Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = Li-polymer battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1828 KiB  
Article
Preparation of Comb-Shaped Polyether with PDMS and PEG Side Chains and Its Application in Polymer Electrolytes
by Tomoya Enoki, Ryuta Kosono, Nurul Amira Shazwani Zainuddin, Takahiro Uno and Masataka Kubo
Molecules 2025, 30(15), 3201; https://doi.org/10.3390/molecules30153201 - 30 Jul 2025
Viewed by 264
Abstract
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization [...] Read more.
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization of PEO at room temperature by cross-linking or introducing a branched structure are currently being investigated. In this study, we synthesized new comb-type ion-conducting polyethers with two different side chains such as polydimethylsiloxane (PDMS) and polyethylene glycol monomethyl ether (mPEG) segments as flexible and ion-conducting segments, respectively. The introduction of the PDMS segment was found to prevent a decrease in ionic conductivity in the low-temperature region, but led to an ionic conductivity decrease in the high temperature region. On the other hand, the introduction of mPEG segments improved ionic conductivity in the high-temperature region. The introduction of mPEG segments with longer chains resulted in a significant decrease in ionic conductivity in the low-temperature region. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices—2nd Edition)
Show Figures

Figure 1

18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 275
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

17 pages, 2734 KiB  
Article
Fabrication and Performance Study of 3D-Printed Ceramic-in-Gel Polymer Electrolytes
by Xiubing Yao, Wendong Qin, Qiankun Hun, Naiyao Mao, Junming Li, Xinghua Liang, Ying Long and Yifeng Guo
Gels 2025, 11(7), 534; https://doi.org/10.3390/gels11070534 - 10 Jul 2025
Viewed by 265
Abstract
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at [...] Read more.
Solid-state electrolytes (SSEs) have emerged as a promising solution for next-generation lithium-ion batteries due to their excellent safety and high energy density. However, their practical application is still hindered by critical challenges such as their low ionic conductivity and high interfacial resistance at room temperature. The innovative application of 3D printing in the field of electrochemistry, particularly in solid-state electrolytes, endows energy storage devices with attractive characteristics. In this study, ceramic-in-gel polymer electrolytes (GPEs) based on PVDF-HFP/PAN@LLZTO were fabricated using a direct ink writing (DIW) 3D printing technique. Under the optimal printing conditions (printing speed of 40 mm/s and fill density of 70%), the printed electrolyte exhibited a uniform and dense sponge-like porous structure, achieving a high ionic conductivity of 5.77 × 10−4 S·cm−1, which effectively facilitated lithium-ion transport. A structural analysis indicated that the LLZTO fillers were uniformly dispersed within the polymer matrix, significantly enhancing the electrochemical stability of the electrolyte. When applied in a LiFePO4|GPEs|Li cell configuration, the electrolyte delivered excellent electrochemical performance, with high initial discharge capacities of 168 mAh·g−1 at 0.1 C and 166 mAh·g−1 at 0.2 C, and retained 92.8% of its capacity after 100 cycles at 0.2 C. This work demonstrates the great potential of 3D printing technology in fabricating high-performance GPEs. It provides a novel strategy for the structural design and industrial scalability of lithium-ion batteries. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

44 pages, 7563 KiB  
Review
Green Batteries: A Sustainable Approach Towards Next-Generation Batteries
by Annu, Bairi Sri Harisha, Manesh Yewale, Bhargav Akkinepally and Dong Kil Shin
Batteries 2025, 11(7), 258; https://doi.org/10.3390/batteries11070258 - 10 Jul 2025
Viewed by 1017
Abstract
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising [...] Read more.
The rising demand for sustainable energy storage has fueled the development of green batteries as alternatives to conventional systems. However, a major research gap lies in the unified integration of environmentally friendly materials and processes across all battery components—electrodes, electrolytes, and separators—without compromising performance or scalability. This review addresses this gap by highlighting recent advances in eco-conscious battery technologies, focusing on green electrode fabrication using water-based methods, electrophoretic deposition, solvent-free dry-press coating, 3D printing, and biomass-derived materials. It also examines the shift toward safer electrolytes, including ionic liquids, deep eutectic solvents, water-based systems, and solid biopolymer matrices, which improve both environmental compatibility and safety. Additionally, biodegradable separators made from natural polymers such as cellulose and chitosan offer enhanced thermal stability and ecological benefits. The review emphasizes the importance of lifecycle considerations like recyclability and biodegradability, aligning battery design with circular economy principles. While significant progress has been made, challenges such as standardization, long-term stability, and industrial scalability remain. By identifying key strategies and future directions, this article contributes to the foundation for next-generation green batteries, promoting their adoption in environmentally sensitive applications ranging from wearable electronics to grid storage. Full article
Show Figures

Figure 1

12 pages, 2263 KiB  
Article
Fast-Charging Model of Lithium Polymer Cells
by Joris Jaguemont and Fanny Bardé
World Electr. Veh. J. 2025, 16(7), 376; https://doi.org/10.3390/wevj16070376 - 4 Jul 2025
Viewed by 203
Abstract
Lithium-polymer (LiPo) batteries are valued for their high energy density, stable voltage output, low self-discharge, and strong reliability, making them a popular choice for high-performance and portable applications. Despite these advantages, the charging behavior of LiPo batteries—especially during rapid charging—remains an area with [...] Read more.
Lithium-polymer (LiPo) batteries are valued for their high energy density, stable voltage output, low self-discharge, and strong reliability, making them a popular choice for high-performance and portable applications. Despite these advantages, the charging behavior of LiPo batteries—especially during rapid charging—remains an area with limited understanding. This research examines the electro-thermal characteristics of VARTA LiPo batteries when subjected to high charging currents (2C, 3C, and 4C rates). A temperature-sensitive charging model is developed to address safety and efficiency concerns during fast charging. Experimental data indicate that charging at 45 °C yields the best performance, achieving 80% state of charge (SoC) within 25 min. However, charging at temperatures above or below this level (such as 25 °C) reduces efficiency due to increased internal resistance and accelerated battery aging. The model, validated across a range of temperatures (25 °C, 35 °C, 45 °C, and 60 °C), shows that longer constant-current (CC) charging phases at higher temperatures are associated with lower internal resistance. These results highlight the importance of effective thermal management for optimizing both safety and performance in LiPo battery applications. Full article
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Highly Conductive PEO/PAN-Based SN-Containing Electrospun Membranes as Solid Polymer Electrolytes
by Anna Maria Kirchberger, Patrick Walke, Janio Venturini, Leo van Wüllen and Tom Nilges
Membranes 2025, 15(7), 196; https://doi.org/10.3390/membranes15070196 - 30 Jun 2025
Viewed by 590
Abstract
Solid polymer electrolytes (SPEs) have garnered significant attention due to their potential in all-solid-state batteries (ASSBs). However, adoption remains constrained by challenges such as low thermal stability and limited ionic conductivity. Here, we report on an electrospun (PAN/PEO)- conductive salt (LiBF4) [...] Read more.
Solid polymer electrolytes (SPEs) have garnered significant attention due to their potential in all-solid-state batteries (ASSBs). However, adoption remains constrained by challenges such as low thermal stability and limited ionic conductivity. Here, we report on an electrospun (PAN/PEO)- conductive salt (LiBF4) system, where the influence of varying polyacrylonitrile (PAN) and polyethylene oxide (PEO) ratios, along with different plasticizer concentrations, is evaluated. Notably, the 50:50 PAN/PEO sample exhibited the highest ionic conductivity, reaching 1∙10−2 S/cm at 55 °C. This system also balanced conductivity and processability. Succinonitrile (SN) significantly influenced the morphology and conductivity. Samples with increased SN content showed enhanced capacity in symmetrical cells, achieving ~140 mAs/cm2 for an 18:9:1 polymer (PAN/PEO):SN:conductive salt (LiBF4) composition. The enhanced lithium-ion conductivity of the electrospun blend is attributed to the deliberate use of an unmixable PAN–PEO system. Their immiscibility creates well-defined interfacial regions within fibers, acting as efficient lithium-ion pathways. These findings support electrospun polymer blends as promising candidates for high-performance SPEs for ASSB development. Full article
(This article belongs to the Special Issue Ion Conducting Membranes and Energy Storage)
Show Figures

Figure 1

16 pages, 1972 KiB  
Article
Interphase Engineering Enabled by Using a Separator with Electrochemically Active Carbazole Polymers for Lithium-Ion Batteries
by Bingning Wang, Lihong Gao, Zhenzhen Yang, Xianyang Wu, Qijia Zhu, Qian Liu, Fulya Dogan, Yang Qin and Chen Liao
Polymers 2025, 17(13), 1815; https://doi.org/10.3390/polym17131815 - 29 Jun 2025
Viewed by 443
Abstract
Separators are generally considered inert components in lithium-ion batteries. In the past, some electroactive polymers have been successfully applied in separator modifications for overcharge protection or as acid scavengers. This study highlights the first use of two “electroactive” carbazole polymers (copolymer 9-phenyl-9H-carbazole-phenyl [PCP] [...] Read more.
Separators are generally considered inert components in lithium-ion batteries. In the past, some electroactive polymers have been successfully applied in separator modifications for overcharge protection or as acid scavengers. This study highlights the first use of two “electroactive” carbazole polymers (copolymer 9-phenyl-9H-carbazole-phenyl [PCP] and poly(9-vinylcarbazole) [PVC]), which were each applied separately as coatings on the cathode-facing side of commercial Celgard 2325 separators, respectively, to enhance the cycling performance of 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2//graphite (LMR-NM//Gr) full cells through interphase engineering. The team observed an irreversible polymer oxidation process of the carbazole-functionalized polymers—occurring only during the first charge—for the modified separator cells, and the results were confirmed by dQ/dV analysis, cyclic voltammetry measurements, and nuclear magnetic resonance characterizations. During this oxidation, carbazole polymers participate in the process of interphase formation, contributing to the improved cycling performance of LMR-NM//Gr batteries. Particularly, oxidation takes place at voltages of ~4.0 and ~3.5 V when PCP and PVC are used as separator coatings, which is highly irreversible. Further postmortem examinations suggest that the improvements using these modified separators arise from the formation of higher-quality and more inorganic SEI, as well as the beneficial CEI enriched in LixPOyFz. These interphases effectively inhibit the crosstalk effect by reducing TM dissolution. Full article
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 629
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 457
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

29 pages, 4054 KiB  
Article
Investigation of Convective and Radiative Heat Transfer of 21700 Lithium-Ion Battery Cells
by Gábor Kovács, Szabolcs Kocsis Szürke and Szabolcs Fischer
Batteries 2025, 11(7), 246; https://doi.org/10.3390/batteries11070246 - 26 Jun 2025
Viewed by 613
Abstract
Due to their high energy density and power potential, 21700 lithium-ion battery cells are a widely used technology in hybrid and electric vehicles. Efficient thermal management is essential for maximizing the performance and capacity of Li-ion cells in both low- and high-temperature operating [...] Read more.
Due to their high energy density and power potential, 21700 lithium-ion battery cells are a widely used technology in hybrid and electric vehicles. Efficient thermal management is essential for maximizing the performance and capacity of Li-ion cells in both low- and high-temperature operating conditions. Optimizing thermal management systems remains critical, particularly for long-range and weight-sensitive applications. In these contexts, passive heat dissipation emerges as an ideal solution, offering effective thermal regulation with minimal additional system weight. This study aims to deepen the understanding of passive heat dissipation in 21700 battery cells and optimize their performance. Special emphasis is placed on analyzing heat transfer and the relative contributions of convective and radiative mechanisms under varying temperature and discharge conditions. Laboratory experiments were conducted under controlled environmental conditions at various discharge rates, ranging from 0.5×C to 5×C. A 3D-printed polymer casing was applied to the cell to enhance thermal dissipation, designed specifically to increase radiative heat transfer while minimizing system weight and reliance on active cooling solutions. Additionally, a numerical model was developed and optimized using experimental data. This model simulates convective and radiative heat transfer mechanisms with minimal computational demand. The optimized numerical model is intended to facilitate further investigation of the cell envelope strategy at the module and battery pack levels in future studies. Full article
(This article belongs to the Special Issue Rechargeable Batteries)
Show Figures

Figure 1

21 pages, 3325 KiB  
Article
Numerical Modelling of 1d Isothermal Lithium-Ion Battery with Varied Electrolyte and Electrode Materials
by Elif Kaya and Alessandro d’Adamo
Energies 2025, 18(13), 3288; https://doi.org/10.3390/en18133288 - 23 Jun 2025
Viewed by 459
Abstract
In this study, the lithium-ion (Li-ion) battery type, which has a high-power density and utilizes lithium as the primary conductive terminal, has been employed. Within the scope of this research, a one-dimensional isothermal Li-ion battery model has been investigated under various electrolyte (both [...] Read more.
In this study, the lithium-ion (Li-ion) battery type, which has a high-power density and utilizes lithium as the primary conductive terminal, has been employed. Within the scope of this research, a one-dimensional isothermal Li-ion battery model has been investigated under various electrolyte (both liquid and solid) and electrode materials using the COMSOL Multiphysics software. The obtained simulation results have been corroborated with information sourced from the literature and establish a foundational framework for future studies. The average range of electrolyte salt concentration in battery components is slightly higher for batteries utilizing polymer electrolytes compared to those with liquid electrolytes. During discharge at five different C-rates, Li-ion batteries with liquid electrolytes displayed higher voltage than those with polymer electrolytes. On the other hand, the one with the lithium iron phosphate (LFP) positive electrode exhibits the greatest variation in lithium concentration at the surface of the positive electrode at the end of discharge. Conversely, the battery using a LiNiO2 cathode shows the smallest surface lithium concentration variation during the same period. This pattern is similarly observed for the lithium concentration at the center of the electrode particles. The presented model can be used to explore innovative electrolyte and electrode materials to improve the design of Li-ion batteries. Full article
(This article belongs to the Special Issue Current Advances in Fuel Cell and Batteries)
Show Figures

Figure 1

28 pages, 9320 KiB  
Article
Embedded Sensor Data Fusion and TinyML for Real-Time Remaining Useful Life Estimation of UAV Li Polymer Batteries
by Jutarut Chaoraingern and Arjin Numsomran
Sensors 2025, 25(12), 3810; https://doi.org/10.3390/s25123810 - 18 Jun 2025
Viewed by 572
Abstract
The accurate real-time estimation of the remaining useful life (RUL) of lithium-polymer (LiPo) batteries is a critical enabler for ensuring the safety, reliability, and operational efficiency of unmanned aerial vehicles (UAVs). Nevertheless, achieving such prognostics on resource-constrained embedded platforms remains a considerable technical [...] Read more.
The accurate real-time estimation of the remaining useful life (RUL) of lithium-polymer (LiPo) batteries is a critical enabler for ensuring the safety, reliability, and operational efficiency of unmanned aerial vehicles (UAVs). Nevertheless, achieving such prognostics on resource-constrained embedded platforms remains a considerable technical challenge. This study proposes an end-to-end TinyML-based framework that integrates embedded sensor data fusion with an optimized feedforward neural network (FFNN) model for efficient RUL estimation under strict hardware limitations. The system collects voltage, discharge time, and capacity measurements through a lightweight data fusion pipeline and leverages the Edge Impulse platform with the EON™Compiler for model optimization. The trained model is deployed on a dual-core ARM Cortex-M0+ Raspberry Pi RP2040 microcontroller, communicating wirelessly with a LabVIEW-based visualization system for real-time monitoring. Experimental validation on an 80-gram UAV equipped with a 1100 mAh LiPo battery demonstrates a mean absolute error (MAE) of 3.46 cycles and a root mean squared error (RMSE) of 3.75 cycles. Model testing results show an overall accuracy of 98.82%, with a mean squared error (MSE) of 55.68, a mean absolute error (MAE) of 5.38, and a variance score of 0.99, indicating strong regression precision and robustness. Furthermore, the quantized (int8) version of the model achieves an inference latency of 2 ms, with memory utilization of only 1.2 KB RAM and 11 KB flash, confirming its suitability for real-time deployment on resource-constrained embedded devices. Overall, the proposed framework effectively demonstrates the feasibility of combining embedded sensor data fusion and TinyML to enable accurate, low-latency, and resource-efficient real-time RUL estimation for UAV battery health management. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 5713 KiB  
Article
Enhancing Ion Transport in Polymer Electrolytes by Regulating Solvation Structure via Hydrogen Bond Networks
by Yuqing Gao, Yankui Mo, Shengguang Qi, Mianrui Li, Tongmei Ma and Li Du
Molecules 2025, 30(11), 2474; https://doi.org/10.3390/molecules30112474 - 5 Jun 2025
Viewed by 664
Abstract
Polymer electrolytes (PEs) provide enhanced safety for high–energy–density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li+ solvation environments and transport pathways coupled with slow polymer dynamics. [...] Read more.
Polymer electrolytes (PEs) provide enhanced safety for high–energy–density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li+ solvation environments and transport pathways coupled with slow polymer dynamics. Herein, we demonstrate a molecular design strategy to overcome these limitations by regulating the Li+ solvation structure through the synergistic interplay of conventional Lewis acid–base coordination and engineered hydrogen bond (H–bond) networks, achieved by incorporating specific H–bond donor functionalities (N,N′–methylenebis(acrylamide), MBA) into the polymer architecture. Computational modeling confirms that the introduced H–bonds effectively modulate the Li+ coordination environment, promote salt dissociation, and create favorable pathways for faster ion transport decoupled from polymer chain motion. Experimentally, the resultant polymer electrolyte (MFE, based on MBA) enables exceptionally stable Li metal cycling in symmetric cells (>4000 h at 0.1 mA cm−2), endows LFP|MFE|Li cells with long–term stability, achieving 81.0% capacity retention after 1400 cycles, and confers NCM622|MFE|Li cells with cycling endurance, maintaining 81.0% capacity retention after 800 cycles under a high voltage of 4.3 V at room temperature. This study underscores a potent molecular engineering strategy, leveraging synergistic hydrogen bonding and Lewis acid–base interactions to rationally tailor the Li+ solvation structure and unlock efficient ion transport in polymer electrolytes, paving a promising path towards high–performance solid–state lithium metal batteries. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Molecules)
Show Figures

Graphical abstract

13 pages, 1817 KiB  
Article
Modified Polyethylene Oxide Solid-State Electrolytes with Poly(vinylidene fluoride-hexafluoropropylene)
by Jinwei Yan, Wen Huang, Tangqi Hu, Hai Huang, Chengwei Zhu, Zhijie Chen, Xiaohong Fan, Qihui Wu and Yi Li
Molecules 2025, 30(11), 2422; https://doi.org/10.3390/molecules30112422 - 31 May 2025
Viewed by 601
Abstract
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of [...] Read more.
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of polyethylene oxide (PEO)-based polymer via blending with poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)). The experimental results showed that the addition of P(VDF-HFP) disrupted the crystalline regions of PEO by increasing the amorphous domains, thus improving lithium-ion migration capability. The electrolyte membrane with 30 wt% P(VDF-HFP) and 70 wt% PEO exhibited the highest ionic conductivity, widest electrochemical window, and enhanced thermal stability, as well as a high lithium-ion transference number (0.45). The cells assembled with this membrane electrolyte demonstrated an excellent rate of performance and cycling stability, retaining specific capacities of 122.39 mAh g−1 after 200 cycles at 0.5C, and 112.77 mAh g−1 after 200 cycles at 1C and 25 °C. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

15 pages, 5965 KiB  
Article
Gel Polymer Electrolytes with High Thermal Stability for Safe Lithium Metal Batteries
by Xianhui Chen, Xue Wang, Xing Li and Xing Xin
Colloids Interfaces 2025, 9(3), 30; https://doi.org/10.3390/colloids9030030 - 14 May 2025
Viewed by 981
Abstract
The poor thermal stability of polypropylene (PP) separators poses risks of electrolyte leakage and battery short-circuiting, limiting their application in lithium metal batteries (LMBs). To address these challenges, a gel polymer membrane was designed using polymer blending technology. This membrane effectively retains the [...] Read more.
The poor thermal stability of polypropylene (PP) separators poses risks of electrolyte leakage and battery short-circuiting, limiting their application in lithium metal batteries (LMBs). To address these challenges, a gel polymer membrane was designed using polymer blending technology. This membrane effectively retains the electrolyte, provides a stable environment, enhances thermal stability, and significantly decreases the risk of battery explosions and side reactions between the lithium metal and the electrolyte. Compared to commercial PP separators, the developed blend-type gel polymer electrolyte (b-GPE) demonstrates a superior performance, including structural stability at temperatures up to 150 °C and a high lithium-ion transference number (tLi+) of 0.513. Furthermore, a cell with a LiCoO2 cathode operated at a 1 C rate retains 97.4% of its capacity after 300 cycles. After exposure to 120 °C, the b-GPE-120 demonstrates that its performance is comparable to that of the b-GPE, such as a tLi+ of 0.506, a high electrolyte absorption rate, and a wide electrochemical window of 5.2 V. Full article
Show Figures

Figure 1

Back to TopTop