Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Lorentz gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3490 KiB  
Article
Energy-Efficient CO2 Conversion for Carbon Utilization Using a Gliding Arc/Glow Discharge with Magnetic Field Acceleration—Optimization and Characterization
by Svetlana Lazarova, Snejana Iordanova, Stanimir Kolev, Veselin Vasilev and Tsvetelina Paunska
Energies 2025, 18(14), 3816; https://doi.org/10.3390/en18143816 - 17 Jul 2025
Viewed by 316
Abstract
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is [...] Read more.
The dry conversion of CO2 into CO and O2 provides an attractive path for CO2 utilization which allows for the use of the CO produced for the synthesis of valuable hydrocarbons. In the following work, the CO2 conversion is driven by an arc discharge at atmospheric pressure, producing hot plasma. This study presents a series of experiments aiming to optimize the process. The results obtained include the energy efficiency and the conversion rate of the process, as well as the electrical parameters of the discharge (current and voltage signals). In addition, optical emission spectroscopy diagnostics based on an analysis of C2’s Swan bands are used to determine the gas temperature in the discharge. The data is analyzed according to several aspects—an analysis of the arc’s motion based on the electrical signals; an analysis of the effect of the gas flow and the discharge current on the discharge performance for CO2 conversion; and an analysis of the vibrational and rotational temperatures of the arc channel. The results show significant improvements over previous studies. Relatively high gas conversion and energy efficiency are achieved due to the arc acceleration caused by the Lorentz force. The rotational (gas) temperatures are in the order of 5500–6000 K. Full article
Show Figures

Figure 1

18 pages, 22450 KiB  
Article
A Mechanism of Argon Arc Remelting of LPBF 18Ni300 Steel Surfaces
by Xiaoping Zeng, Yehui Sun, Hong Zhang, Zhi Jia and Quan Kang
Coatings 2025, 15(4), 481; https://doi.org/10.3390/coatings15040481 - 18 Apr 2025
Cited by 1 | Viewed by 461
Abstract
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the [...] Read more.
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the surface layer was characterized using SEM, EDS, XRD, EBSD, and hardness testing. The results showed the following: When the pulse current I increased from 16 A to 20 A, the surface hardness of LPBF 18Ni300 increased due to a decrease in defects and an increase in the martensite phase. The driving forces of convection in the molten pool (such as buoyancy, Lorentz magnetic force, surface tension, and plasma flow force) rose with an increase in current. When the current I exceeded 20 A, the convection became more intense, making it easier for gas to be entrained into the melt pool, forming pores and introducing new defects, resulting in a decrease in surface hardness. The primary factors affecting the hardness of LPBF 18Ni300 after surface argon arc remelting were pore (defect) weakening and phase transformation strengthening, while the secondary factors included grain refinement strengthening and texture strengthening. The solidification mode of the remelted layer was: L → A → M + A′. The phase transition mode of the heat-affected zone was: M + A′ → Areverse → Mtemper. Compared with the base material and heat-affected zone, the grains in the remelted layer formed a stronger <001> texture with a larger average size (2.51 μm) and a lower misorientation angle. The content of the residual austenite A′ was relatively high in the remelted layer. It was distributed in the form of strips along grain boundaries, and it always maintained a shear–coherent relationship with martensite. Full article
Show Figures

Figure 1

15 pages, 328 KiB  
Article
Semi-Quenched Invariance Principle for the Random Lorentz Gas: Beyond the Boltzmann–Grad Limit
by Bálint Tóth
Entropy 2025, 27(4), 397; https://doi.org/10.3390/e27040397 - 8 Apr 2025
Viewed by 329
Abstract
By synchronously coupling multiple Lorentz trajectories exploring the same environment consisting of randomly placed scatterers in R3, we upgrade the annealed invariance principle proved in [Lutsko, Tóth (2020)] to the quenched setting (that is, valid for almost all realizations of the [...] Read more.
By synchronously coupling multiple Lorentz trajectories exploring the same environment consisting of randomly placed scatterers in R3, we upgrade the annealed invariance principle proved in [Lutsko, Tóth (2020)] to the quenched setting (that is, valid for almost all realizations of the environment) along sufficiently fast extractor sequences. Full article
(This article belongs to the Special Issue The Random Walk Path of Pál Révész in Probability)
20 pages, 5610 KiB  
Article
Calibration of Short-Wave Infrared Spectrometer for Atmosphere Methane Monitoring
by Haoran Li, Fuqi Si, Liang Xi, Fang Lin, Yu Jiang, Fenglei Liu, Yi Zeng, Yunkun Han and Kaili Wu
Remote Sens. 2025, 17(5), 851; https://doi.org/10.3390/rs17050851 - 28 Feb 2025
Viewed by 762
Abstract
The short-wave infrared (SWIR) grating imaging spectrometer based on indium gallium arsenide (InGaAs) material inverts the atmospheric methane concentration by measuring the scattered light signals in the sky. This study proposes spectral and radiometric calibration methods for the characteristics of the spectrometer, such [...] Read more.
The short-wave infrared (SWIR) grating imaging spectrometer based on indium gallium arsenide (InGaAs) material inverts the atmospheric methane concentration by measuring the scattered light signals in the sky. This study proposes spectral and radiometric calibration methods for the characteristics of the spectrometer, such as the small-area array, high signal-to-noise ratio, and high spectral resolution. Four spectral response function models, namely, the Gauss, Lorentz, Voigt and super-Gaussian models, were compared during spectral calibration. With a fitting residual of 0.032, the Gauss model was found to be the most suitable spectral response function for the spectrometer. Based on the spectral response function, the spectral range and spectral resolution of the spectrometer were determined to be 1592.4–1677.2 and 0.1867 nm, respectively. In addition, radiometric calibration of the spectrometer was achieved by combining an integrating sphere and linear measuring instrument. Moreover, absolute and relative radiometric calibrations of the spectrometer were performed. The low signal response problem caused by the quantum efficiency of the detector at long wavelength was corrected, and the uncertainty and non-stability uncertainty of absolute radiometric calibration were calculated to be less than 0.2%. Finally, the calibrated spectrometer was used to accurately measure the solar scattering spectrum in the SWIR band, and the solar spectrum was simulated by the radiative transfer model for verification; the measurement error was found to be 5%. Concurrently, a methane sample gas experiment was performed using the integrating-sphere light source, and the measurement error was less than 4%. This fully proves the effectiveness of the spectral and radiometric calibrations of the SWIR spectrometer and strongly guarantees a subsequent, rapid and accurate inversion of atmospheric methane concentration. Full article
Show Figures

Figure 1

10 pages, 2356 KiB  
Article
Electron Magnetic Resonance Study of Ni50.2Mn28.3Ga21.5 Powders
by Łukasz Dubiel, Bogumił Cieniek, Wojciech Maziarz and Ireneusz Stefaniuk
Materials 2024, 17(17), 4391; https://doi.org/10.3390/ma17174391 - 5 Sep 2024
Viewed by 756
Abstract
In the present paper, we present an electron magnetic resonance (EMR) study of Ni50.2Mn28.3Ga21.5 powders obtained from melt-spun ribbons in the milling process. We registered EMR spectra in various temperatures at the X-band. In the EMR spectra recorded [...] Read more.
In the present paper, we present an electron magnetic resonance (EMR) study of Ni50.2Mn28.3Ga21.5 powders obtained from melt-spun ribbons in the milling process. We registered EMR spectra in various temperatures at the X-band. In the EMR spectra recorded for the samples taken at the beginning of the milling process, the “training effect” was observed. After 2 h of milling, this phenomenon was no longer observed. To determine the basic EMR parameters, such as linewidth, resonance field, and asymmetry parameters, the experimental data were fitted using a single metallic Lorentz line. In high-temperature regions, we observed the influence of dispersion on the shape of the spectra, but as the temperature decreased, the asymmetry of line was reduced. The shift in the resonance field value at high temperatures and the temperature dependence of the linewidth below Curie temperature indicate that the investigated samples exhibited a characteristics of a spin-glass alloy. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 6067 KiB  
Article
TCAD Modelling of Magnetic Hall Effect Sensors
by Vartika Pandey, Vlad Marsic, Petar Igic and Soroush Faramehr
Inventions 2024, 9(4), 72; https://doi.org/10.3390/inventions9040072 - 10 Jul 2024
Cited by 2 | Viewed by 2507
Abstract
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. [...] Read more.
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts. Full article
(This article belongs to the Special Issue Novel Magnetic Materials and Magnetism in Spintronics)
Show Figures

Figure 1

13 pages, 4474 KiB  
Article
Effect of Electrode–Normal Magnetic Field on the Motion of Hydrogen Bubbles
by Yen-Ju Chen, Yan-Hom Li and Ching-Yao Chen
Magnetochemistry 2023, 9(12), 233; https://doi.org/10.3390/magnetochemistry9120233 - 18 Dec 2023
Cited by 2 | Viewed by 3078
Abstract
In comparison to alternative methods for hydrogen production, water electrolysis stands out as the optimal means for obtaining ultra-pure hydrogen. However, its widespread adoption is significantly hampered by its low energy efficiency. It has been established that the introduction of an external magnetic [...] Read more.
In comparison to alternative methods for hydrogen production, water electrolysis stands out as the optimal means for obtaining ultra-pure hydrogen. However, its widespread adoption is significantly hampered by its low energy efficiency. It has been established that the introduction of an external magnetic field can mitigate energy consumption, consequently enhancing electrolysis efficiency. While much of the research has revealed that an electrode–parallel magnetic field plays a crucial role in enhancing the bubble detachment process, there has been limited exploration of the effect of electrode–normal magnetic fields. In this work, we compare the water electrolysis efficiency of a circular electrode subjected to electrode–normal magnetic field resulting in a magnet edge effect and electrode edge effect by varying the sizes of the magnet and electrode. The findings indicate that a rotational flow caused by the Lorentz force facilitates the detachment of the hydrogen from the electrode surface. However, the rotation direction of hydrogen gas bubbles generated by the magnet edge effect is opposite to that of electrode edge effect. Furthermore, the magnet edge effect has more significant influence on the hydrogen bubbles’ locomotion than the electrode edge effect. With an electrode gap of 30 mm, employing the magnet edge effect generated by a single magnet leads to an average of 4.9% increase in current density. On the other hand, the multiple magnet effects created by multiple small magnets under the electrode can further result in an average 6.6% increase in current density. Nevertheless, at an electrode spacing of 50 mm, neither the magnet edge effect nor the electrode edge effect demonstrates a notable enhancement in conductivity. In reality, the electrode edge effect even leads to a reduction in conductivity. Full article
(This article belongs to the Special Issue Advances in Electrochemical Properties of Magnetic Materials)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Optical Absorption, Photocarrier Recombination Dynamics and Terahertz Dielectric Properties of Electron-Irradiated GaSe Crystals
by Svetlana A. Bereznaya, Ruslan A. Redkin, Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su and Sergey Yu. Sarkisov
Crystals 2023, 13(11), 1562; https://doi.org/10.3390/cryst13111562 - 1 Nov 2023
Cited by 2 | Viewed by 2028
Abstract
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands [...] Read more.
Optical absorption spectra of 9 MeV electron-irradiated GaSe crystals were studied. Two absorption bands with the low-photon-energy threshold at 1.35 and 1.73 eV (T = 300 K) appeared in the transparency region of GaSe after the high-energy-electron irradiation. The observed absorption bands were attributed to the defect states induced by Ga vacancies in two charge states, having the energy positions at 0.23 and 0.61 eV above the valence band maximum at T = 300 K. The optical pump-terahertz probe technique (OPTP) was employed to study the dark and photoexcited terahertz conductivity and charge carrier recombination dynamics at two-photon excitation of as-grown and 9 MeV electron-irradiated GaSe crystals. The measured values of the differential terahertz transmission at a specified photoexcitation condition were used to extract the terahertz charge carrier mobilities. The determined terahertz charge carrier mobility values were ~46 cm2/V·s and ~14 cm2/V·s for as-grown and heavily electron-irradiated GaSe crystals, respectively. These are quite close to the values determined from the Lorentz–Drude–Smith fitting of the measured dielectric constant spectra. The photo-injection-level-dependent charge carrier lifetimes were determined from the measured OPTP data, bearing in mind the model injection-level dependencies of the recombination rates governed by interband and trap-assisted Auger recombination, bulk and surface Shockley–Read–Hall (SRH) recombination and interband radiative transitions in the limit of a high injection level. It was found that GaSe possesses a long charge carrier lifetime (a~1.9 × 10−6 ps−1, b~2.7 × 10−21 cm3ps−1 and c~1.3 × 10−37 cm6ps−1), i.e., τ~0.53 μs in the limit of a relatively low injection, when the contribution from SRH recombination is dominant. The electron irradiation of as-grown GaSe crystals reduced the charge carrier lifetime at a high injection level due to Auger recombination through radiation-induced defects. It was found that the terahertz spectra of the dielectric constants of as-grown and electron-irradiated GaSe crystals can be fitted with acceptable accuracy using the Lorentz model with the Drude–Smith term accounting for the free-carrier conductivity. Full article
(This article belongs to the Special Issue Advances of Nonlinear Optical Materials)
Show Figures

Figure 1

21 pages, 3357 KiB  
Article
Phonon Characteristics of Gas-Source Molecular Beam Epitaxy-Grown InAs1−xNx/InP (001) with Identification of Si, Mg and C Impurities in InAs and InN
by Devki N. Talwar, Tzuen-Rong Yang and Hao-Hsiung Lin
Crystals 2023, 13(10), 1508; https://doi.org/10.3390/cryst13101508 - 17 Oct 2023
Viewed by 2672
Abstract
The lattice dynamical properties of dilute InAs1−xNx/InP (001) epilayers (0 ≤ x ≤ 0.03) grown by gas-source molecular beam epitaxy were carefully studied experimentally and theoretically. A high-resolution Brüker IFS 120 v/S spectrometer was employed to measure the room-temperature [...] Read more.
The lattice dynamical properties of dilute InAs1−xNx/InP (001) epilayers (0 ≤ x ≤ 0.03) grown by gas-source molecular beam epitaxy were carefully studied experimentally and theoretically. A high-resolution Brüker IFS 120 v/S spectrometer was employed to measure the room-temperature infrared reflectivity (IRR) spectra at near-normal incidence (θi = 0). The results in the frequency range of 180–500 cm−1 revealed accurate values of the characteristic In-As-like and In-N-like vibrational modes. For InAs1−xNx alloys, a classical “Drude–Lorentz” model was constructed to obtain the dielectric functions ε~ω in the far IR regions by incorporating InAs-like and InN-like transverse optical ωTO modes. Longitudinal optical ωLO phonons were achieved from the imaginary parts of the simulated dielectric loss functions. The theoretical results of IRR spectra for InAs1−xNx/InP (001) epilayers using a multi-layer optics methodology provided a very good agreement with the experimental data. At oblique incidence (θi ≠ 0), our study of s- and p-polarized reflectance (Rs,p(ω)) and transmission (Ts,p(ω)) spectra allowed the simultaneous perception of the ωTO and ωLO phonons of the InAs, InN and InAs0.97N0.03 layers. Based on the average t-matrix Green’s function theory, the results of local vibrational modes for light SiIn+ donors and SiAs, CAs acceptors in InAs were found in good agreement with the existing Raman scattering and infrared spectroscopy data. InInN, however, the method predicted an in-band mode for the MgIn acceptor while projecting an impurity mode of the SiIn+ donor to appear just above the maximum ωmaxInN[595 cm1] phonon frequency region. In InAs1−xNx/InP (001) epifilms, the comparison of reflectivity/transmission spectra with experiments and the predictions of impurity modes for isoelectronic donor and acceptor impurities in InAs and InN can be valuable for appraising the role of defects in other technologically important semiconductors. Full article
(This article belongs to the Special Issue Group-III Nitride Quantum Wells)
Show Figures

Figure 1

23 pages, 16196 KiB  
Article
Nonlocal Hydrodynamic Model with Viscosive Damping and Generalized Drude–Lorentz Term
by Milan Burda and Ivan Richter
Photonics 2023, 10(8), 913; https://doi.org/10.3390/photonics10080913 - 9 Aug 2023
Cited by 1 | Viewed by 1672
Abstract
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the [...] Read more.
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the dimensions of the nanostructures decrease, the classical local theory gradually becomes inadequate. Therefore, Maxwell’s equations need to be supplemented with a relationship determining the dynamics of current density which is the essence of nonlocal plasmonic models. In this field of physics, the standard (linearized) hydrodynamic model (HDM) has been widely adopted with great success, serving as the basis for a variety of simulation methods. However, ongoing efforts are also being made to expand and refine it. Recently, the GNOR (general nonlocal optical response) modification of the HDM has been used, with the intention of incorporating the influence of electron gas diffusion. Clearly, from the classical description of fluid dynamics, a close relationship between viscosive damping and diffusion arises. This offers a relevant motivation for introducing the GNOR modification in an alternative manner. The standard HDM and its existing GNOR modification also do not include the influence of interband electron transitions in the conduction band and other phenomena that are part of many refining modifications of the Drude–Lorentz and other models of metal permittivity. In this article, we present a modified version of GNOR-HDM that incorporates the viscosive damping of the electron gas and a generalized Drude–Lorentz term. In the selected simulations, we also introduce Landau damping, which corrects the magnitude of the standard damping constant of the electron gas based on the size of the nanoparticle. We have chosen a spherical particle as a suitable object for testing and comparing HD models and their modifications because it allows the calculation of precise analytical solutions for the interactions and, simultaneously, it is a relatively easily fabricated nanostructure in practice. Our contribution also includes our own analytical method for solving the HDM interaction of a plane wave with a spherical particle. This method forms the core of calculations of the characteristic quantities, such as the extinction cross-sections and the corresponding components of electric fields and current densities. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

8 pages, 1782 KiB  
Brief Report
Ultra-Short Lifetime of Intersubband Electrons in Resonance to GaN-Based LO-Phonons at 92 meV
by Daniel Hofstetter, Hans Beck and David P. Bour
Photonics 2023, 10(8), 909; https://doi.org/10.3390/photonics10080909 - 7 Aug 2023
Cited by 1 | Viewed by 1236
Abstract
In this study, we report on the ultra-short lifetime of excited intersubband electrons in a 38 Å wide AlGaN/GaN-based quantum well. The rapid decay of these charge carriers occurs due to a resonance between the relevant intersubband transition energy and the size of [...] Read more.
In this study, we report on the ultra-short lifetime of excited intersubband electrons in a 38 Å wide AlGaN/GaN-based quantum well. The rapid decay of these charge carriers occurs due to a resonance between the relevant intersubband transition energy and the size of the GaN-based LO-phonon at 92 meV. Based on the experimentally observed Lorentz-shaped intersubband emission peak with a spectral width of roughly 6 meV (48 cm−1) respecting the Fourier transform limit, a very short lifetime, namely 111 fs, could be calculated. By comparing this lifetime to the existing literature data, our value confirms the potential high-speed capability of III-nitride-based optoelectronics. Full article
(This article belongs to the Special Issue III-V Semiconductors Optoelectronic Materials and Devices)
Show Figures

Graphical abstract

21 pages, 11978 KiB  
Article
Optical Properties of Reactive RF Magnetron Sputtered Polycrystalline Cu3N Thin Films Determined by UV/Visible/NIR Spectroscopic Ellipsometry: An Eco-Friendly Solar Light Absorber
by E. Márquez, E. Blanco, M. García-Gurrea, M. Cintado Puerta, M. Domínguez de la Vega, M. Ballester, J. M. Mánuel, M. I. Rodríguez-Tapiador and S. M. Fernández
Coatings 2023, 13(7), 1148; https://doi.org/10.3390/coatings13071148 - 25 Jun 2023
Cited by 8 | Viewed by 2701
Abstract
Copper nitride (Cu3N), a metastable poly-crystalline semiconductor material with reasonably high stability at room temperature, is receiving much attention as a very promising next-generation, earth-abundant, thin film solar light absorber. Its non-toxicity, on the other hand, makes it [...] Read more.
Copper nitride (Cu3N), a metastable poly-crystalline semiconductor material with reasonably high stability at room temperature, is receiving much attention as a very promising next-generation, earth-abundant, thin film solar light absorber. Its non-toxicity, on the other hand, makes it a very attractive eco-friendly (greener from an environmental standpoint) semiconducting material. In the present investigation, Cu3N thin films were successfully grown by employing reactive radio-frequency magnetron sputtering at room temperature with an RF-power of 50 W, total working gas pressure of 0.5Pa, and partial nitrogen pressures of 0.8 and 1.0, respectively, onto glass substrates. We investigated how argon affected the optical properties of the thin films of Cu3N, with the aim of achieving a low-cost solar light absorber material with the essential characteristics that are needed to replace the more common silicon that is currently in present solar cells. Variable angle spectroscopic ellipsometry measurements were taken at three different angles, 50, 60, and 70, to determine the two ellipsometric parameters psi, ψ, and delta, Δ. The bulk planar Cu3N layer was characterized by a one-dimensional graded index model together with the combination of a Tauc–Lorentz oscillator, while a Bruggeman effective medium approximation model with a 50% air void was adopted in order to account for the existing surface roughness layer. In addition, the optical properties, such as the energy band gap, refractive index, extinction coefficient, and absorption coefficient, were all accurately found to highlight the true potential of this particular material as a solar light absorber within a photovoltaic device. The direct and indirect band gap energies were precisely computed, and it was found that they fell within the useful energy ranges of 2.142.25 eV and 1.451.71 eV, respectively. The atomic structure, morphology, and chemical composition of the Cu3N thin films were analyzed using X-ray diffraction, atomic force microscopy, and energy-dispersive X-ray spectroscopy, respectively. The Cu3N thin layer thickness, profile texture, and surface topography of the Cu3N material were characterized using scanning electron microscopy. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

13 pages, 1736 KiB  
Article
Diagnosing Time-Varying Harmonics in Low-k Oxide Thin Film (SiOF) Deposition by Using HDP CVD
by Yonggyun Park, Pengzhan Liu, Seunghwan Lee, Jinill Cho, Eric Joo, Hyeong-U Kim and Taesung Kim
Sensors 2023, 23(12), 5563; https://doi.org/10.3390/s23125563 - 14 Jun 2023
Viewed by 2858
Abstract
This study identified time-varying harmonic characteristics in a high-density plasma (HDP) chemical vapor deposition (CVD) chamber by depositing low-k oxide (SiOF). The characteristics of harmonics are caused by the nonlinear Lorentz force and the nonlinear nature of the sheath. In this study, a [...] Read more.
This study identified time-varying harmonic characteristics in a high-density plasma (HDP) chemical vapor deposition (CVD) chamber by depositing low-k oxide (SiOF). The characteristics of harmonics are caused by the nonlinear Lorentz force and the nonlinear nature of the sheath. In this study, a noninvasive directional coupler was used to collect harmonic power in the forward and reverse directions, which were low frequency (LF) and high bias radio frequency (RF). The intensity of the 2nd and 3rd harmonics responded to the LF power, pressure, and gas flow rate introduced for plasma generation. Meanwhile, the intensity of the 6th harmonic responded to the oxygen fraction in the transition step. The intensity of the 7th (forward) and 10th (in reverse) harmonic of the bias RF power depended on the underlying layers (silicon rich oxide (SRO) and undoped silicate glass (USG)) and the deposition of the SiOF layer. In particular, the 10th (reverse) harmonic of the bias RF power was identified using electrodynamics in a double capacitor model of the plasma sheath and the deposited dielectric material. The plasma-induced electronic charging effect on the deposited film resulted in the time-varying characteristic of the 10th harmonic (in reverse) of the bias RF power. The wafer-to-wafer consistency and stability of the time-varying characteristic were investigated. The findings of this study can be applied to in situ diagnosis of SiOF thin film deposition and optimization of the deposition process. Full article
(This article belongs to the Special Issue Recent Innovations in Plasma Sensing and Diagnosis Technology)
Show Figures

Figure 1

12 pages, 4477 KiB  
Article
Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models
by Noor Taha Ismaeel, Zoltán Lábadi, Peter Petrik and Miklós Fried
Materials 2023, 16(12), 4204; https://doi.org/10.3390/ma16124204 - 6 Jun 2023
Cited by 3 | Viewed by 1985
Abstract
We determined the optimal composition of reactive magnetron-sputtered mixed layers of Titanium oxide and Tin oxide (TiO2-SnO2) for electrochromic purposes. We determined and mapped the composition and optical parameters using Spectroscopic Ellipsometry (SE). Ti and Sn targets were put [...] Read more.
We determined the optimal composition of reactive magnetron-sputtered mixed layers of Titanium oxide and Tin oxide (TiO2-SnO2) for electrochromic purposes. We determined and mapped the composition and optical parameters using Spectroscopic Ellipsometry (SE). Ti and Sn targets were put separately from each other, and the Si-wafers on a glass substrate (30 cm × 30 cm) were moved under the two separated targets (Ti and Sn) in a reactive Argon-Oxygen (Ar-O2) gas mixture. Different optical models, such as the Bruggeman Effective Medium Approximation (BEMA) or the 2-Tauc–Lorentz multiple oscillator model (2T–L), were used to obtain the thickness and composition maps of the sample. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS) has been used to check the SE results. The performance of diverse optical models has been compared. We show that in the case of molecular-level mixed layers, 2T–L is better than EMA. The electrochromic effectiveness (the change of light absorption for the same electric charge) of mixed metal oxides (TiO2-SnO2) that are deposited by reactive sputtering has been mapped too. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics)
Show Figures

Figure 1

10 pages, 3711 KiB  
Article
Transient THz Emission and Effective Mass Determination in Highly Resistive GaAs Crystals Excited by Femtosecond Optical Pulses
by Genyu Chen, Debamitra Chakraborty, Jing Cheng, Martin Mikulics, Ivan Komissarov, Roman Adam, Daniel E. Bürgler, Claus M. Schneider, Hilde Hardtdegen and Roman Sobolewski
Crystals 2022, 12(11), 1635; https://doi.org/10.3390/cryst12111635 - 14 Nov 2022
Cited by 6 | Viewed by 2909
Abstract
We present comprehensive studies on the emission of broadband, free-space THz transients from several highly resistive GaAs samples excited by femtosecond optical pulses. Our test samples are characterized by different degrees of disorder, ranging from nitrogen-implanted to semi-insulating and annealed semi-insulating GaAs crystals. [...] Read more.
We present comprehensive studies on the emission of broadband, free-space THz transients from several highly resistive GaAs samples excited by femtosecond optical pulses. Our test samples are characterized by different degrees of disorder, ranging from nitrogen-implanted to semi-insulating and annealed semi-insulating GaAs crystals. In our samples, we clearly observed transient THz emissions due to the optical rectification effect, as well as due to the presence of the surface depletion electrical field. Next, we arranged our experimental setup in such way that we could observe directly how the amplitude of surface-emitted THz optical pulses is affected by an applied, in-plane magnetic field. We ascribe this effect to the Lorentz force that additionally accelerates optically excited carriers. The magnetic-field factor η is a linear function of the applied magnetic field and is the largest for an annealed GaAs sample, while it is the lowest for an N-implanted GaAs annealed at the lowest (300 °C) temperature. The latter is directly related to the longest and shortest trapping times, respectively, measured using a femtosecond optical pump-probe spectroscopy technique. The linear dependence of the factor η on the trapping time enabled us to establish that, for all samples, regardless of their crystalline structure, the electron effective mass was equal to 0.059 of the electron mass m0, i.e., it was only about 6% smaller than the generally accepted 0.063m0 value for GaAs with a perfect crystalline structure. Full article
Show Figures

Figure 1

Back to TopTop