Samples were prepared to differ in the number of HWE cycles: HWE I [...] Read more.
The present study aimed to determine the effect of material modification by hot water extraction (HWE) on the compaction efficiency of shredded Miscanthus giganteus stalks in the pellet production process. Samples were prepared to differ in the number of HWE cycles: HWE I was subjected to a single cycle, HWE II was subjected to two cycles, and HWE III was subjected to three cycles and unmodified material. An analysis of the compaction process was carried out to evaluate the effect of HWE on density and energy consumption. In this study, HWE pre-treatment was applied to improve biomass compaction efficiency and material properties, improving biofuel production’s sustainability and efficiency. A small change was found in glucose and xylose content, suggesting that HWE slightly affects these sugars. It was found that HWE significantly increased the density of compacted Miscanthus giganteus biomass, with a peak density of 388.7 kg·m−3 after the first HWE cycle. Ash content was reduced by 50% after one HWE cycle, making the biomass more suitable for biofuel applications. Furthermore, pretreatment with HWE reduced energy consumption during compaction, enhancing process efficiency. This study highlights the role of hot water extraction (HWE) in improving miscanthus compaction, enhancing density, reducing ash, and lowering energy use. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
Show Figures

Figure 1

21 pages, 13351 KiB  
Article
Bioluminescent Whole-Cell Bioreporter Bacterial Panel for Sustainable Screening and Discovery of Bioactive Compounds Derived from Mushrooms
by Calin Trif, Jovana Vunduk, Yardnapar Parcharoen, Aporn Bualuang and Robert S. Marks
Biosensors 2024, 14(11), 558; https://doi.org/10.3390/bios14110558 - 17 Nov 2024
Cited by 2 | Viewed by 1937
Abstract
This study presents a rapid and comprehensive method for screening mushroom extracts for the putative discovery of bioactive molecules, including those exhibiting antimicrobial activity. This approach utilizes a panel of bioluminescent bacteria, whose light production is a sensitive indicator of various cellular effects [...] Read more.
This study presents a rapid and comprehensive method for screening mushroom extracts for the putative discovery of bioactive molecules, including those exhibiting antimicrobial activity. This approach utilizes a panel of bioluminescent bacteria, whose light production is a sensitive indicator of various cellular effects triggered by the extracts, including disruption of bacterial communication (quorum sensing), protein and DNA damage, fatty acid metabolism alterations, and oxidative stress induction. The bioassay’s strength is its ability to efficiently analyze a large number of extracts simultaneously while also assessing several different mechanisms of toxicity, significantly reducing screening time. All samples analyzed exhibited more than one cellular effect, as indicated by the reporter bacteria. Four samples (C. cornucopioides, F. fomentarius, I. obliquus, and M. giganteus) displayed the highest number (six) of possible mechanisms of antibacterial activity. Additionally, combining extraction and purification protocols with a bioluminescent bacterial panel enables simultaneous improvement of the desired antimicrobial properties of the extracts. The presented approach offers a valuable tool for uncovering the diverse antimicrobial mechanisms of mushroom extracts. Full article
Show Figures

Figure 1

13 pages, 407 KiB  
Article
Evaluation of Organic Waste Long-Term Effects on Cellulose, Hemicellulose and Lignin Content in Energy Grass Species Grown in East-Central Poland
by Elżbieta Malinowska and Stanislav Torma
Energies 2024, 17(22), 5598; https://doi.org/10.3390/en17225598 - 9 Nov 2024
Cited by 1 | Viewed by 1222
Abstract
Biomass can be used for electricity generation, especially in developing countries, but also in developed ones, where the utilization of renewable energy sources is being integrated into a sustainable economy. There are considerable differences in the scale of biomass use and in the [...] Read more.
Biomass can be used for electricity generation, especially in developing countries, but also in developed ones, where the utilization of renewable energy sources is being integrated into a sustainable economy. There are considerable differences in the scale of biomass use and in the technology of its processing. One of the most important sources of biofuel is the biomass of grass. This research aimed to determine the long-term effects of organic fertilizers on cellulose, hemicellulose, and lignin content in the biomass of three grass species: giant miscanthus (Miscanthus × giganteus), prairie cordgrass (Spartina pectinata), and switchgrass (Panicum virgatum L.) in the first three years of growth. The experiment was established in four replications on microplots of 2 m2 in April 2018. Before planting grass rhizomes, municipal sewage sludge (SS) and spent mushroom substrate (SMS) were introduced into the soil in various combinations. Biomass is harvested in December every year. The content of structural polysaccharides in the grass species statistically significantly varied in response to organic waste. Compared to other fertilizer combinations, SS application increased the content of cellulose in the biomass of Miscanthus giganteus (43.66% of DM) and Spartina pectinata (37.69% of DM) and hemicellulose in Spartina pectinata (27.80% of DM) and Panicum virgatum (23.64% of DM). Of the three species of grass, the chemical composition of Miscanthus giganteus cell walls was the most favorable for biofuel production, with the most cellulose and hemicellulose and the least lignin compared to other grass species. The content of lignin in the biomass of Miscanthus × giganteus and Spartina pectinata was the greatest on the plot with SMS and amounted to 7.79% of DM and 12.32% of DM, respectively. In the case of Panicum virgatum, the average content of lignin was similar across all fertilized plots, with 15.42% DM. Full article
(This article belongs to the Special Issue Biomass Resources to Bioenergy)
Show Figures

Figure 1

22 pages, 6511 KiB  
Article
Regional Scale Inversion of Chlorophyll Content of Dendrocalamus giganteus by Multi-Source Remote Sensing
by Cuifen Xia, Wenwu Zhou, Qingtai Shu, Zaikun Wu, Li Xu, Huanfen Yang, Zhen Qin, Mingxing Wang and Dandan Duan
Forests 2024, 15(7), 1211; https://doi.org/10.3390/f15071211 - 12 Jul 2024
Cited by 4 | Viewed by 1117
Abstract
The spectrophotometer method is costly, time-consuming, laborious, and destructive to the plant. Samples will be lost during the transportation process, and the method can only obtain sample point data. This poses a challenge to the estimation of chlorophyll content at the regional level. [...] Read more.
The spectrophotometer method is costly, time-consuming, laborious, and destructive to the plant. Samples will be lost during the transportation process, and the method can only obtain sample point data. This poses a challenge to the estimation of chlorophyll content at the regional level. In this study, in order to improve the estimation accuracy, a new method of collaborative inversion of chlorophyll using Landsat 8 and Global Ecosystem Dynamics Investigation (GEDI) is proposed. Specifically, the chlorophyll content data set is combined with the preprocessed two remote-sensing (RS) factors to construct three regression models using a support vector machine (SVM), BP neural network (BP) and random forest (RF), and the better model is selected for inversion. In addition, the ordinary Kriging (OK) method is used to interpolate the GEDI point attribute data into the surface attribute data for modeling. The results showed the following: (1) The chlorophyll model of a single plant was y = 0.1373x1.7654. (2) The optimal semi-variance function models of pai, pgap_theta and pgap_theta_a3 are exponential models. (3) The top three correlations between the two RS data and the chlorophyll content were B2_3_SM, B2_3_HO, B2_5_EN and pai, pgap_theta, pgap_theta_a3. (4) The combination of the Landsat 8 imagery and GEDI resulted in the highest modeling accuracy, and RF had the best performance, with R2, RMSE and P values of 0.94, 0.18 g/m2 and 83.32%, respectively. This study shows that it is reliable to use Landsat 8 images and GEDI to retrieve the chlorophyll content of Dendrocalamus giganteus (D. giganteus), revealing the potential of multi-source RS data in the inversion of forest ecological parameters. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 959 KiB  
Article
The Economic and Environmental Aspects of Miscanthus × giganteus Phytomanagement Applied to Non-Agricultural Land
by Aigerim Mamirova and Valentina Pidlisnyuk
Agronomy 2024, 14(4), 791; https://doi.org/10.3390/agronomy14040791 - 11 Apr 2024
Cited by 10 | Viewed by 2001
Abstract
Miscanthus × giganteus (M × g) is a promising energy crop in phytotechnology with biomass production. Despite considerable vegetation and harvest under varying climate conditions and across different soils, field-scale studies on utilising M × g remain scarce. Analysing the literature [...] Read more.
Miscanthus × giganteus (M × g) is a promising energy crop in phytotechnology with biomass production. Despite considerable vegetation and harvest under varying climate conditions and across different soils, field-scale studies on utilising M × g remain scarce. Analysing the literature and our own findings, this study intends to highlight the potential of M × g phytotechnology for revitalising non-agricultural lands (NAL), including brownfields, and illustrate the expediency of applying biochar to enhance biomass yield, energy efficiency, and economic feasibility. To validate the feasibility of M × g production on brownfields, two scenarios within the value chain “biomass–biogas–electricity” for green harvest were examined. The assumptions were as follows: (1) a methane yield of 5134 m3 ha−1 y−1, and (2) substrate-specific methane yields of 247 and 283 mL (g oDM)−1 for the first and subsequent years, respectively. The findings suggest that Scenario 2 is better suited for cultivating M × g on brownfields/NAL, being more sensitive and eliminating inaccuracies and the generalisations of results. From the third year onward, the revenue of M × g production on biochar-amended brownfields showed greater potential for future profitability. Future research should confirm the positive trend in the energy efficiency ratio of M × g phytotechnology on a larger scale, particularly in real brownfield applications. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

20 pages, 7875 KiB  
Article
Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop
by Ekaterina I. Kashcheyeva, Anna A. Korchagina, Yulia A. Gismatulina, Evgenia K. Gladysheva, Vera V. Budaeva and Gennady V. Sakovich
Polymers 2024, 16(1), 42; https://doi.org/10.3390/polym16010042 - 21 Dec 2023
Cited by 14 | Viewed by 2729
Abstract
This study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from Miscanthus × giganteus. The starting cellulose for them was isolated by successive treatments of the feedstock with HNO3 and [...] Read more.
This study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from Miscanthus × giganteus. The starting cellulose for them was isolated by successive treatments of the feedstock with HNO3 and NaOH solutions. The cellulose was subjected to enzymatic hydrolysis for 2, 8, and 24 h. The cellulose samples after the hydrolysis were distinct in structure from the starting sample (degree of polymerization (DP) 1770, degree of crystallinity (DC) 64%) and between each other (DP 1510–1760, DC 72–75%). The nitration showed that these samples and the starting cellulose could successfully be nitrated to furnish acetone-soluble CNs. Extending the hydrolysis time from 2 h to 24 h led to an enhanced yield of CNs from 116 to 131%, with the nitrogen content and the viscosity of the CN samples increasing from 11.35 to 11.83% and from 94 to 119 mPa·s, respectively. The SEM analysis demonstrated that CNs retained the fiber shape. The IR spectroscopy confirmed that the synthesized material was specifically CNs, as evidenced by the characteristic frequencies of 1657–1659, 1277, 832–833, 747, and 688–690 cm−1. Nutrient media derived from the hydrolyzates obtained in 8 h and 24 h were of good quality for the synthesis of BC, with yields of 11.1% and 9.6%, respectively. The BC samples had a reticulate structure made of interlaced microfibrils with 65 and 81 nm widths and DPs of 2100 and 2300, respectively. It is for the first time that such an approach for the simultaneous production of CNs and BC has been employed. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites)
Show Figures

Figure 1

16 pages, 1325 KiB  
Article
Indonesian Euphorbiaceae: Ethnobotanical Survey, In Vitro Antibacterial, Antitumour Screening and Phytochemical Analysis of Euphorbia atoto
by Dyke Gita Wirasisya, Annamária Kincses, Lívia Vidács, Nikoletta Szemerédi, Gabriella Spengler, Anita Barta, I Gde Mertha and Judit Hohmann
Plants 2023, 12(22), 3836; https://doi.org/10.3390/plants12223836 - 13 Nov 2023
Cited by 2 | Viewed by 1901
Abstract
Indonesia is among the countries with the most significant biodiversity globally. Jamu, the traditional medicine of Indonesia, predominantly uses herbal materials and is an integral component of the Indonesian healthcare system. The present study reviewed the ethnobotanical data of seven Indonesian Euphorbiaceae [...] Read more.
Indonesia is among the countries with the most significant biodiversity globally. Jamu, the traditional medicine of Indonesia, predominantly uses herbal materials and is an integral component of the Indonesian healthcare system. The present study reviewed the ethnobotanical data of seven Indonesian Euphorbiaceae species, namely Euphorbia atoto, E. hypericifolia, Homalanthus giganteus, Macaranga tanarius, Mallotus mollissimus, M. rufidulus, and Shirakiopsis indica, based on the RISTOJA database and other literature sources. An antimicrobial screening of the plant extracts was performed in 15 microorganisms using the disk diffusion and broth microdilution methods, and the antiproliferative effects were examined in drug-sensitive Colo 205 and resistant Colo 320 cells by the MTT assay. The antimicrobial testing showed a high potency of M. tanarius, H. giganteus, M. rufidulus, S. indica, and E. atoto extracts (MIC = 12.5–500 µg/mL) against different bacteria. In the antitumour screening, remarkable activities (IC50 0.23–2.60 µg/mL) were demonstrated for the extracts of H. giganteus, M. rufidulus, S. indica, and E. atoto against Colo 205 cells. The n-hexane extract of E. atoto, with an IC50 value of 0.24 ± 0.06 µg/mL (Colo 205), was subjected to multistep chromatographic separation, and 24-methylene-cycloartan-3β-ol, jolkinolide E, tetra-tert-butyl-diphenyl ether, α-tocopherol, and β-sitosterol were isolated. Full article
Show Figures

Figure 1

14 pages, 2481 KiB  
Article
Plant Growth-Promoting Endophytic Bacteria Isolated from Miscanthus giganteus and Their Antifungal Activity
by Petra Lovecká, Gabriela Kroneislová, Zuzana Novotná, Jana Röderová and Kateřina Demnerová
Microorganisms 2023, 11(11), 2710; https://doi.org/10.3390/microorganisms11112710 - 5 Nov 2023
Cited by 2 | Viewed by 3102
Abstract
Modern technologies can satisfy human needs only with the use of large quantities of fertilizers and pesticides that are harmful to the environment. For this reason, it is possible to develop new technologies for sustainable agriculture. The process could be carried out by [...] Read more.
Modern technologies can satisfy human needs only with the use of large quantities of fertilizers and pesticides that are harmful to the environment. For this reason, it is possible to develop new technologies for sustainable agriculture. The process could be carried out by using endophytic microorganisms with a (possible) positive effect on plant vitality. Bacterial endophytes have been reported as plant growth promoters in several kinds of plants under normal and stressful conditions. In this study, isolates of bacterial endophytes from the roots and leaves of Miscanthus giganteus plants were tested for the presence of plant growth-promoting properties and their ability to inhibit pathogens of fungal origin. Selected bacterial isolates were able to solubilize inorganic phosphorus, fix nitrogen, and produce phytohormones, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and siderophore. Leaf bacterial isolate Pantoea ananat is 50 OL 2 had high production of siderophores (zone ≥ 5 mm), and limited phytohormone production, and was the only one to show ACC deaminase activity. The root bacterial isolate of Pseudomonas libanensis 5 OK 7A showed the best results in phytohormone production (N6-(Δ2-isopentenyl)adenine and indole-3-acetic acid, 11.7 and 12.6 ng·mL−1, respectively). Four fungal cultures—Fusarium sporotrichioides DBM 4330, Sclerotinia sclerotiorum SS-1, Botrytis cinerea DS 90 and Sphaerodes fimicola DS 93—were used to test the antifungal activity of selected bacterial isolates. These fungal cultures represent pathogenic families, especially for crops. All selected root endophyte isolates inhibited the pathogenic growth of all tested fungi with inhibition percentages ranging from 30 to 60%. Antifungal activity was also tested in two forms of immobilization of selected bacterial isolates: one in agar and the other on dextrin-coated cellulose carriers. These results demonstrated that the endophytic Pseudomonas sp. could be used as biofertilizers for crops. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fungi)
Show Figures

Figure 1

13 pages, 979 KiB  
Article
Leaf Area Duration and Crop Radiation Use Efficiency Determine Biomass Yield of Lignocellulosic Perennial Grasses under Different Soil Water Content
by Sebastiano Andrea Corinzia, Elena Crapio, Giorgio Testa, Salvatore L. Cosentino, Cristina Patanè and Danilo Scordia
Agronomy 2023, 13(9), 2270; https://doi.org/10.3390/agronomy13092270 - 29 Aug 2023
Cited by 2 | Viewed by 2703
Abstract
The aim of the present work was to assess the leaf area duration (LAD) and the radiation use efficiency (RUE) of six warm-season perennial biomass grasses (PBGs) in a two-year field trial in the semiarid Mediterranean climate under different soil water availability. Two [...] Read more.
The aim of the present work was to assess the leaf area duration (LAD) and the radiation use efficiency (RUE) of six warm-season perennial biomass grasses (PBGs) in a two-year field trial in the semiarid Mediterranean climate under different soil water availability. Two ecotypes of giant reed (Arundo donax L., ARCT and ARMO), one ecotype of African fodder cane (Saccharum spontaneum L. subsp. aegyptiacum (Willd.) Hack., SAC) and three hybrids of Miscanthus (the commercial M. × giganteus J.M. Greef, Deuter ex Hodk., Renvoize, M × G, and two new seed-based hybrids, GNT9 and GNT10) were compared under three levels of soil water availability: rainfed, 50% and 100% of maximum crop evapotranspiration (ETm) restoration. The determination of RUE of perennial plants is controversial and has led to contrasting results in past studies. In the present work, LAD and RUE differed among crops and irrigation regimes, being positively affected by supplemental water inputs. SAC, ARCT and ARMO showed both high LAD and RUE, which determined the high biomass yield than both the commercial M × G and the improved Miscanthus hybrids GNT9 and GNT10. RUE was particularly high and less affected by soil water availability during the mid-season, while the effect of irrigation and the differences among the genotypes were larger during the late season. Adequate biomass yield can be achieved by sub-optimal soil water availability, thus reducing the water footprint and increasing the sustainability of these biomass perennial grasses selected for the Mediterranean climate. Full article
(This article belongs to the Special Issue Agricultural Biomass for Bioenergy and Bioproducts)
Show Figures

Figure 1

16 pages, 1989 KiB  
Article
Can Nematode Communities Work as an Indicator of Soil Health in a Multiyear Miscanthus × Giganteus Plantation Growing in Lead-Contaminated Soil?
by Tatyana Stefanovska, Andrzej Skwiercz, Valentina Pidlisnyuk, Oleksandr Zhukov and Pavlo Shapoval
Agronomy 2023, 13(6), 1620; https://doi.org/10.3390/agronomy13061620 - 16 Jun 2023
Cited by 5 | Viewed by 2518
Abstract
Analysis of the nematode community has been considered a key indicator of soil health. In this study, the assessment of nematodes was performed two times during the third growing season in soil contaminated by chemical elements where Miscanthus × giganteus was cultivated in [...] Read more.
Analysis of the nematode community has been considered a key indicator of soil health. In this study, the assessment of nematodes was performed two times during the third growing season in soil contaminated by chemical elements where Miscanthus × giganteus was cultivated in the years 2019–2022. A morphological approach was used to identify the nematode communities that showed sensitivity to the level of soil contamination. In contrast, the value of M × g dry biomass was a more conservative indicator and displayed only a small yield, which decreased (3.6%) at the highest level of soil contamination by lead to 290.5 ± 75.4 µg/g. Principal component analysis revealed four trends associated with the coherent variability of contamination in soil and various organs of M × g. The variability of elements was reflected by the first three principal components and did not affect the nematode community. The variability of lead concentration was associated with principal component 4, which was the largest driver of changes in the nematode community. The trophic structure of the nematode communities was the most sensitive to soil contamination by lead. A decrease in the Structural Index was the general indicator in the transformation of the nematode community structure due to increasing levels of soil contamination. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

Back to TopTop