Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Lentinula edodes polysaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6281 KiB  
Article
Bioactive Polysaccharides Prevent Lipopolysaccharide-Induced Intestinal Inflammation via Immunomodulation, Antioxidant Activity, and Microbiota Regulation
by Mingyang Gao, Wanqing Zhang, Yan Ma, Tingting Liu, Sijia Wang, Shuaihu Chen, Zhengli Wang and Hong Shen
Foods 2025, 14(15), 2575; https://doi.org/10.3390/foods14152575 - 23 Jul 2025
Viewed by 246
Abstract
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through [...] Read more.
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through which diverse bioactive polysaccharides mitigate lipopolysaccharide-triggered intestinal inflammation in male Kunming (KM) mice. This experiment employed Lentinula edodes polysaccharide (LNT), Auricularia auricula polysaccharide (AAP), Cordyceps militaris polysaccharide (CMP), Lycium barbarum polysaccharide (LBP), and Brassica rapa polysaccharide (BRP). The expression levels of biomarkers associated with the TLR4 signaling pathway, oxidative stress, and intestinal barrier function were quantified, along with comprehensive gut microbiota profiling. The results showed that all five polysaccharides alleviated inflammatory responses in mice by inhibiting inflammatory cytokine release, reducing oxidative damage, and modulating gut microbiota, but their modes of action differed: LBP significantly suppressed the TLR-4/MyD88 signaling pathway and its downstream pro-inflammatory cytokine expression, thereby blocking inflammatory signal transduction and reducing oxidative damage; LNT and CMP enhanced the body’s antioxidant capacity by increasing antioxidant enzyme activities and decreasing malondialdehyde (MDA) levels; AAP and BRP enriched Akkermansia (Akk.) within the Verrucomicrobia (Ver.) phylum, upregulating tight junction protein expression to strengthen the intestinal mucosal barrier and indirectly reduce oxidative damage. This research demonstrates that different polysaccharides alleviate inflammation through multi-target synergistic mechanisms: LBP primarily inhibits inflammatory pathways; AAP and BRP focus on intestinal barrier protection and microbiota modulation; and LNT and CMP exert effects via antioxidant enzyme activation. These data support designing polysaccharide blends that leverage complementary inflammatory modulation mechanisms. Full article
Show Figures

Figure 1

22 pages, 5332 KiB  
Article
Comparison of the Conventional, Chemical, and Ultrasound Extraction of Crude Polysaccharides and Their Properties from Lentinula edodes (Berk.) Pegler
by Nannapat Phosarith, Thanyaporn Siriwoharn and Wachira Jirarattanarangsri
Foods 2025, 14(14), 2428; https://doi.org/10.3390/foods14142428 - 9 Jul 2025
Viewed by 360
Abstract
This study aimed to compare the efficiency of four extraction methods, hot water (HW), hot alkaline (HA), ultrasound-assisted water (UW), and ultrasound-assisted alkaline (UA), for extracting crude β-glucan from Lentinula edodes, focusing on yield, functionality, and antidiabetic potential. The response surface methodology [...] Read more.
This study aimed to compare the efficiency of four extraction methods, hot water (HW), hot alkaline (HA), ultrasound-assisted water (UW), and ultrasound-assisted alkaline (UA), for extracting crude β-glucan from Lentinula edodes, focusing on yield, functionality, and antidiabetic potential. The response surface methodology was used to optimize extraction conditions. Among all methods, UW yielded the highest β-glucan content (34.51 ± 0.82 g/100 g dry extract), indicating enhanced extraction efficiency through acoustic cavitation. However, HW demonstrated the most preserved structural integrity, exhibiting superior and consistent swelling power across all tested pH conditions, which indicated an excellent water-holding capacity. The ability of HA to scavenge antioxidants was significantly higher than that of other methods, likely due to the enhanced release of phenolic residues under alkaline conditions. UA showed the most potent inhibition against α-amylase (IC50 = 1.46 mg/mL) and α-glucosidase (IC50 = 1.21 mg/mL), demonstrating the potential for type 2 diabetes management. These results highlight that while UW is optimal for yield, HW preserves functional integrity, HA enhances antioxidant properties, and UA is promising for enzyme inhibition. The findings provide insights into tailoring extraction strategies for targeted functional or nutraceutical applications. Full article
Show Figures

Graphical abstract

16 pages, 2668 KiB  
Article
Fungal β-Glucans Enhance Lactic Acid Bacteria Growth by Shortening Their Lag Phase and Increasing Growth Rate
by Andrea Bukša, Filip Petrović and Željka Maglica
Microorganisms 2025, 13(6), 1313; https://doi.org/10.3390/microorganisms13061313 - 5 Jun 2025
Viewed by 584
Abstract
The gut microbiome has a significant role in general health and well-being. Novel types of prebiotics, such as fungal polysaccharides, show potential for the formulation of new synbiotic formulations. However, little is known about the underlying mechanisms of the prebiotic effects of such [...] Read more.
The gut microbiome has a significant role in general health and well-being. Novel types of prebiotics, such as fungal polysaccharides, show potential for the formulation of new synbiotic formulations. However, little is known about the underlying mechanisms of the prebiotic effects of such compounds. This study investigated the prebiotic properties of fungal glucan extracts from Pleurotus ostreatus, Lentinula edodes, and Saccharomyces cerevisiae, employing a novel high-throughput method based on optical density measurements. This approach enabled the simultaneous screening of the effects of multiple extracts on six different strains of probiotic bacteria. Experiments were conducted to evaluate the effect of the extracts on the growth dynamics (the duration of the lag phase and the growth rate) of probiotic strains of the genera Lactobacillus and Lacticaseibacillus and on pathogenic bacteria. Fungal polysaccharide supplementation, particularly with their β-glucans, significantly shortened the lag phase by an average of 7–8 h in all tested strains and increased the growth rate by 2-fold in four strains of lactic acid bacteria. Different magnitudes of effects were observed across the various strain–extract combinations. This study lays the groundwork for elucidating the mechanism by which fungal β-glucans stimulate growth in probiotic bacteria and for the rapid screening of optimal combinations for formulating innovative synbiotics. Full article
Show Figures

Figure 1

12 pages, 550 KiB  
Article
Screening of Lentinula edodes Strains for High Polysaccharide Production and In Vitro Antioxidant Activities
by Jie Zhang, Kanwal Rida, Jiahao Wen, Xiumei Yu, Yunfu Gu, Maoqiang He, Qiang Chen and Quanju Xiang
J. Fungi 2025, 11(5), 347; https://doi.org/10.3390/jof11050347 - 30 Apr 2025
Viewed by 688
Abstract
Lentinan is one of the main metabolites of Lentinula edodes and exhibits numerous biological properties, such as antitumor and antioxidant activity. Despite recent advancements, its commercialization remains constrained by a lengthy cultivation cycle, low yield, and high cost. Therefore, screening strains with high [...] Read more.
Lentinan is one of the main metabolites of Lentinula edodes and exhibits numerous biological properties, such as antitumor and antioxidant activity. Despite recent advancements, its commercialization remains constrained by a lengthy cultivation cycle, low yield, and high cost. Therefore, screening strains with high polysaccharide production or enhanced bioactivity at the mycelial fermentation stage is of significant importance. In this study, the mycelial polysaccharide content and in vitro antioxidant activity of 18 L. edodes strains were evaluated under shaking and static culture conditions. The total polysaccharide content and IC50 values under both culture conditions served as indicators for screening high-yielding and high in vitro antioxidant activity strains. Strain XG21 demonstrated superior polysaccharide production, with a total polysaccharide content of 78.80 mg in 50 mL of culture medium, which was 1.82 times higher than that of the main cultivated strain Xin808 (43.30 mg). Additionally, strain XG19 was identified for its high in vitro antioxidant activity, with total IC50 values of 3.11 and 3.38 mg mL−1 under shaking and static culture conditions, respectively. Further analyses on polysaccharide components, molecular weight, and enzyme activities were conducted on strains XG19, XG21, and Xin808. The results reveal that the polysaccharide from strain XG19 exhibited high uronic acid content and a significant weight-average molecular weight. Specifically, the intracellular polysaccharide uronic acid content (2.96%) was 2.22 and 1.14 times higher than that of Xin808 and XG21, respectively, while its weight-average molecular weight (Mw, 702.924 kDa) was 2.60 and 1.28 times greater than that of Xin808 and XG21. While the uronic acid content in its extracellular polysaccharides (EPSs) (8.26%) was similar to Xin808 and XG21, the Mw (83.894 kDa) was 1.56 times greater than that of XG21. Correlation analysis revealed that the content of extracellular polysaccharides and total polysaccharides was positively correlated with phosphoglucose isomerase (PGI) activity but negatively correlated with phosphoglucomutase (PGM) activity. These findings provide valuable strain information for the screening of mycelial polysaccharides with high yields and bioactivities. Full article
(This article belongs to the Special Issue Breeding and Metabolism of Edible Fungi)
Show Figures

Figure 1

24 pages, 5371 KiB  
Article
Selenium-Enriched Polysaccharides from Lentinula edodes Mycelium: Biosynthesis, Chemical Characterisation, and Assessment of Antioxidant Properties
by Eliza Malinowska, Grzegorz Łapienis, Agnieszka Szczepańska and Jadwiga Turło
Polymers 2025, 17(6), 719; https://doi.org/10.3390/polym17060719 - 9 Mar 2025
Cited by 1 | Viewed by 1213
Abstract
Selenium–polysaccharides possess antioxidant properties, making them promising materials for functional foods, pharmaceuticals, and clinical applications. This study examines the incorporation of selenium into polysaccharides via mycelial biosynthesis and its effects on structure and antioxidant activity. Polysaccharides obtained from Lentinula edodes-submerged cultures grown [...] Read more.
Selenium–polysaccharides possess antioxidant properties, making them promising materials for functional foods, pharmaceuticals, and clinical applications. This study examines the incorporation of selenium into polysaccharides via mycelial biosynthesis and its effects on structure and antioxidant activity. Polysaccharides obtained from Lentinula edodes-submerged cultures grown in Se-supplemented and non-supplemented media were analysed for Se content (RP-HPLC/FLD), structure (FT-IR, HPLC, and HPGPC-ELSD), and antioxidant activity (DPPH scavenging, reducing power, and Fe2+ chelation). Two low-molecular-weight Se–heteropolysaccharides (Se-FE-1.1 and Se-FE-1.2) containing ~80 and 125 µg/g Se were isolated, primarily composed of glucose, mannose, and galactose with β-glycosidic linkages. Se incorporation into polysaccharides selectively enhanced their antioxidant activity in the DPPH radical scavenging assay, with minimal effects observed in iron chelation and reducing power assays. Crude Se–polysaccharides displayed the highest antioxidant activity, suggesting an additional contribution from protein components. Our findings demonstrate that Se is effectively incorporated into polysaccharides, altering monosaccharide composition while preserving glycosidic linkages. The selective enhancement of radical scavenging suggests that selenium plays a specific role in antioxidant activity, primarily influencing radical scavenging mechanisms rather than interactions with metal ions. Further research is needed to clarify the mechanisms of selenium incorporation, the nature of its bonding within the polysaccharide molecule, and its impact on biological activity. Full article
(This article belongs to the Special Issue Optimization, Properties and Application of Polysaccharides)
Show Figures

Graphical abstract

14 pages, 1436 KiB  
Article
Effect of Frying Temperatures and Times on the Quality and Flavors of Three Varieties of Lentinus edodes
by Yan Chen, Yaping Wang, Qinglin Guan and Xiaoli Zhou
Foods 2025, 14(1), 24; https://doi.org/10.3390/foods14010024 - 25 Dec 2024
Cited by 1 | Viewed by 1157
Abstract
The effects of frying times (1, 2, 3, and 4 min) and temperatures (140, 160, 180, and 200 °C) were investigated on the nutritional components, color, texture, and volatile compounds of three Lentinula edodes varieties (808, 0912, and LM) from Guizhou, China. Increased [...] Read more.
The effects of frying times (1, 2, 3, and 4 min) and temperatures (140, 160, 180, and 200 °C) were investigated on the nutritional components, color, texture, and volatile compounds of three Lentinula edodes varieties (808, 0912, and LM) from Guizhou, China. Increased frying time and temperature significantly reduced the moisture, polysaccharide, and protein contents, while increasing hardness and chewiness, and decreasing elasticity and extrusion resilience, negatively impacting overall quality. Optimal umami and sweet amino acid retention were achieved by frying at 160 °C frying for 1–3 min or 140–180 °C for 2 min. Nine volatile compounds were identified, with sulfur-containing compound levels decreasing and ketone, aldehyde, pyrazine, and other volatile compound levels increasing as frying progressed. At temperatures above 180 °C, variety 808 displayed a duller appearance, while variety LM experienced significant water and protein loss, making them unsuitable for frying under these conditions. Conversely, variety 0912 demonstrated superior characteristics, such as retaining higher levels of aspartic acid and sulfur-containing compounds, resulting in a sweeter taste. Overall, frying for 2–3 min at 160–180 °C can preserve high nutritional quality and taste and enhance flavor characteristics relatively well. These findings provide a theoretical basis for the deep processing and utilization of Lentinula edodes and for standardized industrial production. Full article
Show Figures

Figure 1

20 pages, 557 KiB  
Article
Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms
by Eirini-Maria Melanouri, Ilias Diamantis, Seraphim Papanikolaou and Panagiota Diamantopoulou
Processes 2024, 12(12), 2792; https://doi.org/10.3390/pr12122792 - 6 Dec 2024
Viewed by 1161
Abstract
Utilizing agricultural waste to produce mushrooms may be a cost-effective and environmentally friendly proposition to address the nutritional and health demands of the growing global population. Mushrooms can grow on a range of substrates and their selection is based on their availability and [...] Read more.
Utilizing agricultural waste to produce mushrooms may be a cost-effective and environmentally friendly proposition to address the nutritional and health demands of the growing global population. Mushrooms can grow on a range of substrates and their selection is based on their availability and cost. In this study, five types of local waste were mixed: olive crop residues (OC), coffee residue (CR) or rice husk (RH) with wheat straw (WS) and beech wood shavings (BW), respectively. Then, the mixtures were sprayed with 20% w/w lipid fermentation wastewater (LFW) from Rodosporidium toruloides that was used as an alternative substrate-moistening method. Afterwards, these mixtures were tested for cultivating Pleurotus spp., Ganoderma spp. and Lentinula edodes. The results showed that the substrate significantly affected the incubation period and the biological efficiency (BE), with OC mixed substrates proving to be the most favorable across the different species. Pleurotus spp. had the shortest cultivation times and the highest BE, while G. lucidum required the longest incubation periods and had the lowest BE, particularly on CR substrates. The study also found that substrates affected mushroom morphology. Nutritional analysis revealed significant differences in protein, polysaccharides, lipids, ash and energy content, depending on the species and substrate. High protein levels were found in P. eryngii (28.05–29.58% d.w.) and G. resinaceum (28.71–29.90% d.w.). The elevated total phenolic compounds (28.47–40.17 mgGAE/g) values in carposomes from CR and OC substrates for Ganoderma spp., L. edodes, P. pulmonarius and P. ostreatus, along with antioxidant activity (DPPH, ABTS, FRAP) assays, highlighted the crucial role of substrate composition in enhancing the medicinal properties of mushrooms. The mixed substrates also influenced the fatty acid (FA) and polysaccharide composition, with WS increasing unsaturated FAs and glucose (<69.8%) being the primary monosaccharide. The study suggests that using the spraying method of 20% w/w LFW as a moisture agent in these substrates is effective for mushroom production. Full article
(This article belongs to the Special Issue Microbial Cultures in Food Production)
Show Figures

Figure 1

17 pages, 3423 KiB  
Article
Selenopolysaccharide Isolated from Lentinula edodes Mycelium Affects Human T-Cell Function
by Beata Kaleta, Katarzyna Zielniok, Aleksander Roszczyk, Jadwiga Turło and Radosław Zagożdżon
Int. J. Mol. Sci. 2024, 25(21), 11576; https://doi.org/10.3390/ijms252111576 - 28 Oct 2024
Cited by 2 | Viewed by 1219
Abstract
Lentinula edodes polysaccharides are natural immunomodulators. SeLe30, analyzed in this study, is a new mixture of selenium-enriched linear 1,4-α-glucans and 1,3-β- and 1,6-β-glucans isolated from L. edodes mycelium. In the present study, we evaluated its immunomodulatory properties in human T cells. Peripheral blood [...] Read more.
Lentinula edodes polysaccharides are natural immunomodulators. SeLe30, analyzed in this study, is a new mixture of selenium-enriched linear 1,4-α-glucans and 1,3-β- and 1,6-β-glucans isolated from L. edodes mycelium. In the present study, we evaluated its immunomodulatory properties in human T cells. Peripheral blood mononuclear cells (PBMCs) and T cells were isolated from healthy donors’ buffy coats. The effects of SeLe30 on CD25, CD366, and CD279 expression, the subsets of CD8+ T cells, and IFN-γ, IL-6, and TNF-α production were analyzed. SeLe30 downregulated CD25, CD279, and CD366 expression on T cells stimulated by the anti-CD3 antibody (Ab) and upregulated in unstimulated and anti-CD3/CD28-Abs-stimulated T cells. It increased the percentage of central memory CD8+ T cells in unstimulated PBMCs and naïve and central memory T cells in anti-CD3-Ab-stimulated PBMCs. SeLe30 decreased the number of central memory and naïve CD8+ T cells in anti-CD3/CD28-stimulated T cells, whereas, in PBMCs, it reduced the percentage of effector memory CD8+ T cells. Moreover, SeLe30 upregulated cytokine production. SeLe30 exhibits context-dependent effects on T cells. It acts on unstimulated T cells, affecting their activation while increasing the expression of immune checkpoints, which sensitizes them to inhibitory signals that can silence this activation. In the case of a lack of costimulation, SeLe30 exhibits an inhibitory effect, reducing T-cell activation. In cells stimulated by dual signals, its effect is further enhanced, again increasing the “safety brake” of CD366 and CD279. However, the final SeLe30 effect is mediated by its indirect impacts by altering interactions with other immune cells. Full article
Show Figures

Figure 1

17 pages, 2096 KiB  
Article
Optimization of Se- and Zn-Enriched Mycelium of Lentinula edodes (Berk.) Pegler as a Dietary Supplement with Immunostimulatory Activity
by Małgorzata Kałucka, Aleksander Roszczyk, Marzenna Klimaszewska, Beata Kaleta, Ewelina Drelich, Anna Błażewicz, Sandra Górska-Jakubowska, Eliza Malinowska, Marek Król, Aleksandra Maria Prus, Katarzyna Trześniowska, Aleksandra Wołczyńska, Przemysław Dorożyński, Radosław Zagożdżon and Jadwiga Turło
Nutrients 2023, 15(18), 4015; https://doi.org/10.3390/nu15184015 - 16 Sep 2023
Cited by 4 | Viewed by 2328
Abstract
Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of [...] Read more.
Mycelial cultures of Lentinula edodes, an edible and medicinal mushroom, have been used in our previous research to obtain selenium-containing immunomodulatory preparations. Our current attempts to obtain a new preparation containing both selenium and zinc, two micronutrients necessary for the functioning of the immune system, extended our interest in the simultaneous accumulation of these elements by mycelia growing in media enriched with selenite and zinc(II) ions. Subsequently, we have studied the effects of new L. edodes mycelium water extracts with different concentrations of selenium and zinc on the activation of T cell fraction in human peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis was used to measure the expression of activation markers on human CD4+ and CD8+ T cells stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs). It was demonstrated that statistically significant changes were observed for PD-1 and CD25 antigens on CD8+ T cells. The selenium and zinc content in the examined preparations modified the immunomodulatory activity of mycelial polysaccharides; however, the mechanisms of action of various active ingredients in the mycelial extracts seem to be different. Full article
(This article belongs to the Special Issue Functional Foods and Sustainable Health)
Show Figures

Figure 1

17 pages, 3688 KiB  
Article
Lentinula edodes Sing Polysaccharide: Extraction, Characterization, Bioactivities, and Emulsifying Applications
by Yan Dai, Lei Wang, Xingyi Chen, Angxin Song, Laping He, Lingyuan Wang and Diandian Huang
Foods 2023, 12(17), 3289; https://doi.org/10.3390/foods12173289 - 1 Sep 2023
Cited by 12 | Viewed by 3108
Abstract
In the present work, the optimization of extraction, emulsifying properties, and biological activities of polysaccharides from Lentinula edodes Sing (LES) were studied. The results showed LES polysaccharides extracted by hot water or ultrasonication are a group of β-glucan. Among all the samples, the [...] Read more.
In the present work, the optimization of extraction, emulsifying properties, and biological activities of polysaccharides from Lentinula edodes Sing (LES) were studied. The results showed LES polysaccharides extracted by hot water or ultrasonication are a group of β-glucan. Among all the samples, the one extracted by hot water showed the best emulsifying capacity. In addition, the results demonstrated that LES polysaccharide had strong scavenging activities in vitro on DPPH and ABTS radicals, which reached the highest level for the one extracted by 90 min ultrasonication (p < 0.05). Overall, Lentinula edodes Sing polysaccharides (LESPs) may have potential applications as emulsifying agents in food industries. Full article
Show Figures

Figure 1

19 pages, 1429 KiB  
Review
The Mushroom Glucans: Molecules of High Biological and Medicinal Importance
by János Vetter
Foods 2023, 12(5), 1009; https://doi.org/10.3390/foods12051009 - 27 Feb 2023
Cited by 61 | Viewed by 9994
Abstract
Carbohydrates, including polysaccharide macromolecules, are the main constituents of the fungal cell wall. Among these, the homo- or heteropolymeric glucan molecules are decisive, as they not only protect fungal cells but also have broad, positive biological effects on the animal and human bodies. [...] Read more.
Carbohydrates, including polysaccharide macromolecules, are the main constituents of the fungal cell wall. Among these, the homo- or heteropolymeric glucan molecules are decisive, as they not only protect fungal cells but also have broad, positive biological effects on the animal and human bodies. In addition to the beneficial nutritional properties of mushrooms (mineral elements, favorable proteins, low fat and energy content, pleasant aroma, and flavor), they have a high glucan content. Folk medicine (especially in the Far East) used medicinal mushrooms based on previous experience. At the end of the 19th century, but mainly since the middle of the 20th century, progressively more scientific information has been published. Glucans from mushrooms are polysaccharides that contain sugar chains, sometimes of only one kind (glucose), sometimes having several monosaccharide units, and they have two (α and β) anomeric forms (isomers). Their molecular weights range from 104 to 105 Da, and rarely 106 Da. X-ray diffraction studies were the first to determine the triple helix configuration of some glucans. It seems that the existence and integrity of the triple helix structure are criteria for their biological effects. Different glucans can be isolated from different mushroom species, and several glucan fractions can be obtained. The biosynthesis of glucans takes place in the cytoplasm, the processes of initiation and then chain extension take place with the help of the glucan synthase enzyme complex (EC 2.4.1.34), and the sugar units are provided by sugar donor UDPG molecules. The two methods used today for glucan determination are the enzymatic and Congo red methods. True comparisons can only be made using the same method. Congo red dye reacts with the tertiary triple helix structure, and the resulting glucan content better reflects the biological value of glucan molecules. The biological effect of β-glucan molecules is proportional to the integrity of the tertiary structure. The glucan contents of the stipe exceed the values of the caps. The glucan levels of individual fungal taxa (including varieties) differ quantitatively and qualitatively. This review presents in more detail the glucans of lentinan (from Lentinula edodes), pleuran (from Pleurotus ostreatus), grifolan (from Grifola frondose), schizophyllan (from Schizophyllum commune), and krestin (from Trametes versicolor), along with their main biological effects. Full article
Show Figures

Figure 1

17 pages, 2260 KiB  
Article
The Effect of Mushroom Culture Filtrates on the Inhibition of Mycotoxins Produced by Aspergillus flavus and Aspergillus carbonarius
by Jelena Loncar, Barbara Bellich, Paola Cescutti, Alice Motola, Marzia Beccaccioli, Slaven Zjalic and Massimo Reverberi
Toxins 2023, 15(3), 177; https://doi.org/10.3390/toxins15030177 - 25 Feb 2023
Cited by 4 | Viewed by 2720
Abstract
Two of the mycotoxins of greatest agroeconomic significance are aflatoxin B1 (AFB1), and ochratoxin A (OTA). It has been reported that extracts from some wood-decaying mushrooms, such as Lentinula edodes and Trametes versicolor showed the ability to inhibit AFB1 [...] Read more.
Two of the mycotoxins of greatest agroeconomic significance are aflatoxin B1 (AFB1), and ochratoxin A (OTA). It has been reported that extracts from some wood-decaying mushrooms, such as Lentinula edodes and Trametes versicolor showed the ability to inhibit AFB1 or OTA biosynthesis. Therefore, in our study, a wide screening of 42 isolates of different ligninolytic mushrooms was assayed for their ability to inhibit the synthesis of OTA in Aspergillus carbonarius and AFB1 in Aspergillus flavus, in order to find a metabolite that can simultaneously inhibit both mycotoxins. The results showed that four isolates produce metabolites able to inhibit the synthesis of OTA, and 11 isolates produced metabolites that inhibited AFB1 by >50%. Two strains, the Trametes versicolor strain TV117 and the Schizophyllum commune strain S.C. Ailanto, produced metabolites able to significantly inhibit (>90%) the synthesis of both mycotoxins. Preliminary results suggest that the mechanism of efficacy of the S. commune rough and semipurified polysaccharides could be analogous to that found previously for Tramesan®, by enhancing the antioxidant response in the target fungal cells. The overall results indicate that S. commune’s polysaccharide(s) could be a potential agent(s) in biological control and/or a useful component of the integrated strategies able to control mycotoxin synthesis. Full article
(This article belongs to the Special Issue Advances in Rapid Detection and Reduction of Aflatoxins)
Show Figures

Figure 1

14 pages, 2262 KiB  
Article
The Effect of Novel Selenopolysaccharide Isolated from Lentinula edodes Mycelium on Human T Lymphocytes Activation, Proliferation, and Cytokines Synthesis
by Aleksander Roszczyk, Michał Zych, Katarzyna Zielniok, Natalia Krata, Jadwiga Turło, Marzenna Klimaszewska, Radosław Zagożdżon and Beata Kaleta
Biomolecules 2022, 12(12), 1900; https://doi.org/10.3390/biom12121900 - 19 Dec 2022
Cited by 6 | Viewed by 2556
Abstract
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the [...] Read more.
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the effects of Se-Le-30 on the activation and proliferation of human T lymphocytes stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs) and on the production of cytokines by peripheral blood mononuclear cells (PBMCs). Se-Le-30 had effects on T cell proliferation induced by Abs against CD3 and CD28. It significantly inhibited the proliferation of CD3-stimulated CD4+ and CD8+ T cells and enhanced the proliferation of CD4+ T cells stimulated with anti-CD3/CD28 Ab. Moreover, Se-Le-30 downregulated the number of CD3-stimulated CD4+CD69+ cells, CD4+CD25+ cells, as well as CD8+CD25+ cells, and upregulated the expression of CD25 marker on CD4+ and CD8+ T cells activated with anti-CD3/CD28 Abs. Furthermore, Se-Le-30 enhanced the synthesis of IFN-γ by the unstimulated and anti-CD3/CD28-stimulated PBMCs, inhibited synthesis of IL-2 and IL-4 by CD3-stimulated cells, and augmented the synthesis of IL-6 and IL-10 by unstimulated, CD3-stimulated, and CD3/CD28-stimulated PBMCs. Together, we demonstrated that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes. These observations are of importance for the prospective use of Se-Le-30 in research or as a therapeutic compound. Full article
Show Figures

Figure 1

13 pages, 3099 KiB  
Article
Lentinus edodes Polysaccharides Alleviate Acute Lung Injury by Inhibiting Oxidative Stress and Inflammation
by Yiwen Zhang, Yanfei Cui, Yanbo Feng, Fengping Jiao and Le Jia
Molecules 2022, 27(21), 7328; https://doi.org/10.3390/molecules27217328 - 28 Oct 2022
Cited by 27 | Viewed by 2770
Abstract
Acute lung injury (ALI) is a kind of lung disease with acute dyspnea, pulmonary inflammation, respiratory distress, and non-cardiogenic pulmonary edema, accompanied by the mid- and end-stage characteristics of COVID-19, clinically. It is imperative to find non-toxic natural substances on preventing ALI and [...] Read more.
Acute lung injury (ALI) is a kind of lung disease with acute dyspnea, pulmonary inflammation, respiratory distress, and non-cardiogenic pulmonary edema, accompanied by the mid- and end-stage characteristics of COVID-19, clinically. It is imperative to find non-toxic natural substances on preventing ALI and its complications. The animal experiments demonstrated that Lentinus edodes polysaccharides (PLE) had a potential role in alleviating ALI by inhibiting oxidative stress and inflammation, which was manifested by reducing the levels of serum lung injury indicators (C3, hs-CRP, and GGT), reducing the levels of inflammatory factors (TNF-α, IL-1β, and IL-6), and increasing the activities of antioxidant enzymes (SOD and CAT) in the lung. Furthermore, PLE had the typical characteristics of pyran-type linked by β-type glycosidic linkages. The conclusions indicated that PLE could be used as functional foods and natural drugs in preventing ALI. Full article
(This article belongs to the Special Issue Food Polysaccharides: Structure, Properties and Application)
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Enhanced Effects of Iron on Mycelial Growth, Metabolism and In Vitro Antioxidant Activity of Polysaccharides from Lentinula edodes
by Quanju Xiang, Huijuan Zhang, Xiaoqian Chen, Shiyao Hou, Yunfu Gu, Xiumei Yu, Ke Zhao, Xiaoping Zhang, Menggen Ma, Qiang Chen, Penttinen Petri and Xiaoqiong Chen
Bioengineering 2022, 9(10), 581; https://doi.org/10.3390/bioengineering9100581 - 19 Oct 2022
Cited by 10 | Viewed by 2439
Abstract
The polysaccharides found in Lentinula edodes have a variety of medicinal properties, such as anti-tumor and anti-viral effects, but their content in L. edodes sporophores is very low. In this study, Fe2+ was added to the liquid fermentation medium of L [...] Read more.
The polysaccharides found in Lentinula edodes have a variety of medicinal properties, such as anti-tumor and anti-viral effects, but their content in L. edodes sporophores is very low. In this study, Fe2+ was added to the liquid fermentation medium of L. edodes to analyze its effects on mycelial growth, polysaccharide and enzyme production, gene expression, and the activities of enzymes involved in polysaccharide biosynthesis, and in vitro antioxidation of polysaccharides. The results showed that when 200 mg/L of Fe2+ was added, with 7 days of shaking at 150 rpm and 3 days of static culture, the biomass reached its highest value (0.28 mg/50 mL) 50 days after the addition of Fe2+. Besides, Fe2+ addition also enhanced intracellular polysaccharide (IPS) and exopolysaccharide (EPS) productions, the levels of which were 2.98- and 1.79-fold higher than the control. The activities of the enzymes involved in polysaccharides biosynthesis, including phosphoglucomutase (PGM), phosphoglucose isomerase (PGI), and UDPG-pyrophosphorylase (UGP) were also increased under Fe2+ addition. Maximum PGI activity reached 1525.20 U/mg 30 days after Fe2+ addition, whereas PGM and UGP activities reached 3607.05 U/mg and 3823.27 U/mg 60 days after Fe2+ addition, respectively. The Pearson correlation coefficient showed a strong correlation (p < 0.01) between IPS production and PGM and UGP activities. The corresponding coding genes of the three enzymes were also upregulated. When evaluating the in vitro antioxidant activities of polysaccharides, EPS from all Fe2+-treated cultures exhibited significantly better capacity (p < 0.05) for scavenging -OH radicals. The results of the two-way ANOVA indicated that the abilities of polysaccharides to scavenge O2 radicals were significantly (p < 0.01) affected by Fe2+ concentration and incubation time. These results indicated that the addition of iron provided a good way to achieve desirable biomass, polysaccharide production, and the in vitro antioxidation of polysaccharides from L. edodes. Full article
(This article belongs to the Special Issue Bioengineering of Polysaccharide Production Systems)
Show Figures

Graphical abstract

Back to TopTop