Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of S–DODT
2.3. Preparation of S-DODT@KB Composite
2.4. Fabrication of S-DODT@KB Electrode
2.5. Fabrication of S8@KB Electrode
2.6. Fabrication of Li–S Battery and Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, W.J.; Griebel, J.J.; Kim, E.T.; Yoon, H.; Simmonds, A.G.; Ji, H.J.; Dirlam, P.T.; Glass, R.S.; Wie, J.J.; Nguyen, N.A.; et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Dirlam, P.T.; Simmonds, A.G.; Shallcross, R.C.; Arrington, K.J.; Chung, W.J.; Griebel, J.J.; Hill, L.J.; Glass, R.S.; Char, K.; Pyun, J. Improving the Charge Conductance of Elemental Sulfur via Tandem Inverse Vulcanization and Electropolymerization. ACS Macro Lett. 2015, 4, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Konopka, K.M.; Glass, R.S.; Char, K.; Pyun, J. Chalcogenide hybrid inorganic/organic polymers via inverse vulcanization and dynamic covalent polymerizations. Polym. Chem. 2017, 8, 5167–5173. [Google Scholar] [CrossRef]
- Zhang, Y.; Kleine, T.S.; Carothers, K.J.; Phan, D.D.; Glass, R.S.; MacKay, M.E.; Char, K.; Pyun, J. Functionalized chalcogenide hybrid inorganic/organic polymers (CHIPs) via inverse vulcanization of elemental sulfur and vinylanilines. Polym. Chem. 2018, 9, 2290–2294. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.; Cho, H.; Lim, J.; Char, K. Inverse Vulcanization Polymers with Enhanced Thermal Properties via Divinylbenzene Homopolymerization-Assisted Cross-Linking. ACS Macro Lett. 2019, 8, 1670–1675. [Google Scholar] [CrossRef]
- Berk, H.; Kaya, M.; Cihaner, A. Thermally highly stable polyhedral oligomeric silsesquioxane (POSS)-sulfur based hybrid inorganic/organic polymers: Synthesis, characterization and removal of mercury ion. Polym. Chem. 2022, 13, 5152–5158. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, J.M.; Seo, J.H.; Noh, G.Y.; Byun, W.; Kim, S.; Lee, W.; Park, S.; Kim, D.G.; Kim, Y.S. Inverse vulcanization of elemental sulfur catalyzed by trialkyl amines. Green Chem. 2023, 25, 4641–4646. [Google Scholar] [CrossRef]
- Lai, Y.S.; Liu, Y.L. Reaction between 1,3,5-Triisopropylbenzene and Elemental Sulfur Extending the Scope of Reagents in Inverse Vulcanization. Macromol. Rapid Commun. 2023, 44, 2300014. [Google Scholar] [CrossRef]
- Bao, J.; Martin, K.P.; Cho, E.; Kang, K.S.; Glass, R.S.; Coropceanu, V.; Bredas, J.L.; Parker, W.O., Jr.; Njardarson, J.T.; Pyun, J. On the Mechanism of the Inverse Vulcanization of Elemental Sulfur: Structural Characterization of Poly(sulfur-random-(1,3-diisopropenylbenzene)). J. Am. Chem. 2023, 145, 12386–12397. [Google Scholar] [CrossRef]
- Carothers, K.; Lee, K.M.; McConney, M.E.; Stevenson, P.R.; Godman, N.P. Inverse Vulcanization of Vinyl-polycyclic Aromatic Hydrocarbon Monomers and Dynamic Covalent Polymerization with Liquid Crystalline Monomers. ACS Appl. Polym. Mater. 2024, 6, 11118–11126. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Tang, Z.; Huang, R.; Xiao, Y.; Chen, J.; Yin, P.; Guo, B.; Zhang, L. Exploring Epoxy-Functionalized Polysulfide as a VOC-Free and Highly Effective Interfacial Modifier for Silica-Filled Rubber Composites. Macromolecules 2024, 57, 470–480. [Google Scholar] [CrossRef]
- Lv, Y.; Shang, M.; Chen, X.; Niu, J. Double-Net Enclosed Sulfur Composite as a New Cathode in Lithium Sulfur Batteries. J. Phys. Chem. C 2019, 123, 17719–17727. [Google Scholar] [CrossRef]
- Parekh, H.M.; Rao, H.; Jokhakar, D.; Parikh, P.V.; Palanisamy, M.; Pol, G.V. Polysulfide shuttle mitigation through a tailored separator for critical temperature energy-dense lithium–sulfur batteries. Sustain. Energy Fuels 2022, 6, 5591–5599. [Google Scholar] [CrossRef]
- Oka, S.S.; Thakur, M.R.; Easley, D.A.; Green, M.J.; Lutkenhaus, L.J. Structural organic battery cathodes comprised of organic redox active polymers, reduced graphene oxide, and aramid nanofibers. Mater. Adv. 2023, 4, 4886–4896. [Google Scholar] [CrossRef]
- Waqas, M.; Niu, Y.; Tang, M.; Pang, Y.; Ali, S.; Donge, Y.; Lv, W.; He, W. A decade of development in cathode-facing surface modified separators for high-performance Li-S batteries. Energy Storage Mater. 2024, 72, 103682. [Google Scholar] [CrossRef]
- Arslan, M.; Kiskan, B.; Cengiz, E.C.; Demir-Cakan, R.; Yagci, Y. Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for Lithium–sulfur batteries. Eur. Polym. J. 2016, 80, 70–77. [Google Scholar] [CrossRef]
- Gomez, I.; Mecerreyes, D.; Blazquez, J.A.; Leonet, O.; Ben Youcef, H.; Li, C.; Gomez-Camer, J.L.; Bundarchuk, O.; Rodriguez-Martinez, L. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for Lithium–sulfur batteries. J. Power Sources 2016, 329, 72–78. [Google Scholar] [CrossRef]
- Gracia, I.; Benyoucef, H.; Judez, X.; Oteo, U.; Zhang, H.; Li, C.; Rodriguez-Martinez, L.M.; Armand, M. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li–S batteries. J. Power Sources 2018, 390, 148–152. [Google Scholar] [CrossRef]
- Chen, Z.; Droste, J.; Zhai, G.; Zhu, J.; Yang, J.; Hansen, M.R.; Zhuang, X. Sulfur-anchored azulene as a cathode material for Li–S batteries. Chem. Commun. 2019, 55, 9047–9050. [Google Scholar] [CrossRef]
- Yesilot, S.; Kucukkoylu, S.; Demir, E.; Demir-Cakan, R. Phosphazene based star-branched polymeric cathode materials via inverse vulcanization of sulfur for Lithium–sulfur batteries. Polym. Chem. 2020, 11, 124–4132. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Z.; Zhou, J.; Fan, X.; Zhang, J.; Jia, Y.; Chen, S.; Meng, X.; Bielawski, C.W.; Geng, J. Covalently grafting sulfur-containing polymers to carbon nanotubes enhances the electrochemical performance of sulfur cathodes. ACS Appl. Polym. Mater. 2022, 4, 939–949. [Google Scholar] [CrossRef]
- Chen, J.M.; Duan, H.; Kong, Y.; Tian, B.; Ning, G.H.; Li, D. Improving Lithium–sulfur Batteries′ Performance via Inverse Vulcanization of Vinylene-Linked Covalent Organic Frameworks. Energy Fuels 2022, 36, 5998–6004. [Google Scholar] [CrossRef]
- Choudhury, S.; Akef, M.; Seifert, A.; Gobel, M.; Gruschwitz, M.; Matsidik, R.; Tegenkamp, C.; Sommer, M. Hybrid Organosulfur Network/MWCNT Composite Cathodes for Li–S Batteries. ACS Appl. Mater. Interfaces 2024, 16, 6301–6314. [Google Scholar] [CrossRef]
- Ko, L.A.; Huang, Y.S.; Lin, Y.A. Bipyridine-containing polysulfide materials for broad-spectrum removal of heavy metals from water. ACS Appl. Polym. Mater. 2021, 3, 3363–3372. [Google Scholar] [CrossRef]
- Eder, M.L.; Call, C.B.; Jenkins, C.L. Jenkins Utilizing Reclaimed Petroleum Waste to Synthesize Water-Soluble Polysulfides for Selective Heavy Metal Binding and Detection. ACS Appl. Polym. Mater. 2022, 4, 1110–1116. [Google Scholar] [CrossRef]
- Scheiger, J.M.; Hoffmann, M.; Falkenstein, P.; Wang, Z.; Rutschmann, M.; Scheiger, V.W.; Grimm, A.; Urbschat, K.; Sengpiel, T.; Matysik, J.; et al. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114896. [Google Scholar] [CrossRef]
- Cubero-Cardoso, J.; Cuadri, A.A.; Fermoso, F.G.; Martin-Alfonso, J.E.; Urbano, J. Promising Chalcogenide Hybrid Copolymers for Sustainable Applications as Bio-lubricants and Metal Adsorbents. ACS Appl. Polym. Mater. 2022, 4, 3667–3675. [Google Scholar] [CrossRef]
- Kang, K.S.; Iyer, K.A.; Pyun, J. On the Fundamental Polymer Chemistry of Inverse Vulcanization for Statistical and Segmented Copolymers from Elemental Sulfur. Chem. Eur. J. 2022, 28, e202200115. [Google Scholar] [CrossRef]
- Jia, J.; Yan, P.; Cai, S.D.; Cui, Y.; Xun, X.; Liu, J.; Wang, H.; Dodd, L.; Hu, X.; Lester, D.; et al. Solvated Inverse vulcanisation by photopolymerization. Eur. Polym. J. 2024, 207, 112815. [Google Scholar] [CrossRef]
- Deng, X.; Dop, R.A.; Cai, D.; Neill, D.R.; Hasell, T. Water-Soluble Ionic Liquid-Containing Sulfur Polymers for Mercury Capture, Demulsification, and Antibacterial Activity. Adv. Funct. Mater. 2024, 34, 2311647. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Si, G.; Tan, C. Self-Healing and Recyclable Vulcanized Polyisoprene Based on a Sulfur-Rich Copolymer Cross-Linking Agent Derived from Inverse Vulcanization. ACS Sustain. Chem. Eng. 2024, 12, 2212–2224. [Google Scholar] [CrossRef]
- Shen, H.; Chen, X.; Zheng, B.; Zhang, H. Sorbic Acid-Tung Oil-Sulfur Terpolymer Prepared via Inverse Vulcanization and Its Application as Antibacterial and Toughness Modifier for Polylactide. ACS Appl. Polym. Mater. 2024, 6, 14351–14364. [Google Scholar] [CrossRef]
- Itaoka, K.; Kim, I.T.; Yamabuki, K.; Yoshimoto, N.; Tsutsumi, H. Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit. J. Power Sources 2015, 297, 323–328. [Google Scholar] [CrossRef]
- Yamabuki, K.; Itaoka, K.; Kim, I.T.; Yoshimoto, N.; Tsutsumi, H. Electrochemically active copolymers prepared from elemental sulfur and bis(alkenyl) compounds having crown ether unit. Polymer 2016, 91, 1–6. [Google Scholar] [CrossRef]
- Yamabuki, K.; Itaoka, K.; Shinchi, T.; Yoshimoto, N.; Ueno, K.; Tsutsumi, H. Soluble sulfur-based copolymers prepared from elemental sulfur and alkenyl alcohol as positive active material for Lithium–sulfur batteries. Polymer 2017, 117, 225–230. [Google Scholar] [CrossRef]
- Dirlam, P.T.; Simmonds, A.G.; Kleine, T.S.; Nguyen, N.A.; Anderson, L.E.; Klever, A.O.; Florian, A.; Costanzo, P.J.; Theato, P.; Mackay, M.E.; et al. Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Adv. 2015, 5, 24718–24722. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, C.; Wang, Z.; Xia, Z.; Li, R.; Shi, S.; Xu, S.; Yuan, L. Bio-Based Reprocessable and Degradable Epoxy Resins via Inverse Vulcanization. ACS Sustain. Chem. Eng. 2023, 11, 11259–11268. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kitano, D.; Nishimura, R.; Yamagishi, Y.; Horiguchi, A.; Yamaguchi, H. Supramolecular polysulfide polymers cross-linked by metal-ligand interactions. Polym. Chem. 2023, 14, 2577–2580. [Google Scholar] [CrossRef]
- Lee, M.; Oh, Y.; Yu, J.; Jang, S.G.; Yeo, H.; Park, J.J.; You, N.H. Long-wave infrared transparent sulfur polymers enabled by symmetric thiol cross-linker. Nat. Commun. 2023, 14, 2866. [Google Scholar] [CrossRef]
- Ovc-Okene, D.; Gnanavel, A.; Szabo, A.; Szarka, G.; Ivan, B.; Kun, R. Investigation of poly(3,6-dioxa-1,8-octane-dithiol)-based organosulfur polymer as the positive electrode material in rechargeable Li–S battery. J. Electroanal. Chem. 2023, 929, 117113. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, L.; Zhu, L.; Gao, L.; Luo, J.; Yang, X.; Fang, Y.; Zhang, Z.; Dong, J. Aziridine-Derived Polysulfide Elastomers for Self-Healable, Strong, and Reusable Adhesives. ACS Appl. Polym. Mater. 2024, 6, 6437–6447. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tominaga, H.; Tokomoto, J.; Onimura, K.; Yamabuki, K. Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries. Electrochem 2025, 6, 8. https://doi.org/10.3390/electrochem6010008
Tominaga H, Tokomoto J, Onimura K, Yamabuki K. Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries. Electrochem. 2025; 6(1):8. https://doi.org/10.3390/electrochem6010008
Chicago/Turabian StyleTominaga, Hiroto, Junichi Tokomoto, Kenjiro Onimura, and Kazuhiro Yamabuki. 2025. "Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries" Electrochem 6, no. 1: 8. https://doi.org/10.3390/electrochem6010008
APA StyleTominaga, H., Tokomoto, J., Onimura, K., & Yamabuki, K. (2025). Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries. Electrochem, 6(1), 8. https://doi.org/10.3390/electrochem6010008