Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (241)

Search Parameters:
Keywords = Li-sulfur battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Viewed by 211
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

125 pages, 50190 KiB  
Review
Sulfurized Polyacrylonitrile for Rechargeable Batteries: A Comprehensive Review
by Mufeng Wei
Batteries 2025, 11(8), 290; https://doi.org/10.3390/batteries11080290 - 1 Aug 2025
Viewed by 211
Abstract
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. [...] Read more.
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. These include SPAN chemical structure, structural evolution during synthesis, redox reaction mechanism, synthetic conditions, cathode, electrolyte, binder, current collector, separator, anode, SPAN as additive, SPAN as anode, and high-energy SPAN cathodes. As this field continues to advance rapidly and garners significant interest, this review aims to provide researchers with a thorough and in-depth overview of the progress made over the past 23 years. Additionally, it highlights emerging trends and outlines future directions for SPAN research and its practical applications in energy storage technologies. Full article
Show Figures

Figure 1

20 pages, 6146 KiB  
Article
Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field
by Ruofeng Zhang, Jiyuan Guo, Lanqing Chen and Fengjie Tao
Materials 2025, 18(14), 3269; https://doi.org/10.3390/ma18143269 - 10 Jul 2025
Viewed by 406
Abstract
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped [...] Read more.
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped thgraphene as anchoring materials was investigated. The results reveal that pristine and doped substrates have an excellent structural stability, conductivity, and electrochemical activity. In the absence of an electric field, four substrates exhibit a strong anchoring effect on the Li2S cluster, where the adsorption energies fall within 3.10 to 4.48 eV. Even under the external electric field, all substrates exhibit notable structural stability during Li2S adsorption processes and maintain a high electrical conductivity, with adsorption energies exceeding 2.75 eV. Furthermore, it has been observed that the interfacial diffusion energy barriers for Li on all substrates are below 0.35 eV, which effectively enhances Li migration and facilitates reaction kinetics. Additionally, Li2S demonstrates a low decomposition energy barrier (varying from 0.84 to 1.55 eV) on pristine and doped substrates, enabling the efficient regeneration of the active material during the battery cycling. These findings offer a scientific guideline for the design of pristine and doped thgraphene as an excellent anchoring material for advanced lithium–sulfur batteries. Full article
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 284
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

33 pages, 13987 KiB  
Review
Insights into Carbon-Based Aerogels Toward High-Performance Lithium–Sulfur Batteries: A Review of Strategies for Sulfur Incorporation Within Carbon Aerogel Frameworks
by Yue Gao, Dun Liu, Yi Zhao, Dongdi Yang, Lugang Zhang, Fei Sun and Xiaoxiao Wang
Gels 2025, 11(7), 516; https://doi.org/10.3390/gels11070516 - 2 Jul 2025
Viewed by 616
Abstract
Lithium–sulfur batteries (LSBs), possessing excellent theoretical capacities, advanced theoretical energy densities, low cost, and nontoxicity, are one of the most promising energy storage battery systems. However, some issues, including poor conductivity of elemental S, the “shuttle effect” of high-order lithium polysulfides (LiPSs), and [...] Read more.
Lithium–sulfur batteries (LSBs), possessing excellent theoretical capacities, advanced theoretical energy densities, low cost, and nontoxicity, are one of the most promising energy storage battery systems. However, some issues, including poor conductivity of elemental S, the “shuttle effect” of high-order lithium polysulfides (LiPSs), and sluggish reaction kinetics, hinder the commercialization of LSBs. To solve these problems, various carbon-based aerogels with developed surface morphology, tunable pores, and electrical conductivity have been examined for immobilizing sulfur, mitigating its volume variation and enhancing its electrochemical kinetics. In this paper, an extensive generalization about the effective preparation methods of carbon-based aerogels comprising the combined method of carbonization with the gelation of precursors and drying processes (ambient pressure drying, freeze-drying, and supercritical drying) is proposed. And we summarize various carbon carbon-based aerogels, mainly including graphene aerogels (Gas) and carbon nanofiber (CNF) and carbon nanotube (CNT) aerogels as cathodes, separators, and interlayers in LSBs. In addition, the mechanism of action of carbon-based aerogels in LSBs is described. Finally, we conclude with an outlook section to provide some insights into the application of carbon-based aerogels in electrochemical energy storage devices. Based on the discussion and proposed recommendations, we provide more approaches on nanomaterials in high-performance liquid or state LSBs with high electrochemical performance in the future. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

16 pages, 4918 KiB  
Article
The Design of the Ni3N/Nb4N5 Heterostructure as Bifunctional Adsorption/Electrocatalytic Materials for Lithium–Sulfur Batteries
by Xialei Li, Wen Shang, Shan Zhang, Chun Xu, Jiabiao Lian and Guochun Li
Nanomaterials 2025, 15(13), 1015; https://doi.org/10.3390/nano15131015 - 1 Jul 2025
Viewed by 351
Abstract
Lithium–sulfur (Li-S) batteries are hindered by the sluggish electrochemical kinetics and poor reversibility of lithium polysulfides (LiPSs), which limits their practical energy density and cycle life. In order to address this issue, a novel Ni3N/Nb4N5 heterostructure was synthesized [...] Read more.
Lithium–sulfur (Li-S) batteries are hindered by the sluggish electrochemical kinetics and poor reversibility of lithium polysulfides (LiPSs), which limits their practical energy density and cycle life. In order to address this issue, a novel Ni3N/Nb4N5 heterostructure was synthesized via electrospinning and nitridation as a functional coating for polypropylene (PP) separators. Adsorption experiments were conducted in order to ascertain the heterostructure’s superior affinity for LiPSs, thereby effectively mitigating their shuttling. Studies of Li2S nucleation demonstrated the catalytic role of the substance in accelerating the deposition kinetics of Li2S. Consequently, Li-S cells that employed the Ni3N/Nb4N5-modified separator were found to achieve significantly enhanced electrochemical performance, with the cells delivering an initial discharge capacity of 1294.4 mAh g−1 at 0.2 C. The results demonstrate that, after 150 cycles, the cells retained a discharge capacity of 796.2 mAh g−1, corresponding to a low capacity decay rate of only 0.25% per cycle. In addition, the rate capability of the cells was found to be improved in comparison to control cells with NiNb2O6-modified or pristine separators. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

18 pages, 2275 KiB  
Article
In Situ Phase Separation Strategy to Construct Zinc Oxide Dots-Modified Vanadium Nitride Flower-like Heterojunctions as an Efficient Sulfur Nanoreactor for Lithium-Sulfur Batteries
by Ningning Chen, Wei Zhou, Minzhe Chen, Ke Yuan, Haofeng Zuo, Aocheng Wang, Dengke Zhao, Nan Wang and Ligui Li
Materials 2025, 18(11), 2639; https://doi.org/10.3390/ma18112639 - 4 Jun 2025
Viewed by 409
Abstract
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower [...] Read more.
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower structure with high specific surface area and pores improves active site exposure and electron/mass transfer. In situ phase separation enriches the Zn-QDs-VN interface, addressing the issues of uneven distribution and interface reduction of Zn-QDs-VN. Further theoretical computations reveal that ZnO-QDs-VN with optimized intermediate spin states can constitute a stable LiS* bond sequence, which can conspicuously facilitate the adsorption and conversion of LiPSs and reduce the battery reaction energy barrier. Therefore, the ZnO-QDs-VN@S cathode shows a high initial specific capacity of 1109.6 mAh g−1 at 1.0 C and long cycle stability (maintaining 984.2 mAh g−1 after 500 cycles). Under high S loading (8.5 mg cm−2) and lean electrolyte conditions (E/S = 6.5 μL mg−1), it also exhibits a high initial area capacity (10.26 mAh cm−2) at 0.2 C. The interfacial synergistic effect accelerates the adsorption and conversion of LiPSs and reduces the energy barriers in cell reactions. The study provides a new method for designing heterojunctions to achieve high-performance LSBs. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Graphical abstract

13 pages, 4213 KiB  
Article
Carbon Nanotubes-Doped Metal Oxides and Metal Sulfides Heterostructure Achieves 3D Morphology Deposition of Li2S and Stable Long-Cycle Lithium–Sulfur Batteries
by Yu-Lin Luo, Hai Huang, Cheng-Wei Zhu, Wen-Qi Lv, Ye Zeng, Gui-Fang Li, Xiao-Hong Fan, Ding-Rong Deng and Qi-Hui Wu
Inorganics 2025, 13(6), 181; https://doi.org/10.3390/inorganics13060181 - 1 Jun 2025
Viewed by 562
Abstract
The “shuttle effect” caused by the shuttling of soluble long-chain polysulfides between the anode and cathode electrodes has persistently hindered lithium–sulfur batteries (LSBs) from achieving stable and high-capacity performance. Numerous materials have been explored to mitigate the adverse effects of this phenomenon, among [...] Read more.
The “shuttle effect” caused by the shuttling of soluble long-chain polysulfides between the anode and cathode electrodes has persistently hindered lithium–sulfur batteries (LSBs) from achieving stable and high-capacity performance. Numerous materials have been explored to mitigate the adverse effects of this phenomenon, among which metal oxides and metal sulfides are regarded as promising solutions due to their strong adsorption capability toward lithium polysulfides (LiPSs). However, the poor electrical conductivity of the metal oxides and sulfides, coupled with their inherent morphological limitations, makes it challenging to sustainably suppress LiPS shuttling. In this study, we designed a heterostructured catalyst composed of a metal oxide–metal sulfide heterostructure integrated with carbon nanotubes (CNTs). This design addresses the low conductivity issue of metal oxides/sulfides while optimizing the material’s morphology, enabling persistent LiPSs adsorption. Furthermore, the composite successfully facilitates three-dimensional (3D) Li2S deposition. The assembled battery exhibits stable and high-capacity performance, delivering an initial discharge capacity of 622.45 mAh g−1 at 2C and retaining 569.5 mAh g−1 after 350 cycles, demonstrating exceptional cycling stability. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Graphical abstract

65 pages, 11913 KiB  
Review
MXenes and MXene-Based Composites: Preparation, Characteristics, Theoretical Investigations, and Application in Developing Sulfur Cathodes, Lithium Anodes, and Functional Separators for Lithium–Sulfur Batteries
by Narasimharao Kitchamsetti, Hyuksu Han and Sungwook Mhin
Batteries 2025, 11(6), 206; https://doi.org/10.3390/batteries11060206 - 23 May 2025
Viewed by 1427
Abstract
Lithium–sulfur batteries (LSBs) are favorable candidates for advanced energy storage, boasting a remarkable theoretical energy density of 2600 Wh kg−1. Moreover, several challenges hinder their practical implementation, including sulfur’s intrinsic electrical insulation, the shuttle effect of lithium polysulfides (LiPSs), sluggish redox [...] Read more.
Lithium–sulfur batteries (LSBs) are favorable candidates for advanced energy storage, boasting a remarkable theoretical energy density of 2600 Wh kg−1. Moreover, several challenges hinder their practical implementation, including sulfur’s intrinsic electrical insulation, the shuttle effect of lithium polysulfides (LiPSs), sluggish redox kinetics of Li2S2/Li2S, and the uncontrolled growth of Li dendrites. These issues pose significant obstacles to the commercialization of LSBs. A viable strategy to address these challenges involves using MXene materials, 2D transition metal carbides, and nitrides (TMCs/TMNs) as hosts, functional separators, or interlayers. MXenes offer exceptional electronic conductivity, adjustable structural properties, and abundant polar functional groups, enabling strong interactions with both S cathodes and Li anodes. Despite their advantages, current MXene synthesis methods predominantly rely on acid etching, which is associated with environmental concerns, low production efficiency, and limited structural versatility, restricting their potential in LSBs. This review provides a comprehensive overview of traditional and environmentally sustainable MXene synthesis techniques, emphasizing their applications in developing S cathodes, Li anodes, and functional separators for LSBs. Additionally, it discusses the challenges and outlines future directions for advancing MXene-based solutions in LSBs technology. Full article
Show Figures

Graphical abstract

34 pages, 8692 KiB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Viewed by 828
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 8308 KiB  
Review
Construction of MXene-Based Heterostructured Hybrid Separators for Lithium–Sulfur Batteries
by Xiao Zhang, Guijie Jin, Min Mao, Zirui Wang, Tianyu Xu, Tongtao Wan and Jinsheng Zhao
Molecules 2025, 30(8), 1833; https://doi.org/10.3390/molecules30081833 - 19 Apr 2025
Viewed by 819
Abstract
The advancement of lithium–sulfur (Li-S) batteries has been hindered by the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics. The engineering of functional hybrid separators is a relatively simple and effective coping strategy. Layered transition-metal carbides, nitrides, and carbonitrides, a class [...] Read more.
The advancement of lithium–sulfur (Li-S) batteries has been hindered by the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox kinetics. The engineering of functional hybrid separators is a relatively simple and effective coping strategy. Layered transition-metal carbides, nitrides, and carbonitrides, a class of emerging two-dimensional materials termed MXenes, have gained popularity as catalytic materials for Li-S batteries due to their metallic conductivity, tunable surface chemistry, and terminal groups. Nonetheless, the self-stacking flaws and easy oxidation of MXenes pose disadvantages, and developing MXene-based heterostructures is anticipated to circumvent these issues and yield other remarkable physicochemical characteristics. Herein, recent advances in the construction of MXene-based heterostructured hybrid separators for improving the performance of Li-S batteries are reviewed. The diverse conformational forms of heterostructures and their constitutive relationships with LiPS conversion are discussed, and the general principles of MXene surface chemistry alterations and heterostructure designs for enhancing electrochemical performance are summarized. Lastly, tangible challenges are addressed, and advisable insights for future research are shared. This review aims to highlight the immense superiority of MXene-based heterostructures in Li-S battery separator modification and inspire researchers. Full article
Show Figures

Figure 1

7 pages, 1700 KiB  
Proceeding Paper
Development of a Process for Low-Cost LFP Batteries Treatment
by Rafaella-Aikaterini Megaloudi, Alexandros Galanis, Paschalis Oustadakis and Anthimos Xenidis
Mater. Proc. 2023, 15(1), 96; https://doi.org/10.3390/materproc2023015096 - 25 Mar 2025
Viewed by 606
Abstract
The recycling of lithium iron phosphate (LiFePO4) batteries from electric and hybrid vehicles was investigated, by applying mechanical pretreatment and hydrometallurgical methods. The aim was to extract lithium (Li) into the aqueous solution and precipitate iron (Fe) in the form of [...] Read more.
The recycling of lithium iron phosphate (LiFePO4) batteries from electric and hybrid vehicles was investigated, by applying mechanical pretreatment and hydrometallurgical methods. The aim was to extract lithium (Li) into the aqueous solution and precipitate iron (Fe) in the form of ferric iron phosphate (FePO4). Samples of lithium iron phosphate (LFP) batteries from small electric vehicles provided by the company BEEV were used in this study. Initially, the black mass was isolated using mechanical crushing, screening, and sink–float separation methods, avoiding the need for costly chemical or thermal treatments. The cathodic material was then leached with sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) to oxidize ferrous to ferric iron, resulting in the precipitation of iron phosphate, which was collected in the solid residue from the leaching process. Leaching tests were conducted by varying the concentrations of sulfuric acid and hydrogen peroxide, as well as the leaching time. It has been indicated that by using a sulfuric acid concentration equal to the stoichiometric requirement, and hydrogen peroxide at four times the stoichiometric amount, Li extraction of greater than 98% was achieved within the first few minutes of leaching, while iron extraction remained below 0.5%. Full article
Show Figures

Figure 1

13 pages, 6602 KiB  
Article
Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries
by Hiroto Tominaga, Junichi Tokomoto, Kenjiro Onimura and Kazuhiro Yamabuki
Electrochem 2025, 6(1), 8; https://doi.org/10.3390/electrochem6010008 - 18 Mar 2025
Viewed by 1251
Abstract
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic [...] Read more.
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic solvents, we successfully introduced sulfur-based compounds into porous carbon via vacuum impregnation using a solution, rather than conventional thermal impregnation. Charge–discharge measurements of lithium–sulfur (Li-S) secondary batteries assembled with this more uniform composite cathode, compared to those using elemental sulfur, demonstrated an increased discharge capacity in the initial cycles and at higher rates. Full article
Show Figures

Graphical abstract

13 pages, 4634 KiB  
Article
Transforming Waste into Valuable Resources: Mo2C Nanoparticles Modified Waste Pinecone-Derived Carbon as an Effective Sulfur Host for Lithium–Sulfur Batteries
by Zhe Yang, Yicheng Han, Kai Chen, Guodong Zhang and Shuangxi Xing
Materials 2025, 18(5), 1141; https://doi.org/10.3390/ma18051141 - 4 Mar 2025
Cited by 1 | Viewed by 896
Abstract
In this paper, the natural waste pinecone as a carbon precursor for the generation of satisfactory sulfur host materials in lithium–sulfur batteries was realized by introducing molybdenum carbide nanoparticles into the derived carbon structure. The conductive pinecone-derived carbon doped with N, O reveals [...] Read more.
In this paper, the natural waste pinecone as a carbon precursor for the generation of satisfactory sulfur host materials in lithium–sulfur batteries was realized by introducing molybdenum carbide nanoparticles into the derived carbon structure. The conductive pinecone-derived carbon doped with N, O reveals an expansive specific surface area, facilitating the accommodation of a higher sulfur load. Moreover, the integration of Mo2C nanoparticles also significantly enhances its chemical affinity and catalytic capacity for polysulfides (LiPSs) to alleviate the shuttle effect and accelerate sulfur redox conversion. As a result, the WPC-Mo2C/S electrode displays excellent electrochemical performance, including a low capacity decay rate of 0.074% per cycle during 600 cycles at 1 C and an outstanding rate capacity (631.2 mAh g−1 at 3 C). Moreover, with a high sulfur loading of 5.5 mg cm−2, the WPC-Mo2C/S electrode shows a high area capacity of 5.1 mAh cm−2 after 60 cycles at 0.2 C. Full article
Show Figures

Graphical abstract

14 pages, 3994 KiB  
Article
Impregnation of Se2S6 into a Nitrogen- and Sulfur-Co-Doped Functional Metal Carbides and Nitrides for High-Performance Li-S Batteries
by Lu Chen, Zhongyuan Zheng, Shuo Meng, Wenwei Wu, Weicheng Zhou, Shanshan Yang, Kexuan Liao, Yuanhui Zuo and Ting He
Molecules 2025, 30(5), 1070; https://doi.org/10.3390/molecules30051070 - 26 Feb 2025
Viewed by 526
Abstract
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a [...] Read more.
In this study, nitrogen- and sulfur-co-doped MXene (NS-MXene) was developed as a high-performance cathode material for lithium–sulfur (Li-S) batteries. Heterocyclic Se2S6 molecules were successfully confined within the NS-MXene structure using a simple melt impregnation method. The resulting NS-MXene exhibited a unique wrinkled morphology with a stable structure which facilitated rapid ion transport and provided a physical barrier to mitigate the shuttle effect of polysulfide. The introduction of nitrogen and sulfur heteroatoms into the MXene structure not only shifted the Ti d-band center towards the Fermi level but also significantly polarizes the MXene, enhancing the conversion kinetics and ion diffusion capability while preventing the accumulation of Li2S6. Additionally, the incorporation of Se and S in Se2S6 improved the conductivity compared to S alone, resulting in reduced polarization and enhanced electrical properties. Consequently, NS-MXene/Se2S6 exhibited excellent cycling stability, high reversible capacity, and reliable performance at high current densities and under extreme conditions, such as high sulfur loading and low electrolyte-to-sulfur ratios. This work presents a simple and effective strategy for designing heteroatom-doped MXene materials, offering promising potential for the development of high-performance, long-lasting Li-S batteries for practical applications. Full article
Show Figures

Figure 1

Back to TopTop