Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = Levelized Cost of Electricity (LCOE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6561 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 691
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

21 pages, 5122 KiB  
Article
Comparative Life Cycle Assessment of Solar Thermal, Solar PV, and Biogas Energy Systems: Insights from Case Studies
by Somil Thakur, Deepak Singh, Umair Najeeb Mughal, Vishal Kumar and Rajnish Kaur Calay
Appl. Sci. 2025, 15(14), 8082; https://doi.org/10.3390/app15148082 - 21 Jul 2025
Viewed by 881
Abstract
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a [...] Read more.
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a common basis of 1 kWh of useful energy using SimaPro, the ReCiPe 2016 methodology (both midpoint and endpoint indicators), and cumulative energy demand (CED) analysis. This study is the first to evaluate co-located solar PV, solar thermal compound parabolic concentrator (CPC) and biogas combined heat and power (CHP) systems with in situ data collected under identical climatic and operational conditions. The project costs yield levelized costs of electricity (LCOE) of INR 2.4/kWh for PV, 3.3/kWh for the solar thermal dish and 4.1/kWh for biogas. However, the collaborated findings indicate that neither solar-based systems nor biogas technology uniformly outperform the others; rather, their effectiveness hinges on contextual factors, including resource availability and local policy incentives. These insights will prove critical for policymakers, industry stakeholders, and local communities seeking to develop effective, context-sensitive strategies for sustainable energy deployment, emissions reduction, and robust resource management. Full article
Show Figures

Figure 1

25 pages, 5958 KiB  
Article
Comparative Designs for Standalone Critical Loads Between PV/Battery and PV/Hydrogen Systems
by Ahmed Lotfy, Wagdy Refaat Anis, Fatma Newagy and Sameh Mostafa Mohamed
Hydrogen 2025, 6(3), 46; https://doi.org/10.3390/hydrogen6030046 - 5 Jul 2025
Viewed by 343
Abstract
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems, each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios, accounting for [...] Read more.
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems, each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios, accounting for the worst-case weather conditions involving 3.5 consecutive cloudy days. The primary comparison focuses on traditional lead-acid battery storage versus green hydrogen storage via electrolysis, compression, and fuel cell reconversion. Both the configurations are simulated using a Python-based tool that calculates hourly energy balance, component sizing, and economic performance over a 21-year project lifetime. The results show that the PV/H2 system significantly outperforms the PV/lead-acid battery system in both the cost and the reliability. For the constant load, the Levelized Cost of Electricity (LCOE) drops from 0.52 USD/kWh to 0.23 USD/kWh (a 56% reduction), and the payback period is shortened from 16 to 7 years. For the night load, the LCOE improves from 0.67 to 0.36 USD/kWh (a 46% reduction). A supplementary cost analysis using lithium-ion batteries was also conducted. While Li-ion improves the economics compared to lead-acid (LCOE of 0.41 USD/kWh for the constant load and 0.49 USD/kWh for the night load), this represents a 21% and a 27% reduction, respectively. However, the green hydrogen system remains the most cost-effective and scalable storage solution for achieving 100% reliability in critical off-grid applications. These findings highlight the potential of green hydrogen as a sustainable and economically viable energy storage pathway, capable of reducing energy costs while ensuring long-term resilience. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

25 pages, 3103 KiB  
Article
Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence
by Mohammadreza Najaftomaraei, Mahdis Osouli, Hasan Erbay, Mohammad Hassan Shahverdian, Ali Sohani, Kasra Mazarei Saadabadi and Hoseyn Sayyaadi
Water 2025, 17(13), 1981; https://doi.org/10.3390/w17131981 - 1 Jul 2025
Viewed by 439
Abstract
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized [...] Read more.
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized costs of electricity (LCOE) and water (LCOW) while reducing grid dependence. The city studied is Zahedan, Iran, which has high potential in renewable energy. A multi-objective optimization approach using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), a popular evolutionary algorithm, is employed to determine the optimal number of PV panels and wind turbines. The results show that the hybrid system outperforms single-source configurations, supplying 34.79 MWh of electricity and 34.19 m3 of desalinated water, while achieving the lowest LCOE (2.73 cent/kWh−1) and LCOW (35.33 cent/m−3). The hybrid scenario covers 65.49% of the electricity demand and 58.54% of the water demand, significantly reducing reliance on the grid compared to the PV and WT scenarios. Additionally, it ensures greater energy stability by leveraging the complementary nature of PV and WT. These findings highlight the techno-economic feasibility of hybrid renewable-powered desalination as a cost-effective and sustainable solution. Future research should focus on integrating energy storage to further enhance efficiency and minimize grid dependency. Full article
Show Figures

Figure 1

24 pages, 2477 KiB  
Article
Techno-Economic Optimization of an Isolated Solar Microgrid: A Case Study in a Brazilian Amazon Community
by Nikole Teran Uruchi, Valentin Silvera Diaz, Norah Nadia Sánchez Torres, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma, Marco Roberto Cavallari, Mario Gazziro, Taynara Geysa Silva do Lago and Oswaldo Hideo Ando Junior
Eng 2025, 6(7), 133; https://doi.org/10.3390/eng6070133 - 21 Jun 2025
Viewed by 514
Abstract
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing [...] Read more.
Many communities in the Brazilian Amazon region remain without reliable access to electricity due to geographical barriers and the high cost of connecting to the national grid. This study aims to evaluate the techno-economic feasibility of implementing battery storage systems in an existing isolated solar–diesel microgrid located in Tunui-Cachoeira, in the district of São Gabriel da Cachoeira (AM). The analysis uses an energy balance methodology, implemented through the HOMER Pro simulation platform, to assess three scenarios: (i) without batteries, (ii) with lithium-ion batteries, and (iii) with lead–acid batteries. Technical and economic indicators such as net present cost (NPC), levelized cost of energy (LCOE), diesel consumption, and renewable fraction were compared. The results indicate that incorporating lead–acid batteries yields the lowest LCOE (1.99 R$/kWh) and the highest renewable fraction (96.8%). This demonstrates that adding energy storage systems significantly enhances the performance and cost-effectiveness of microgrids, offering a viable path to electrify remote and hard-to-reach communities in the Amazon. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

26 pages, 19260 KiB  
Article
Barrio-Level Assessment of Solar Rooftop Energy and Initial Insights into Energy Inequalities in Puerto Rico
by Carlos A. Peña-Becerra, Willian A. Pacheco-Cano, Daniel F. Aragones-Vargas, Agustín Irizarry-Rivera and Marcel Castro-Sitiriche
Solar 2025, 5(2), 28; https://doi.org/10.3390/solar5020028 - 19 Jun 2025
Viewed by 717
Abstract
The transition to renewable energy is critical to enhance Puerto Rico’s energy resilience and reduce dependence on imported fossil fuels. Rooftop photovoltaic (PV) systems provide a scalable opportunity to meet these objectives. This study evaluates the potential of rooftop PV systems across Puerto [...] Read more.
The transition to renewable energy is critical to enhance Puerto Rico’s energy resilience and reduce dependence on imported fossil fuels. Rooftop photovoltaic (PV) systems provide a scalable opportunity to meet these objectives. This study evaluates the potential of rooftop PV systems across Puerto Rico using the National Renewable Energy Laboratory’s (NREL) PV Rooftop Database, processing detailed roof surface data to estimate installed capacity, energy generation, Levelized Cost of Electricity (LCOE), and solar resource potential at municipal and barrio levels. Findings reveal high solar rooftop capacity in urban neighborhoods, with areas like Sabana Abajo and Hato Tejas each exceeding 450 GWh/year in potential generation. Solar rooftop resource values peak at 3.67 kWh/kW in coastal areas, with LCOE values (0.071–0.215 USD/kWh) below current electricity rates. All municipalities demonstrate technical potential to meet their electricity demand with rooftop PV system alone. This research contributes through (1) developing Puerto Rico’s first comprehensive solar rooftop potential map; (2) providing unprecedented barrio-level analysis; (3) introducing a methodology for estimating missing post-disaster consumption data; and (4) integrating technical, economic, and equity indicators to inform energy policy. These findings demonstrate the importance of rooftop solar in achieving renewable energy goals and provide an understanding of spatial energy inequalities. Full article
Show Figures

Figure 1

30 pages, 4198 KiB  
Article
Enabling Low-Carbon Transportation: Resilient Energy Governance via Intelligent VPP and Mobile Energy Storage-Driven V2G Solutions
by Guwon Yoon, Myeong-in Choi, Keonhee Cho, Seunghwan Kim, Ayoung Lee and Sehyun Park
Buildings 2025, 15(12), 2045; https://doi.org/10.3390/buildings15122045 - 13 Jun 2025
Viewed by 375
Abstract
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station [...] Read more.
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station linkage data, and traffic volume data. The proposed system promotes eco-friendly EV usage, flexible energy management, and carbon neutrality through a polyfunctional Vehicle-to-Grid (V2G) architecture that integrates decentralized energy networks. Two core strategies are implemented: (1) configuring Virtual Power Plant (VPP)-based charging packages tailored to station types, and (2) utilizing EV batteries as distributed ESS units. K-means clustering based on spatial proximity and energy demand is followed by heuristic algorithms to improve the efficiency of mobile ESS operation. A three-layer framework is used to assess improvements in energy demand distribution, with demand-oriented VPPs deployed in high-demand zones to maximize ESS utilization. This approach enhances station stability, increases the load factor to 132.7%, and reduces emissions by 271.5 kgCO2. Economically, the system yields an annual benefit of USD 47,860, a Benefit–Cost Ratio (BCR) of 6.67, and a Levelized Cost of Energy (LCOE) of USD 37.78 per MWh. These results demonstrate the system’s economic viability and resilience, contributing to the development of a flexible and sustainable energy infrastructure for cities. Full article
Show Figures

Figure 1

32 pages, 3011 KiB  
Article
Sensitivity Analysis of a Hybrid PV-WT Hydrogen Production System via an Electrolyzer and Fuel Cell Using TRNSYS in Coastal Regions: A Case Study in Perth, Australia
by Raed Al-Rbaihat
Energies 2025, 18(12), 3108; https://doi.org/10.3390/en18123108 - 12 Jun 2025
Cited by 1 | Viewed by 452
Abstract
This article presents a modeling and analysis approach for a hybrid photovoltaic wind turbine (PV-WT) hydrogen production system. This study uses the TRNSYS simulation platform to evaluate the system under coastal climate conditions in Perth, Australia. The system encapsulates an advanced alkaline electrolyzer [...] Read more.
This article presents a modeling and analysis approach for a hybrid photovoltaic wind turbine (PV-WT) hydrogen production system. This study uses the TRNSYS simulation platform to evaluate the system under coastal climate conditions in Perth, Australia. The system encapsulates an advanced alkaline electrolyzer (ELE) and an alkaline fuel cell (AFC). A comprehensive 4E (energy, exergy, economic, and environmental) assessment is conducted. The analysis is based on hourly dynamic simulations over a full year. Key performance metrics include hydrogen production, energy and exergy efficiencies, carbon emission reduction, levelized cost of energy (LCOE), and levelized cost of hydrogen (LCOH). The TRNSYS model is validated against the existing literature data. The results show that the system performance is highly sensitive to ambient conditions. A sensitivity analysis reveals an energy efficiency of 7.3% and an exergy efficiency of 5.2%. The system has an entropy generation of 6.22 kW/K and a sustainability index of 1.055. The hybrid PV-WT system generates 1898.426 MWh of renewable electricity annually. This quantity corresponds to 252.7 metric tons of hydrogen production per year. The validated model shows a stable LCOE of 0.102 USD/kWh, an LCOH of 4.94 USD/kg, an energy payback time (EPBT) of 5.61 years, and cut CO2 emissions of 55,777.13 tons. This research provides a thorough analysis for developing green hydrogen systems using hybrid renewables. This study also offers a robust prediction model, enabling further enhancements in hybrid renewable hydrogen production. Full article
(This article belongs to the Special Issue Research on Integration and Storage Technology of Hydrogen Energy)
Show Figures

Figure 1

21 pages, 2288 KiB  
Article
A Real Options Model for CCUS Investment: CO2 Hydrogenation to Methanol in a Chinese Integrated Refining–Chemical Plant
by Ruirui Fang, Xianxiang Gan, Yubing Bai and Lianyong Feng
Energies 2025, 18(12), 3092; https://doi.org/10.3390/en18123092 - 12 Jun 2025
Viewed by 504
Abstract
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization [...] Read more.
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization pathways placing a primary emphasis on storage or enhanced oil recovery (EOR). There is limited research available regarding the chemical utilization of carbon dioxide (CO2). This study develops an options-based analytical model, employing geometric Brownian motion to characterize carbon and oil price uncertainties while incorporating the learning curve effect in carbon capture infrastructure costs. Additionally, revenues from chemical utilization and EOR are integrated into the return model. A case study is conducted on a process producing 100,000 tons of methanol annually via CO2 hydrogenation. Based on numerical simulations, we determine the optimal investment conditions for the “CO2-to-methanol + EOR” collaborative scheme. Parameter sensitivity analyses further evaluate how key variables—carbon pricing, oil market dynamics, targeted subsidies, and the cost of renewable electricity—influence investment timing and feasibility. The results reveal that the following: (1) Carbon pricing plays a pivotal role in influencing investment decisions related to CCUS. A stable and sufficiently high carbon price improves the economic feasibility of CCUS projects. When the initial carbon price reaches 125 CNY/t or higher, refining–chemical integrated plants are incentivized to make immediate investments. (2) Increases in oil prices also encourage CCUS investment decisions by refining–chemical integrated plants, but the effect is weaker than that of carbon prices. The model reveals that when oil prices exceed USD 134 per barrel, the investment trigger is activated, leading to earlier project implementation. (3) EOR subsidy and the initial equipment investment subsidy can promote investment and bring forward the expected exercise time of the option. Immediate investment conditions will be triggered when EOR subsidy reaches CNY 75 per barrel or more, or the subsidy coefficient reaches 0.2 or higher. (4) The levelized cost of electricity (LCOE) from photovoltaic sources is identified as a key determinant of hydrogen production economics. A sustained decline in LCOE—from CNY 0.30/kWh to 0.22/kWh, and further to 0.12/kWh or below—significantly advances the optimal investment window. When LCOE reaches CNY 0.12/kWh, the project achieves economic viability, enabling investment potentially as early as 2025. This study provides guidance and reference cases for CCUS investment decisions integrating EOR and chemical utilization in China’s refining–chemical integrated plants. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

20 pages, 4083 KiB  
Article
Evaluating Rooftop Solar Photovoltaics and Battery Storage for Residential Energy Sustainability in Benoni, South Africa
by Webster J. Makhubele, Bonginkosi A. Thango and Kingsley A. Ogudo
Processes 2025, 13(6), 1828; https://doi.org/10.3390/pr13061828 - 10 Jun 2025
Viewed by 826
Abstract
South Africa’s persistent energy shortages and high utility costs have led to increased interest in rooftop solar photovoltaic (PV) systems. However, understanding their economic and environmental viability in urban residential contexts remains limited. This study investigates the feasibility of integrating rooftop solar PV [...] Read more.
South Africa’s persistent energy shortages and high utility costs have led to increased interest in rooftop solar photovoltaic (PV) systems. However, understanding their economic and environmental viability in urban residential contexts remains limited. This study investigates the feasibility of integrating rooftop solar PV systems with local energy storage and grid electricity in residential housing complexes in Benoni, Gauteng Province. A hybrid energy system was proposed and modeled using detailed consumption data from a typical community in Benoni. The system includes rooftop PV installations, lithium-ion storage, and connection to the national grid. A techno-economic analysis was conducted over a 25-year project lifespan to evaluate energy cost, payback period, net present cost, and carbon dioxide emissions. The optimal system configuration—Solar PV + Storage + Grid—achieved average annual utility bill savings of USD 30,207, with a payback period of 1.0 year, a net present cost (NPC) of USD 40,782, and an internal rate of return (IRR) of 101.7%. Annual utility costs were reduced from USD 30,472 to USD 267, and the system resulted in a net reduction of 130 metric tons of CO2 emissions per year. The levelized cost of energy (LCOE) was USD 0.0071/kWh. The integration of rooftop solar PV and energy storage with grid electricity presents a highly cost-effective and environmentally sustainable solution for residential communities in urban South Africa. The findings support policy initiatives aligned with Sustainable Development Goal (SDG) 7: “Affordable and Clean Energy”. Full article
(This article belongs to the Special Issue Advanced Technologies of Renewable Energy Sources (RESs))
Show Figures

Figure 1

24 pages, 2458 KiB  
Article
Renewable Energy Curtailment Storage in Molten Salt and Solid Particle Solar Thermal Power Plants: A Comparative Analysis in Spain
by Sergio González-Barredo and Miguel Ángel Reyes-Belmonte
Appl. Sci. 2025, 15(11), 6162; https://doi.org/10.3390/app15116162 - 30 May 2025
Viewed by 656
Abstract
Spain’s energy transition poses the dual challenge of managing renewable curtailment and enhancing the competitiveness of concentrated solar power (CSP) technologies. This study evaluates the suitability of replacing molten salts with solid particles for energy storage and, additionally, explores the storage of surplus [...] Read more.
Spain’s energy transition poses the dual challenge of managing renewable curtailment and enhancing the competitiveness of concentrated solar power (CSP) technologies. This study evaluates the suitability of replacing molten salts with solid particles for energy storage and, additionally, explores the storage of surplus electricity from grid in Carnot batteries. Four scenarios were analyzed using a Gemasolar-type plant model: each storage medium was studied with and without the integration of curtailed electricity. The solar field was modeled with SAM (System Advisor Model), while curtailment data from Red Eléctrica de España (2016–2021) quantified the available surplus. Results show that solid particles lead to 7.4% higher annual electricity production compared to molten salts, mainly due to improved power cycle efficiency. The integration of curtailment increased output further, with the solid particle Carnot battery scenario achieving the highest performance (up to 19.0% sun-to-electricity efficiency and 69.7% capacity factor). However, round-trip efficiency for curtailment storage was limited (~25–27%), and although solid particles showed lower LCOE (levelized cost of energy) than salts (192 vs. 211 USD/MWh), the Carnot battery increased costs. These findings suggest that while solid particles offer clear advantages, the economic viability of Carnot batteries remains constrained by current cost and operational limitations. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

22 pages, 5472 KiB  
Article
Optimization of Offshore Wind and Wave Energy Co-Generation System Based on Improved Seagull Optimization Algorithm
by Xiaoshi Zhuang, Honglue Wan, Dongran Song, Xinyu Fan, Yuchen Wang, Qian Huang and Jian Yang
Energies 2025, 18(11), 2846; https://doi.org/10.3390/en18112846 - 29 May 2025
Viewed by 396
Abstract
To address the high complexity layout optimization problem of an offshore wind and wave energy co-generation system, an improved seagull optimization algorithm-based method is proposed. Firstly, the levelized cost of electricity (LCOE) model, based on the whole-life-cycle cost, serves as the optimization objective. [...] Read more.
To address the high complexity layout optimization problem of an offshore wind and wave energy co-generation system, an improved seagull optimization algorithm-based method is proposed. Firstly, the levelized cost of electricity (LCOE) model, based on the whole-life-cycle cost, serves as the optimization objective. Therein, the synergistic effect between wind turbines and wave energy generators is taken into consideration to decouple the problem and establish a two-layer optimization framework. Secondly, the seagull optimization algorithm is enhanced by integrating three strategies: the nonlinear adjustment strategy for control factors, the Gaussian–Cauchy hybrid variational strategy, and the multiple swarm strategy, thereby improving the global search capability. Finally, a case study in the South China Sea validates the effectiveness of the model and algorithm. Using the improved algorithm, the optimal layout of the co-generation system and the optimal wind turbine parameters are obtained. The results indicate that the optimized system achieves a LCOE of 0.6561 CNY/kWh, which is 0.29% lower than that achieved by traditional algorithms. The proposed method provides a reliable technical solution for the economic optimization of the co-generation system. Full article
Show Figures

Figure 1

16 pages, 1583 KiB  
Article
Feasibility of Bifacial Photovoltaics in Transport Infrastructure
by Mehreen Saleem Gul, Marzia Alam and Tariq Muneer
Energies 2025, 18(11), 2838; https://doi.org/10.3390/en18112838 - 29 May 2025
Viewed by 288
Abstract
Around the world, large-scale bifacial photovoltaics (BPV) modules are increasingly being used to generate clean electricity, given the cost of manufacturing is becoming comparable to conventional monofacial PV modules. BPV, when installed vertically, can still produce high levels of electricity by collecting radiation [...] Read more.
Around the world, large-scale bifacial photovoltaics (BPV) modules are increasingly being used to generate clean electricity, given the cost of manufacturing is becoming comparable to conventional monofacial PV modules. BPV, when installed vertically, can still produce high levels of electricity by collecting radiation on the front as well as on the rear side. This paper assessed the renewable energy generation potential of vertical BPV plants along the central reservation of UK motorways. These installations maximize the utility of road space while minimizing land consumption. The feasibility of BPV systems for different segments of a motorway case study in the UK were modelled to calculate energy yield, the levelized cost of electricity (LCOE), payback period, and net present value. The LCOE of a medium to large-scale system was 10–11 p/kWh, 60% less than that of a small-scale system. The payback period for medium to large-scale systems was found to be 6 years, whereas for small systems, it was 10 years. The paper further discussed the challenges and opportunities associated with installing BPV panels on motorways with guidance on the types of locations which are likely to be most successful for future full-scale installations. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

29 pages, 2440 KiB  
Article
The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework
by Rafał Wyszomierski, Piotr Bórawski, Aneta Bełdycka-Bórawska, Agnieszka Brelik, Marcin Wysokiński and Magdalena Wiluk
Sustainability 2025, 17(10), 4715; https://doi.org/10.3390/su17104715 - 20 May 2025
Viewed by 1474
Abstract
Evaluating the competitiveness of electricity is the most important issue. The main aim of this study was to determine the cost-effectiveness of renewable energy production in the European Union (EU) using the levelized cost competitiveness of renewable energy sources. The weighted average cost [...] Read more.
Evaluating the competitiveness of electricity is the most important issue. The main aim of this study was to determine the cost-effectiveness of renewable energy production in the European Union (EU) using the levelized cost competitiveness of renewable energy sources. The weighted average cost of capital (WACC) for onshore wind was calculated for European (EU) countries. The levelized cost of electricity (LCOE) approach was used to evaluate the energy costs of renewable energy sources. Energy production costs were compared across different technologies. The capital expenditures associated with solar PV are expected to decrease from USD 810/kW in 2021 to USD 360/kW in 2050. The power factor will remain stable at 14% during the analyzed period. Fuel, CO2, and operation and maintenance (O&M) costs will be maintained at USD 10/MWh at all three time points of the analysis (2021, 2030, and 2050), whereas the LCOE will decrease from USD 50/MWh in 2021 to USD 25/MWh in 2050. The capital expenditures associated with onshore wind energy will decrease from USD 1590/kW in 2021 to USD 1410/kW in 2050. The power factor will increase from 29% to 30%, and fuel, CO2, and O&M costs will reach USD 15/MWh in all three years. The LCOE will decrease from USD 55/MWh in 2021 to USD 45/MWh in 2050. In offshore wind projects, capital expenditures are expected to decrease considerably from USD 3040/kW in 2021 to USD 1320/kW in 2050. Full article
Show Figures

Figure 1

Back to TopTop