Phonon Characteristics of Gas-Source Molecular Beam Epitaxy-Grown InAs1−xNx/InP (001) with Identification of Si, Mg and C Impurities in InAs and InN
Abstract
:1. Introduction
2. Experimental Section
2.1. The Growth of zb InAs1−xNx/InP (001) Heterostructures
2.2. Reflectivity of InAs1−xNx/InP (001) Epifilms and Raman Spectra of InP Substrate
3. Theoretical Section
3.1. The Reflectivity Calculations of Binary and Ternary Alloys
3.2. Reflectivity and Transmission Spectra at Near-Normal Incidence in Thin Epifilms
3.3. Reflectivity and Transmission Spectra at Oblique Incidence: Berreman Effect
3.4. The
3.5. Lattice Dynamics of Perfect/Imperfect InAs and InN
4. Numerical Computations, Results and Discussion
4.1. Reflectivity Spectra
4.2. Reflectivity Spectra of InAs1−xNx Epifilms
4.3. Berreman Effect
4.3.1. InAs/InP (001)
4.3.2. InN/InP (001)
4.3.3. InAs0.97N0.03/InP (001)
4.4. Lattice Dynamics of InAs and InN
4.4.1. ATM-GF Study of Impurity Modes of Donors/Acceptors in InAs and InN
4.5. LVMs of Isolated Defects in InAs and zb InN
4.6. Longitudinal Optical–Plasmon Coupling Modes in n-Doped InN
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mawst, L.J.; Kim, H.; Smith, G.; Sun, W.; Transu, N. Strained-layer quantum well materials grown by MOVCD for diode laser applications. Prog. Quantum Electron. 2021, 75, 100303. [Google Scholar] [CrossRef]
- Grillot, F.; Duan, J.; Dong, B.; Huang, H. Un covering recent progress in nanostructured light-emitters for information and communication technologies. Light Sci. Appl. 2021, 10, 156. [Google Scholar] [CrossRef]
- Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; et al. Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater. Appl. 2020, 4, 29. [Google Scholar] [CrossRef]
- Peacock, A.C.; Sparks, J.R.; Healy, N. Semiconductor optical fibres: Progress and opportunities. Laser Photonics Rev. 2014, 8, 53–72. [Google Scholar] [CrossRef]
- Patanè, A.; Balkan, N. (Eds.) Semiconductor Research, Experimental Techniques; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2012; p. 150. [Google Scholar]
- Laidig, W.D.; Caldwell, P.J.; Lin, Y.F.; Peng, C.K. Strained-layer quantum-well injection laser. Appl. Phys. Lett. 1984, 44, 653–655. [Google Scholar] [CrossRef]
- Laidig, W.D.; Lin, Y.F.; Caldwell, P.J. Properties of InxGa1−xAs-GaAs strained-layer quantum-well-heterostructure injection lasers. J. Appl. Phys. 1985, 57, 33–38. [Google Scholar] [CrossRef]
- Moser, A.; Oosenbrug, A.; Latta, E.E.; Forster, T.; Gasser, M. High-power operation of strained InGaAs/AlGaAs single quantum well lasers. Appl. Phys. Lett. 1991, 59, 2642–2644. [Google Scholar] [CrossRef]
- York, P.K.; Beernink, K.J.; Fernandez, G.E.; Coleman, J.J. InGaAs-GaAs-AlGaAs strained-layer quantum well lasers by metal-organic chemical vapour deposition. Semicond. Sci. Technol. 1990, 5, 508–511. [Google Scholar] [CrossRef]
- Houle, F.A.; Neiman, D.L.; Tang, W.C.; Rosen, H.J. Chemical changes accompanying facet degradation of AlGaAs quantum well lasers. J. Appl. Phys. 1992, 72, 3884–3896. [Google Scholar] [CrossRef]
- de la Mare, M.; Zhuang, Q.; Patane, A.; Krier, A. Effects of substrate and N content on the growth of the mid-infrared dilute nitride InAsN alloy. J. Phys. D Appl. Phys. 2012, 45, 395103. [Google Scholar] [CrossRef]
- Wang, D.; Svensson, S.P.; Shterengas, L.; Belenky, G. Near band edge optical absorption and photoluminescence dynamics in bulk InAsN dilute-nitride materials. J. Cryst. Growth 2010, 312, 270–275. [Google Scholar] [CrossRef]
- Debbichi, M.; Fredj, A.B.; Cuminal, Y.; Lazzari, J.-L.; Ridene, S.; Bouchriha, H.; Saïd, M.; Christol, P. InAsN/GaSb/InAsN ‘W’ quantum well laser for mid-infrared emission: From electronic structure to threshold current density calculations. J. Phys. D Appl. Phys. 2008, 41, 215106. [Google Scholar] [CrossRef]
- Chalker, P.R.; Bullough, T.J.; Gass, M.; Thomas, S.; Joyce, T.B. The microstructural influence of nitrogen incorporation in dilute nitride semiconductors. J. Phys. Condens. Matter 2004, 16, S3161–S3170. [Google Scholar] [CrossRef]
- Pettinari, G.; Felici, M.; Biccari, F.; Capizzi, M.; Polimeni, A. Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities. Photonics 2018, 5, 10. [Google Scholar] [CrossRef]
- Welser, R.E.; Setzko, R.S.; Stevens, K.S.; Rehder, E.M.; Lutz, C.R.; Hill, D.S.; Zampardi, P.J. Minority carrier properties of carbon doped GaInAsN bipolar transistors. J. Phys. Condens. Matter 2004, 16, S3373–S3385. [Google Scholar] [CrossRef]
- Potter, R.J.; Balkan, N. Optical properties of GaNAs and GaInAsN quantum wells. J. Phys. Condens. Matter 2004, 16, S3387–S3412. [Google Scholar] [CrossRef]
- Taliercio, T.; Valvin, P.; Intartaglia, R.; Sallet, V.; Harmand, J.C.; Guillet, T.; Lefebvre, P.; Bretagnon, T.; Gil, B. Continuous wave and time resolved spectroscopy of InAsN/GaAsN based quantum dots. Phys. Stat. Sol. A 2005, 202, 2598–2603. [Google Scholar] [CrossRef]
- Filippone, F.; Mattioli, G.; Polimeni, A.; Felici, M.; Bonapasta, A. Opposite Hydrogen Behaviors in GaAsN and InAsN Alloys: Band Gap Opening versus Donor Doping. J. Phys. Chem. C 2020, 124, 19240–19251. [Google Scholar] [CrossRef]
- Oriaku, C.I.; Spencer, T.J.; Yang, X.; Zubelli, J.P.; Pereira, M.F. Analytical Expressions for the Luminescence of Dilute Quaternary InAs(N, Sb) Semiconductors. J. Nano Photonics 2017, 11, 026005. [Google Scholar] [CrossRef]
- Xie, Z.; Sui, Y.; Buckeridge, J.; Catlow, C.R.A.; Keal, T.W.; Sherwood, P.; Walsh, A.; Farrow, M.R.; Scanlon, D.O.; Woodley, S.M.; et al. Donor and acceptor characteristics of native point defects in GaN. J. Phys. D Appl. Phys. 2019, 52, 335104. [Google Scholar] [CrossRef]
- Bhusal, L.; Freundlich, A. GaAsN/InAsN superlattice based multijunction thermophotovoltaic devices. J. Appl. Phys. 2007, 102, 074907. [Google Scholar] [CrossRef]
- Gründl, T.; Böhm, G.; Meyer, R.; Amann, M.-C. GaInAsN growth studies for InP-based long-wavelength laser applications (TUA3-3). J. Cryst. Growth 2009, 311, 1719–1722. [Google Scholar] [CrossRef]
- Seravalli, L.; Sacconi, F. Reviewing quantum dots for single-photon emission at 1.55 µm: A quantitative comparison of materials. J. Phys. Mater. 2020, 3, 042005. [Google Scholar]
- Ougazzaden, A.; Bellego, Y.L.; Rao, E.V.K.; Juhel, M.; Leprince, L.; Patriarche, G. Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethyl hydrazine and tertiary butyl arsine. Appl. Phys. Lett. 1997, 70, 2861. [Google Scholar] [CrossRef]
- Gilet, P.; Paule, A.C.; Duvaut, P.; Grenouillet, L.; Holliger, P.; Million, A.; Rolland, G.; Vannuffel, C. Growth and Characterization of Thick GaAsN Epilayers and GaInNAs/GaAs Multi-quantum Wells. Phys. Stat. Sol. A 1999, 176, 279. [Google Scholar] [CrossRef]
- Ikeda, K.; Xiuxun, H.; Boussairi, B.; Ohshita, Y. GaAsN Grown by Chemical Beam Epitaxy for Solar Cell Application; Intech: London, UK, 2013; Volume 282. [Google Scholar] [CrossRef]
- Ściana, B.; Pucicki, D.; Radziewicz, D.; Serafińczuk, J.; Kozłowski, J.; Paszkiewicz, B.; Tłaczała, M.; Poloczek, P.; Sęk, G.; Misiewicz, J. APMOVPE growth and haracterization of undoped GaAsN/GaAs heterostructures. Vacuum 2008, 82, 377–382. [Google Scholar] [CrossRef]
- Ściana, B.; Zborowska-Lindert, I.; Pucicki, D.; Boratyński, B.; Radziewicz, D.; Tłaczała, M.; Serafińczuk, J.; Poloczek, P.; Sęk, G. Technology and characterization of GaAsN/GaAs heterostructures for photodetector applications. Opto Electron. Rev. 2008, 16, 1–7. [Google Scholar] [CrossRef]
- Ściana, B.; Dawidowski, W.; Radziewicz, D.; Jadczak, J.; López-Escalante, M.C.; González de la Cruz, V.; Gabás, M. Influence of As-N Interstitial Complexes on Strain Generated in GaAsN Epilayers Grown by AP-MOVPE. Energies 2022, 15, 3036. [Google Scholar] [CrossRef]
- Gao, Q.; Tan, H.H.; Jagadish, C.; Sun, B.Q.; Gal, M.; Ouyang, L.; Zou, J. Enhanced optical properties of the GaAsN/GaAs quantum-well structure by the insertion of InAs monolayers. Appl. Phys. Lett. 2004, 84, 2536. [Google Scholar] [CrossRef]
- Reentila, O.; Lankinen, A.; Mattila, M.; Saynatjoki, A.; Tuomi, T.O.; Lipsanen, H.; O’Reilly, L.; McNally, P.J. In-situ optical reflectance and synchrotron X-ray topography study of defects in epitaxial dilute GaAsN on GaAs. J. Mater. Sci. Mater. Electron. 2008, 19, 137–142. [Google Scholar] [CrossRef]
- Pulzara-Mora, A.; Cruz-Hernández, E.; Rojas-Ramirez, J.; Contreras-Guerrero, R.; Meléndez-Lira, M.; Falcony-Guajardo, C.; López-López, M.; Aguilar-Frutis, M.A.; Vidal, M.A. Characterization of optical and structural properties of GaAsN layers grown by Molecular Beam Epitaxy. Superf. Vacío. 2005, 18, 27–32. [Google Scholar]
- de la Mare, M.; Zhuang, Q.; Krier, A.; Patanè, A.; Dhar, S. Growth and characterization of InAsN/GaAs dilute nitride semiconductor alloys for the midinfrared spectral range. Appl. Phys. Lett. 2009, 95, 031110. [Google Scholar] [CrossRef]
- Wheatley, R.; Kesaria, M.; Mawst, L.J.; Kirch, J.D.; Kuech, T.F.; Marshall, A.; Zhuang, Q.D.; Krier, A. Extended wavelength mid-infrared photoluminescence from type-I InAsN and InGaAsN dilute nitride quantum wells grown on InP. Appl. Phys. Lett. 2015, 106, 232105. [Google Scholar] [CrossRef]
- Shono, T.; Mizuta, S.; Kawamura, Y. Optical properties of InAsSbN single quantum wells grown on InP substrates for 2-mm-wavelength region. J. Cryst. Growth 2013, 378, 69. [Google Scholar] [CrossRef]
- Inoue, N.; Kawamura, Y. Infrared defect dynamics—Nitrogen-vacancy complexes in float zone grown silicon introduced by electron irradiation. J. Appl. Phys. 2018, 123, 185701. [Google Scholar] [CrossRef]
- Kawamura, Y. InP-based InGaAsSbN quantum well laser diodes in the 2-μm wavelength region. Electron. Commun. Jpn. 2011, 94, 33. [Google Scholar] [CrossRef]
- Kawamura, Y.; Inoue, N. Electroluminescence of In0.53Ga0.47As0.99N0.01/GaAs0.5Sb0.5 Type-II Quantum Well Light-Emitting Diodes Grown on InP Substrates by Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 2007, 46, 3380–3381. [Google Scholar]
- Shih, D.-K.; Lin, H.-H.; Lin, Y.H. InAs0.97N0.03/InGaAs/InP multiple quantum-well lasers with emission wavelength λ = 2.38 µm. Electron. Lett. 2001, 37, 1342. [Google Scholar]
- Chen, G.R.; Lin, H.H.; Wang, J.S.; Shih, D.K. Optical properties of InAs1−xNx/In0.53Ga0.47 As single quantum wells grown by gas source molecular beam epitaxy. J. Electron. Mater. 2003, 32, 244. [Google Scholar] [CrossRef]
- Hang, D.R.; Shih, D.K.; Huang, C.F.; Hung, W.K.; Chang, Y.H.; Chen, Y.F.; Lin, H.H. Large effective mass enhancement of the InAs1−xNx alloys in the dilute limit probed by Shubnikov-de Haas oscillations. Physica E 2004, 22, 308–311. [Google Scholar] [CrossRef]
- Wang, J.S.; Lin, H.H. Growth and postgrowth rapid thermal annealing of InAsN/InGaAs single quantum well on InP grown by gas source molecular beam epitaxy. J. Vac. Sci. Technol. B 1999, 17, 1997. [Google Scholar] [CrossRef]
- Wang, S.Z.; Yoon, S.F.; Fan, W.J.; Liu, C.Y.; Yuan, S. Thermal excitation effects of photoluminescence of annealed quantum-well laser structures grown by plasma-assisted molecular-beam epitaxy. J. Vac. Sci. Technol. B 2005, 23, 1434. [Google Scholar] [CrossRef]
- Kawamura, Y.; Sahashi, T. 2.86 µm room-temperature light emission of InGaAsN/GaAsSb type-II quantum well diodes grown on InP substrates. Jpn. J. Appl. Phys. Part 1 2014, 53, 028004. [Google Scholar] [CrossRef]
- Kawamata, S.; Hibino, A.; Tanaka, S.; Kawamura, Y. Effective mass of two-dimensional electrons in InGaAsN/GaAsSb type II quantum well by Shubnikov-de Haas oscillations. J. Appl. Phys. 2016, 120, 142109. [Google Scholar] [CrossRef]
- Cabrera-Montealvo, J.J.; Espinosa-Vega, L.I.; Hernàndez-Gaytan, L.M.; Mercado-Ornelas, C.A.; Perea-Parrales, F.E.; Belio-Manzano, A.; Yee-Rendon, C.M.; Rodríguez, A.G.; Mèndez-García, V.H.; Cortes-Mestizo, I.E. Strain and annealing temperature effects on the optical properties of GaNAs layers grown by molecular beam epitaxy. Thin Solid Film. 2022, 748, 139147. [Google Scholar] [CrossRef]
- Zhang, Y.; Fluegel, B.; Hanna, M.C.; Geisz, J.F.; Wang, L.-W.; Mascarenhas, A. Effects of heavy nitrogen doping in III–V semiconductors—How well does the conventional wisdom hold for the dilute nitrogen “III–V-N alloys”? Phys. Stat. Sol. B 2003, 240, 396–403. [Google Scholar] [CrossRef]
- Lee, H.S.; Ng, S.S.; Yam, F.K. Sol–gel spin coating growth of magnesium-doped indium nitride thin films. Vacuum 2018, 155, 16–22. [Google Scholar] [CrossRef]
- Inushima, T.; Higashiwaki, M.; Matsui, T. Optical properties of Si-doped InN grown on sapphire (0001). Phys. Rev. B 2003, 68, 235204. [Google Scholar] [CrossRef]
- Cuscó, R.; Domènech-Amador, N.; Artús, L.; Gotschke, T.; Jeganathan, K.; Stoica, T.; Calarco, R. Probing the electron density in undoped, Si-doped, and Mg-doped InN nanowires by means of Raman scattering. Appl. Phys. Lett. 2010, 97, 221906. [Google Scholar] [CrossRef]
- Wang, J.B.; Li, Z.F.; Chen, P.; Lu, W.; Yao, T. Raman study of gap mode and lattice disorder effect in InN films prepared by plasma-assisted molecular beam epitaxy. Acta Mater. 2007, 55, 183–187. [Google Scholar] [CrossRef]
- Najmi, S.; Chen, X.K.; Yang, A.; Steger, M.; Thewalt, M.L.W.; Watkins, S.P. Local vibrational mode study of carbon doped InAs. Phys. Rev. B 2006, 74, 113202. [Google Scholar] [CrossRef]
- Uematsu, M. Raman scattering of Si localized vibrational modes in InAs. J. Appl. Phys. 1991, 69, 1781. [Google Scholar] [CrossRef]
- Ibáñez, J.; Oliva, R.; De la Mare, M.; Schmidbauer, M.; Hernández, S.; Pellegrino, P.; Scurr, D.J.; Cuscó, R.; Artús, L.; Shafi, M.; et al. Structural and optical properties of dilute InAsN grown by molecular beam epitaxy. J. Appl. Phys. 2010, 108, 103504. [Google Scholar] [CrossRef]
- Newman, R.C. Local vibrational mode spectroscopy of defects in III/V compounds. In Semiconductors and Semimetals; Weber, E., Ed.; Academic Press: New York, NY, USA, 1993; Volume 38, pp. 117–181. [Google Scholar]
- Stavola, M. Vibrational Spectroscopy of Light Element Impurities in Semiconductors. In Semiconductors and Semimetals; Stavola, M., Ed.; Academic Press: New York, NY, USA, 1999; Volume 51, pp. 153–224. [Google Scholar]
- Chen, Z.; Sui, J.; Wang, X.; Kim, K.; Wang, D.; Wang, P.; Wang, T.; Rong, X.; Harima, H.; Yoshikawa, A.; et al. Transition of dominant lattice sites of Mg in InN: Mg revealed by Raman scattering. Superlattices Microstruct. 2018, 120, 533–539. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Klochikhin, A.A.; Smirnov, M.B.; Smirnov, A.N.; Goncharuk, I.N.; Kurdyukov, D.A.; Lu, H.; Schaff, W.J.; Lee, H.M.; Lin, H.W.; et al. Experimental and theoretical studies of lattice dynamics of Mg-doped InN. Appl. Phys. Lett. 2007, 91, 111917. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Klochikhin, A.A.; Smirnov, M.B.; Kitaev, Y.E.; Smirnov, A.N.; Lundina, E.Y.; Lu, H.; Schaff, W.J.; Lee, H.M.; Lin, H.W.; et al. SIMS and Raman studies of Mg-doped InN. Phys. Status Solidi C 2008, 5, 1648–1651. [Google Scholar] [CrossRef]
- Wang, X.Q.; Che, S.B.; Ishitani, Y.; Yoshikawa, A. Experimental determination of strain-free Raman frequencies and deformation potentials for the E2(high) and A1(LO) modes in hexagonal InN. Appl. Phys. Lett. 2006, 89, 171907. [Google Scholar] [CrossRef]
- Wright, A.F. Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys. 2002, 92, 2575. [Google Scholar] [CrossRef]
- Ramos, L.E.; Furthmuller, J.; Leite, J.R.; Scolfaro, L.M.R.; Bechstedt, F. Carbon-based defects in GaN: Doping behavior. Phys. Status Solidi B 2002, 234, 864. [Google Scholar] [CrossRef]
- Eberlein, T.A.G.; Jones, R.; Oberg, S.; Briddon, P.R. Shallow acceptors in GaN. Appl. Phys. Lett. 2007, 91, 132105. [Google Scholar] [CrossRef]
- Duan, X.M.; Stampfl, C. Defect complexes and cluster doping of InN: First-principles investigations. Phys. Rev. B 2009, 79, 035207. [Google Scholar] [CrossRef]
- Bogusławski, P.; Bernholc, J. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys. Rev. B 1997, 56, 9496. [Google Scholar] [CrossRef]
- Fara, A.; Bernardini, F.; Fiorentini, V. Theoretical evidence for the semi-insulating character of AlN. J. Appl. Phys. 1999, 85, 2001. [Google Scholar] [CrossRef]
- Lyons, J.L.; Janotti, A.; Van de Walle, C.G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B 2014, 89, 035204. [Google Scholar] [CrossRef]
- Talwar, D.N.; Yang, T.-R.; Feng, Z.C.; Becla, P. Infrared reflectance and transmission spectra in II-VI alloys and superlattices. Phys. Rev. B 2011, 84, 174203. [Google Scholar] [CrossRef]
- Maradudin, A.A.; Montroll, E.W.; Weiss, G.H.; Ipatova, I.P. Solid State Physics, 2nd ed.; Seitz, F., Turnbull, D., Ehrenreich, H., Eds.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Elliott, R.J.; Krumhansl, J.A.; Leath, P.L. The theory and properties of randomly disordered crystals and related physical systems. Rev. Mod. Phys. 1974, 46, 465. [Google Scholar] [CrossRef]
- Kubo, R.J. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Phys. Soc. Jpn. 1957, 12, 570. [Google Scholar] [CrossRef]
- Talwar, D.N.; Feng, Z.C.; Lee, J.-F.; Becla, P. Structural and dynamical properties of Bridgman-grown CdSexTe1−x (0 < x ≤ 0.35) ternary alloys. Phys. Rev. B 2013, 87, 165208. [Google Scholar]
- Talwar, D.N.; Becla, P. Assessment of optical phonons in BeTe, BexZn1−xTe, p-BeTe epilayers, and BeTe/ZnTe/GaAs (001) superlattices. Appl. Phys. A 2022, 128, 702. [Google Scholar] [CrossRef]
- Talwar, D.N.; Becla, P. Interfacial strain-dependent localization of phonons in (CdS)m/(CdTe)n superlattices. Physica B 2023, 650, 414500. [Google Scholar] [CrossRef]
- Talwar, D.N. Dilute III-V Nitride Semiconductors and Material Systems: Physics and Technology; Erol, A., Ed.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 105, Chapter 9; p. 222. [Google Scholar]
- Kunc, K. Dynamique de réseau de composés ANB8−N présentant la structure de la blende. Ann. Phys. 1973, 8, 319. [Google Scholar] [CrossRef]
- Orlova, N.S. Variation of phonon dispersion curves with temperature in indium arsenide measured by X-ray thermal diffuse scattering. Phys. Stat. Solidi B 1981, 103, 115–121. [Google Scholar] [CrossRef]
- Bechstedt, F.; Grossner, U.; Furthmuller, J. Dynamics and polarization of group-III nitride lattices: A first-principles study. Phys. Rev. B 2000, 62, 8003. [Google Scholar] [CrossRef]
- Plumelle, P.; Vandevyver, M. Lattice Dynamics of ZnTe and CdTe. Phys. Stat. Sol. 1976, 73, 271. [Google Scholar] [CrossRef]
- Matthews, J.W.; Blakeslee, A.E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 1974, 27, 118. [Google Scholar] [CrossRef]
- Piro, O.E. Optical properties, reflectance, and transmittance of anisotropic absorbing crystal plates. Phys. Rev. B 1987, 36, 3427. [Google Scholar] [CrossRef] [PubMed]
- Berreman, D.W. Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys. Rev. 1963, 130, 2193. [Google Scholar] [CrossRef]
- Sciacca, M.D.; Mayur, A.J.; Oh, E.; Ramdas, A.K.; Rodriguez, S.; Furdyna, J.K.; Melloch, M.R.; Beetz, C.P.; Yoo, W.S. Infrared observation of transverse and longitudinal polar optical modes of semiconductor films: Normal and oblique incidence. Phys. Rev. B 1995, 51, 7744. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, J.; Tarhan, E.; Ramdas, A.K.; Hernandez, S.; Cusco, R.; Artus, L.; Melloch, M.R.; Hopkinson, M. Direct observation of LO phonon-plasmon coupled modes in the infrared transmission spectra of n-GaAs and n-InxGa1−xAs epilayers. Phys. Rev. B 2004, 69, 075314. [Google Scholar] [CrossRef]
- Ibanez, J.; Hernandez, S.; Alarcon Llado, E.; Cusco, R.; Artus, L.; Navikov, S.V.; Foxon, C.T.; Calleja, E. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy. J. Appl. Phys. 2008, 104, 033544. [Google Scholar] [CrossRef]
- Talwar, D.N. Direct evidence of LO phonon-plasmon coupled modes in n-GaN. Appl. Phys. Lett. 2010, 97, 051902. [Google Scholar] [CrossRef]
- Caries, R.; Saint-Cricq, N.; Renucci, J.B.; Renucci, M.A.; Zwick, A. Second-order Raman scattering in InAs. Phys. Rev. B 1980, 22, 4804. [Google Scholar]
- Harrison, W.A. Electronic Structure and the Properties of Solids; Freeman: San Francisco, CA, USA, 1980. [Google Scholar]
InAs1−xNx/InP | RF Plasma Power | Flow Rate of N2 | Nitrogen Composition |
---|---|---|---|
Sample | (W) | (sccm) | x |
Sa1 | 300 | 1.2 | 0.002 |
Sa2 | 480 | 1.8 | 0.020 |
Sa3 | 400 | 1.2 | 0.024 |
Sa4 | 480 | 1.2 | 0.030 |
Sample | Carrier | Mobility | Effective | Conductivity | |
---|---|---|---|---|---|
conc. η 1018 (cm−3) | μ (cm2/Vs) | Mass m*/me | σ (Ohm-cm)−1 | cm−1 | |
Sa1 | 1.91 | 1740.0 | 0.051 | 390.68 | 513 |
Sa2 | 2.80 | 1010.0 | 0.058 | 318.00 | 601 |
Sa3 | 3.24 | 713.73 | 0.088 | 416.70 | 540 |
Sa4 | 16.88 | 176.93 | 0.320 | 477.86 | 631 |
InAs1−xNx | InAs-Like Mode | InN-Like Mode | |||||||
---|---|---|---|---|---|---|---|---|---|
Sample | x | d | ε∞ | S1 | ωTO1 | Г1 | S2 | ωTO2 | Г2 |
μm | (cm−1) | (cm−1) | (cm−1) | (cm−1) | |||||
Sa1 | 0.002 | 2.465 | 12.76 | 4.02 | 218.66 | 7.88 | 0.02 | 438.10 | 5.46 |
Sa2 | 0.022 | 2.670 | 12.00 | 3.55 | 219.04 | 15.14 | 0.06 | 438.57 | 8.61 |
Sa3 | 0.024 | 2.460 | 11.32 | 3.11 | 220.09 | 12.66 | 0.11 | 439.03 | 13.05 |
Sa4 | 0.030 | 2.580 | 11.87 | 2.91 | 220.60 | 13.47 | 0.13 | 440.61 | 11.85 |
Model Parameter | InAs | zb InN |
---|---|---|
A | −0.3456 | −0.485 |
B | −0.25 | −0.230 |
C1 | −0.0075 | −0.0830 |
C2 | −0.0195 | −0.0231 |
D1 | −0.059 | −0.196 |
D2 | 0.0113 | 0.02243 |
E1 | 0.055 | −0.063 |
E2 | −0.053 | 0.0231 |
F1 | 0.0993 | 0.188 |
F2 | −0.077 | −0.044 |
Zeff | 0.756 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talwar, D.N.; Yang, T.-R.; Lin, H.-H. Phonon Characteristics of Gas-Source Molecular Beam Epitaxy-Grown InAs1−xNx/InP (001) with Identification of Si, Mg and C Impurities in InAs and InN. Crystals 2023, 13, 1508. https://doi.org/10.3390/cryst13101508
Talwar DN, Yang T-R, Lin H-H. Phonon Characteristics of Gas-Source Molecular Beam Epitaxy-Grown InAs1−xNx/InP (001) with Identification of Si, Mg and C Impurities in InAs and InN. Crystals. 2023; 13(10):1508. https://doi.org/10.3390/cryst13101508
Chicago/Turabian StyleTalwar, Devki N., Tzuen-Rong Yang, and Hao-Hsiung Lin. 2023. "Phonon Characteristics of Gas-Source Molecular Beam Epitaxy-Grown InAs1−xNx/InP (001) with Identification of Si, Mg and C Impurities in InAs and InN" Crystals 13, no. 10: 1508. https://doi.org/10.3390/cryst13101508
APA StyleTalwar, D. N., Yang, T.-R., & Lin, H.-H. (2023). Phonon Characteristics of Gas-Source Molecular Beam Epitaxy-Grown InAs1−xNx/InP (001) with Identification of Si, Mg and C Impurities in InAs and InN. Crystals, 13(10), 1508. https://doi.org/10.3390/cryst13101508