Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Species, Substrates and Culture Conditions
2.2. Analytical Methods
2.2.1. Protein
2.2.2. Lipid
2.2.3. Intracellular Polysaccharides (IPS) and Ash Content
2.2.4. Energy Values
2.3. Total Phenolic Compounds and Antioxidant Activity
2.3.1. Analysis of Phenolic Compounds
2.3.2. Determination of Antioxidant Activities (DPPH, ABTS and FRAP Methods)
2.4. Data Analysis
3. Results and Discussion
3.1. Fungal Cultivation and Mushroom Yield Evaluation in Polypropylene Bags
3.2. Nutritional Composition of Mushrooms
3.3. Fungal Phenolic Compounds—Antioxidant Components
3.4. IPS and Fatty Acid (FA) Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miles, P.G.; Chang, S.-T. Mushrooms; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Cheung, P.C.K. (Ed.) Nutritional Value and Health Benefits of Mushrooms. In Mushrooms as Functional Foods; Wiley: Hoboken, NJ, USA, 2008; pp. 71–109. [Google Scholar]
- Rushita, S.; Vijayakumar, M.; Noorlidah, A.; Ameen Abdulla, M.; Vikineswary, S. Effect of Pleurotus citrinopileatus on blood glucose, insulin and catalase of streptozotocin-induced type 2 diabetes mellitus rats. J. Anim. Plant Sci. 2013, 23, 1566–1571. [Google Scholar]
- Philippoussis, A.; Diamantopoulou, P. Exploitation of the biotechnological potential of agro-industrial by-products through mushroom cultivation. In Mushroom Biotechnology and Bioengineering; Petre, M., Berovic, M., Eds.; University of Pitesti: Bucharest, Romania, 2012; pp. 161–184. [Google Scholar]
- Chang, S. Overview of mushroom cultivation and utilization as functional foods. In Mushrooms as Functional Foods; Cheung, P.C.K., Ed.; Wiley: Hoboken, NJ, USA, 2008; pp. 1–33. [Google Scholar]
- Melanouri, E.M.; Papanikolaou, S.; Diamantopoulou, P. Mortierella ramanniana lipid fermentation wastewater as an innovative maceration liquid medium for sustainable solid-state cultivation of higher fungi. Waste Biomass Valori. 2024, 15, 6903–6925. [Google Scholar] [CrossRef]
- Liang, C.-H.; Wu, C.-Y.; Lu, P.-L.; Kuo, Y.-C.; Liang, Z.-C. Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi J. Biol. Sci. 2019, 26, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Philippoussis, A.; Zervakis, G.; Diamantopoulou, P. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J. Microbiol. Biotechnol. 2001, 17, 191–200. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.-M.; Karayannis, D.; Kaminarides, E.-I.; Diamantopoulou, P. Utilization of spent substrates and waste products of mushroom cultivation to produce new crops of Pleurotus ostreatus, Pleurotus eryngii and Agaricus bisporus. Carbon Resour. Convers. 2024, 7, 100196. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol. 2009, 21, 83–87. [Google Scholar] [CrossRef]
- Bellou, S.; Triantaphyllidou, I.-E.; Aggeli, D.; Elazzazy, A.M.; Baeshen, M.N.; Aggelis, G. Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 2016, 37, 24–35. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Stoforos, N.G.; Xenopoulos, E.; Sarris, D.; Psarianos, D.; Philippoussis, A.; Papanikolaou, S. Lipid production by Cryptococcus curvatus growing on commercial xylose and subsequent valorization of fermentation waste-waters for the production of edible and medicinal mushrooms. Biochem. Eng. J. 2020, 162, 107706. [Google Scholar] [CrossRef]
- Diamantis, I.; Papanikolaou, S.; Michou, S.; Anastasopoulos, V.; Diamantopoulou, P. Yeast lipids from crude glycerol media and utilization of lipid fermentation wastewater as maceration water in cultures of edible and medicinal mushrooms. Processes 2023, 11, 3178. [Google Scholar] [CrossRef]
- Sarris, D.; Tsouko, E.; Photiades, A.; Tchakouteu, S.S.; Diamantopoulou, P.; Papanikolaou, S. Growth response of non-conventional yeasts on sugar-rich media: Part 2: Citric acid production and circular-oriented valorization of glucose-enriched olive mill wastewaters using novel Yarrowia lipolytica strains. Microorganisms 2023, 11, 2243. [Google Scholar] [CrossRef] [PubMed]
- Ayimbila, F.; Keawsompong, S. Nutritional quality and biological application of mushroom protein as a novel protein alternative. Curr. Nutr. Rep. 2023, 12, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Michael, H.W.; Bultosa, G.; Pant, L.M. Nutritional contents of three edible oyster mushrooms grown on two substrates at Haramaya, Ethiopia, and sensory properties of boiled mushroom and mushroom sauce. Int. J. Food Sci. Technol. 2011, 46, 732–738. [Google Scholar] [CrossRef]
- Chiu, S.W.; Moore, D. Threats to biodiversity caused by traditional mushroom cultivation technology in China. In Fungal Conservation; Moore, D., Nauta, M.M., Evans, S.E., Rotheroe, M., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 111–119. [Google Scholar]
- Ander, B.; Dupasquier, C.; Prociuk, M.; Pierce, G. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar]
- Osińska-Jaroszuk, M.; Jaszek, M.; Mizerska-Dudka, M.; Błachowicz, A.; Rejczak, T.P.; Janusz, G.; Wydrych, J.; Polak, J.; Jarosz-Wilkołazka, A.; Kandefer-Szerszeń, M. Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed Res. Int. 2014, 2014, 743812. [Google Scholar] [CrossRef]
- Israilides, C.; Kletsas, D.; Arapoglou, D.; Philippoussis, A.; Pratsinis, H.; Ebringerová, A.; Hříbalová, V.; Harding, S.E. In Vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine 2008, 15, 512–519. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.F.G.; Griensven, L.J.L.D.V. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 2011, 129, 1667–1675. [Google Scholar] [CrossRef]
- Telles, C.B.S.; Sabry, D.A.; Almeida-Lima, J.; Costa, M.S.S.P.; Melo-Silveira, R.F.; Trindade, E.S.; Sassaki, G.L.; Wisbeck, E.; Furlan, S.A.; Leite, E.L.; et al. Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor-caju alters its antioxidant, anticoagulant and antiproliferative properties in vit0ro. Carbohydr. Polym. 2011, 85, 514–521. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Morimoto, K.; Hamasaki, T. Flavoglaucin, a metabolite of Eurotium chevalieri, its antioxidation and synergism with tocopherol. J. Am. Oil Chem. Soc. 1984, 61, 1864–1868. [Google Scholar] [CrossRef]
- Lin, J.-T.; Liu, C.-W.; Chen, Y.-C.; Hu, C.-C.; Juang, L.-D.; Shiesh, C.-C.; Yang, D.-J. Chemical composition, antioxidant and anti-inflammatory properties for ethanolic extracts from Pleurotus eryngii fruiting bodies harvested at different time. LWT—Food Sci. Technol. 2014, 55, 374–382. [Google Scholar] [CrossRef]
- Melanouri, E.-M.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part II: Effect on productivity and quality of carposomes. Carbon Resour. Convers. 2022, 5, 52–60. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Dedousi, M.; Melanouri, E.M.; Panagopoulou, I.; Gardeli, C.; Papanikolaou, S.; Diamantopoulou, P. Biochemical, functional and antioxidant dynamics potential of higher fungi cultivated on agro-industrial residues. Part I: Cultures on media supplemented with yeast extract, gypsum and commodity vegetable oils. Resour. Chem. Mater. 2024, S2772443324000199. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst. Eng. 2014, 37, 1385–1400. [Google Scholar] [CrossRef]
- Sekino, N.; Jiang, Z. Fuel and material utilization of a waste shiitake (Lentinula edodes) mushroom bed derived from hardwood chips I: Characteristics of calorific value in terms of elemental composition and ash content. J. Wood Sci. 2021, 67, 1. [Google Scholar] [CrossRef]
- Kalmıs, E.; Azbar, N.; Yıldız, H.; Kalyoncu, F. Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw. Bioresour. Technol. 2008, 99, 164–169. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Niamah, A.K. Identification and antioxidant activity of hyaluronic acid extracted from local isolates of Streptococcus thermophilus. Mater. Today Proc. 2022, 60, 1523–1529. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Melanouri, E.-M.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization phase. Carbon Resour. Convers. 2022, 5, 61–70. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.-M.; Diamantopoulou, P. Carposome productivity of Pleurotus ostreatus and Pleurotus eryngii growing on agro-industrial residues enriched with nitrogen, calcium salts and oils. Carbon Resour. Convers. 2023, 6, 150–165. [Google Scholar] [CrossRef]
- Akyüz, M.; Yildiz, A. Evaluation of cellulosic wastes for the cultivation of Pleurotus eryngii (DC. Ex Fr.) Quel. Afr. J. Biotechnol. 2008, 7, 1494–1499. [Google Scholar]
- Chai, W.Y.; Krishnan, U.G.; Sabaratnam, V.; Tan, J.B.L. Assessment of coffee waste in formulation of substrate for oyster mushrooms Pleurotus pulmonarius and Pleurotus floridanus. Future Foods 2021, 4, 100075. [Google Scholar] [CrossRef]
- Economou, C.N.; Philippoussis, A.N.; Diamantopoulou, P.A. Spent mushroom substrate for a second cultivation cycle of Pleurotus mushrooms and dephenolization of agro-industrial wastewaters. FEMS Microbiol. Lett. 2020, 367, fnaa060. [Google Scholar] [CrossRef]
- Sardar, H.; Ali, M.A.; Anjum, M.A.; Nawaz, F.; Hussain, S.; Naz, S.; Karimi, S.M. Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Sci. Hortic. 2017, 225, 327–334. [Google Scholar] [CrossRef]
- Mansour–Benamar, M.; Savoie, J.-M.; Chavant, L. Valorization of solid olive mill wastes by cultivation of a local strain of edible mushrooms. C. R. Biol. 2013, 336, 407–415. [Google Scholar] [CrossRef]
- Erkel, E. Yield Performance of Ganoderma lucidum (Fr.) Karst cultivation on substrates containing different protein and carbohydrate sources. Afr. J. Agric. Res. 2009, 4, 1331–1333. [Google Scholar]
- Azizi, M.; Tavana, M.; Farsi, M.; Oroojalian, F. Yield performance of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (higher basidiomycetes), using different waste materials as substrates. Int. J. Med. Mushrooms 2012, 14, 521–527. [Google Scholar] [CrossRef]
- Veena, S.S.; Pandey, M. Paddy Straw as a Substrate for the Cultivation of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. in India. Int. J. Med. Mushrooms 2011, 13, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Ueitele, I.; Percy, C.; Kadhila, N. Optimization of indigenous Ganoderma lucidum productivity under cultivation in Namibia. Int. Sci. Technol. J. Namib. 2014, 3, 35–41. [Google Scholar]
- Philippoussis, A.; Diamantopoulou, P.; Israilides, C. Productivity of agricultural residues used for the cultivation of the medicinal fungus Lentinula edodes. Int. Biodeterior. Biodegrad. 2007, 59, 216–219. [Google Scholar] [CrossRef]
- Sardar, A.; Satankar, V.; Jagajanantha, P.; Vellaichamy, M. Effect of substrates (cotton stalks and cotton seed hulls) on growth, yield and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus florida). J. Cotton Res. Dev. 2020, 34, 135–145. [Google Scholar]
- Park, H.-S.; Lee, E.-J.; Lee, C.-J.; Kong, W.-S.; Jang, M.-J.; Lee, K.-W. Browning efficiency and fruiting body characteristics of Lentinula edodes according to LED light source with sawdust substrate. J. Mushroom 2017, 15, 195–201. [Google Scholar]
- Badham, E.R. Influence of water potential on growth of shiitake mycelium. Mycologia 1989, 81, 464–468. [Google Scholar] [CrossRef]
- Crisan, E.V.; Sands, A. Nutritional Value. In The Biology and Cultivation of Edible Mushrooms; Academic Press Inc.: London, UK, 1978; pp. 137–168. [Google Scholar]
- Ulziijargal, E.; Mau, J.-L. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int. J. Med. Mushrooms 2011, 13, 343–349. [Google Scholar] [CrossRef]
- Mau, J.-L.; Lin, H.-C.; Chen, C.-C. Non-volatile components of several medicinal mushrooms. Food Res. Int. 2001, 34, 521–526. [Google Scholar] [CrossRef]
- Hsieh, C.; Yang, F.-C. Reusing Soy Residue for the Solid-State Fermentation of Ganoderma Lucidum. Bioresour. Technol. 2004, 91, 105–109. [Google Scholar] [CrossRef]
- Akyuz, M.; Kirbag, S. Nutritive value of Pleurotus eryngii (DC. Ex Fr.) Quel. var. eryngii grown on various agrowastes. Philipp. Agric. Sci. 2009, 92, 327–331. [Google Scholar]
- Hoa, H.T.; Wang, C.-L.; Wang, C.-H. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Lau, O.W.; Cho, K.Y. The cultivation and nutritional value of Pleurotus sajor-caju. Eur. J. Appl. Microbiol. Biotechnol. 1981, 12, 58–62. [Google Scholar] [CrossRef]
- Ragunathan, R.; Gurusamy, R.; Palaniswamy, M.; Swaminathan, K. Cultivation of Pleurotus spp. on various agro-residues. Food Chem. 1996, 55, 139–144. [Google Scholar] [CrossRef]
- Diamantis, I.; Melanouri, E.-M.; Dedousi, M.; Panagopoulou, I.; Papanikolaou, S.; Stoforos, N.G.; Diamantopoulou, P. Sustainable and eco-friendly conversions of olive mill wastewater-based media by Pleurotus pulmonarius cultures. Fermentation 2022, 8, 129. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Gardeli, C.; Papanikolaou, S. Impact of olive mill wastewaters on the physiological behavior of a wild-type new Ganoderma resinaceum isolate. Environ. Sci. Pollut. Res. 2021, 28, 20570–20585. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Yang, J.-H.; Lee, C.-E.; Mau, J.-L. Quality of shiitake stipe steamed bun. Czech J. Food Sci. 2011, 29, 79–86. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lin, H.-C.; Mau, J.-L. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001, 72, 465–471. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J.L.D. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 2011, 113, 1031–1051. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Fourtaka, K.; Melanouri, E.M.; Dedousi, M.; Diamantis, I.; Gardeli, C.; Papanikolaou, S. Examining the impact of substrate composition on the biochemical properties and antioxidant activity of Pleurotus and Agaricus mushrooms. Fermentation 2023, 9, 689. [Google Scholar] [CrossRef]
- Miric, O.; Lalic, V.Z.; Miletic, D.I. The composition of some lipid fractions (phospholipids, triglycerides, free fatty acids, sterols) of wild growing edible mushrooms. Hrana Ishr. Yugosl. 1985, 26, 123–128. [Google Scholar]
- Sancholle, M.; Lösel, D.M.; Laruelle, E. Lipids in fungal biotechnology. In Genetics and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2004; pp. 391–423. [Google Scholar]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Eyre, H.; Kahn, R.; Robertson, R.M.; on behalf of the ACS/ADA/AHA. Collaborative Writing Committee. Preventing cancer, cardiovascular disease, and diabetes. Diabetes Care 2004, 27, 1812–1824. [Google Scholar] [CrossRef]
- Sadli, S.; Saleha, S.; Fiana, D.; Misrahanum, M. The formulation of white oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm) as natural flavoring and the quality test in temperature and drying time variations. IOP Conf. Ser. Earth Environ. Sci. 2021, 922, 012054. [Google Scholar] [CrossRef]
- Yamauchi, M.; Sakamoto, M.; Yamada, M.; Hara, H.; Mat Taib, S.; Rezania, S.; Mohd Fadhil, M.D.; Mohd Hanafi, F.H. Cultivation of oyster mushroom (Pleurotus ostreatus) on fermented moso bamboo sawdust. J. King Saud Univ.-Sci. 2019, 31, 490–494. [Google Scholar] [CrossRef]
- Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.-J.; Lee, M.-W.; Lee, T.-S. Nutritional analysis of cultivated mushrooms in Bangladesh—Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology 2008, 36, 228–232. [Google Scholar] [CrossRef]
- Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.-T.; Yang, Y.-C.; Li, Y.-H.; Mau, J.-L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms. Int. J. Med. Mushrooms 2014, 16, 273–291. [Google Scholar] [CrossRef]
- Singh, R.; Kaur, N.; Shri, R.; Singh, A.P.; Dhingra, G.S. Proximate composition and element contents of selected species of Ganoderma with reference to dietary intakes. Environ. Monit. Assess. 2020, 192, 270. [Google Scholar] [CrossRef]
- Manzi, P.; Gambelli, L.; Marconi, S.; Vivanti, V.; Pizzoferrato, L. Nutrients in edible mushrooms: An inter-species comparative study. Food Chem. 1999, 65, 477–482. [Google Scholar] [CrossRef]
- Mau, J.-L.; Lin, H.-C.; Chen, C.-C. Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem. 2002, 50, 6072–6077. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Huang, S.-J.; Mau, J.-L. Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 2006, 98, 670–677. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lin, H.-C.; Mau, J.-L. Antioxidant properties of several commercial mushrooms. Food Chem. 2002, 77, 229–235. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Khatun, S.; Islam, A.; Cakilcioglu, U.; Guler, P.; Chatterjee, N.C. Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.). NJAS Wagening. J. Life Sci. 2015, 72–73, 1–5. [Google Scholar] [CrossRef]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Uysal, S.; Ceylan, R.; Anwar, F.; Solak, M.H. A comparative fatty acid compositional analysis of different wild species of mushrooms from Turkey. Emir. J. Food Agric. 2015, 27, 532–536. [Google Scholar] [CrossRef]
- Piljac-Zegarac, J.; Samec, D.; Piljac, A.; Mesic, A.; Tkalcec, Z. Antioxidant properties of extracts of wild medicinal mushroom species from Croatia. Int. J. Med. Mushrooms 2011, 13, 257–263. [Google Scholar] [CrossRef]
- Sulistiany, H.; Sudirman, L.I.; Dharmaputra, O.S. Production of fruiting body and antioxidant activity of wild Pleurotus. HAYATI J. Biosci. 2016, 23, 191–195. [Google Scholar] [CrossRef]
- Lee, W.Y.; Park, Y.; Ahn, J.K.; Ka, K.H.; Park, S.Y. Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme Microb. Technol. 2007, 40, 249–254. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.M.; Diamantis, I.; Papanikolaou, S.; Diamantopoulou, P. Biochemical, functional and antioxidant potential of higher fungi cultivated on agro-industrial residues. Part II: Cultures on mixtures of spent mushroom substrates and mushroom cropping by-products. Resour. Chem. Mater. 2024, 3, 175–187. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Pang, X.; Yao, W.; Gao, X. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2010, 46, 451–457. [Google Scholar] [CrossRef]
- Pan, D.; Wang, L.; Chen, C.; Teng, B.; Wang, C.; Xu, Z.; Hu, B.; Zhou, P. Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chem. 2012, 135, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-Y.; Chung, L.-M.; Lee, S.-J.; Ahn, J.-K.; Kim, E.-H.; Kim, M.-J.; Kim, S.-L.; Moon, H.-I.; Ro, H.-M.; Kang, E.-Y.; et al. Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chem. 2009, 113, 386–393. [Google Scholar] [CrossRef]
- Diamantis, I.; Dedousi, M.; Melanouri, E.-M.; Dalaka, E.; Antonopoulou, P.; Adelfopoulou, A.; Papanikolaou, S.; Politis, I.; Theodorou, G.; Diamantopoulou, P. Impact of spent mushroom substrate combined with hydroponic leafy vegetable roots on Pleurotus citrinopileatus productivity and fruit bodies biological properties. Microorganisms 2024, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Dimou, D.M.; Georgala, A.; Komaitis, M.; Aggelis, G. Mycelial fatty acid composition of Pleurotus spp. and its application in the intrageneric differentiation. Mycol. Res. 2002, 106, 925–929. [Google Scholar] [CrossRef]
- Lv, G.; Zhao, J.; Duan, J.; Tang, Y.; Li, S. Comparison of sterols and fatty acids in two species of Ganoderma. Chem. Cent. J. 2012, 6, 10. [Google Scholar] [CrossRef]
- Martínez, A.T.; Barrasa, J.M.; Prieto, A.; Blanco, M.N. Fatty acid composition and taxonomic status of Ganoderma australe from southern Chile. Mycol. Res. 1991, 95, 782–784. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S.; Aggelis, G.; Philippoussis, A. Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chem. 2016, 196, 272–280. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378–385. [Google Scholar] [CrossRef]
- Solomko, E.F.; Panchenko, L.P.; Sil’chenkova, R.K. Lipid content and fatty acid composition of the higher edible fungus-the oyster mushroom Pleurotus ostreatus (Fr.) Kummer. Prikl. Biokhim. Mikrobiol. 1984, 20, 273–279. [Google Scholar]
- Chung, I.-M.; Kim, S.-Y.; Han, J.-G.; Kong, W.-S.; Jung, M.Y.; Kim, S.-H. Fatty acids and stable isotope ratios in shiitake mushrooms (Lentinula edodes) indicate the origin of the cultivation substrate used: A preliminary case study in Korea. Foods 2020, 9, 1210. [Google Scholar] [CrossRef]
Mushroom Species | Substrates | ΒE (%) | Flushes | Average Fresh Weight (g) | Pileus Diameter (mm) | Stipe Length (mm) |
---|---|---|---|---|---|---|
P. ostreatus | CW * | 65.45 ± 3.25 b,c ** | 3 | 168.86 ± 11.21 a,b | 40.00 ± 1.21 b | 31.00 ± 1.25 a |
CB | 64.58 ± 3.14 b,c | 3 | 151.76 ± 10.24 b | 40.00 ± 2.14 b | 30.00 ± 1.77 b | |
OW | 72.21 ± 2.78 a | 3 | 176.19 ± 9.74 a | 50.00 ± 2.14 a | 40.00 ± 1.98 b | |
OB | 71.48 ± 2.74 a,b | 3 | 174.41 ± 8.98 a,b | 45.00 ± 1.44 a,b | 32.00 ± 1.74 b | |
RW | 62.41 ± 3.33 c | 2 | 73.64 ± 3.45 c | 45.00 ± 2.12 a,b | 33.00 ± 2.22 b | |
RB | 63.23 ± 1.65 c | 2 | 79.04 ± 2.84 c | 40.00 ± 3.54 b | 30.00 ± 2.14 b | |
P. eryngii | CW | 58.56 ± 1.47 b | 2 | 151.08 ± 10.23 a,b | 30.00 ± 2.28 b | 45.00 ± 3.96 b |
CB | 54.59 ± 1.63 b | 2 | 128.29 ± 9.85 b | 30.00 ± 1.99 b | 45.00 ± 4.75 b | |
OW | 67.36 ± 2.02 a | 3 | 164.36 ± 20.36 a | 45.00 ± 3.33 a | 70.00 ± 5.24 a | |
OB | 65.21 ± 3.55 a | 3 | 159.11 ± 15.98 a,b | 48.00 ± 2.09 a | 70.00 ± 5.11 a | |
RW | 58.32 ± 1.78 b | 2 | 68.82 ± 8.56 c | 35.00 ± 4.01 b | 55.00 ± 2.87 b | |
RB | 56.69 ± 2.85 b | 2 | 70.86 ± 6.58 c | 30.00 ± 3.69 b | 56.00 ± 3.02 b | |
P. pulmonarius | CW | 68.31 ± 2.18 a,b | 3 | 155.16 ± 10.25 a,b | 45.00 ± 2.96 a | 25.00 ± 1.03 a |
CB | 67.45 ± 3.91 a,b | 3 | 137.40 ± 9.77 b | 40.00 ± 2.58 a | 20.00 ± 1.07 b | |
OW | 71.32 ± 2.45 a | 3 | 166.68 ± 8.69 a | 45.00 ± 2.36 a | 20.00 ± 1.11 b | |
OB | 72.34 ± 3.78 a | 3 | 164.58 ± 8.76 a | 40.00 ± 2.44 a | 25.00 ± 0.98 a | |
RW | 60.14 ± 2.37 b | 2 | 90.43 ± 5.69 c | 40.00 ± 2.88 a | 20.00 ± 1.22 b | |
RB | 58.47 ± 3.85 b | 2 | 84.16 ± 6.31 c | 45.00 ± 3.69 a | 25.00 ± 0.99 a | |
G. resinaceum | CW | 2.25 ± 0.85 b | 1 | 5.81 ± 0.88 b | 45.00 ± 2.99 a | na *** |
CB | 2.68 ± 0.36 a,b | 1 | 6.30 ± 0.98 b | 45.00 ± 2.56 a | na | |
OW | 3.98 ± 0.68 a | 1 | 9.71 ± 1.03 a | 50.00 ± 2.98 a | na | |
OB | 3.87 ± 0.56 a | 1 | 9.44 ± 1.02 a | 50.00 ± 3.55 a | na | |
RW | 0.51 ± 0.04 c | 1 | 0.60 ± 0.06 c | 46.00 ± 3.21 a | na | |
RB | 0.54 ± 0.03 c | 1 | 0.68 ± 0.08 c | 42.00 ± 3.55 a | na | |
G. lucidum | CW | 2.35 ± 0.08 c | 1 | 6.06 ± 0.58 a | 50.00 ± 3.74 a | na |
CB | 2.58 ± 0.08 b | 1 | 6.06 ± 0.78 a | 50.00 ± 3.69 a | na | |
OW | 2.98 ± 0.09 a | 1 | 7.27 ± 0.99 a | 55.00 ± 2.96 a | na | |
OB | 2.87 ± 0.06 a | 1 | 7.00 ± 0.98 a | 50.00 ± 2.98 a | na | |
RW | 0.62 ± 0.08 d | 1 | 0.73 ± 0.05 b | 45.00 ± 3.68 a | na | |
RB | 0.65 ± 0.04 d | 1 | 0.81 ± 0.06 b | 45.00 ± 3.58 a | na | |
G. applanatum | CW | 0.56 ± 0.02 b,c | 1 | 1.44 ± 0.66 a,b | 45.00 ± 2.55 a,b | na |
CB | 0.54 ± 0.01 c | 1 | 1.27 ± 0.32 a,b | 40.00 ± 2.66 b | na | |
OW | 0.61 ± 0.03 b | 1 | 1.49 ± 0.41 a | 45.00 ± 2.31 a,b | na | |
OB | 0.68 ± 0.02 a | 1 | 1.66 ± 0.09 a | 50.00 ± 1.88 a | na | |
RW | 0.42 ± 0.01 d | 1 | 0.50 ± 0.05 b | 40.00 ± 2.85 b | na | |
RB | 0.43 ± 0.01 d | 1 | 0.54 ± 0.01 b | 40.00 ± 2.96 b | na | |
L. edodes | CW | 6.87 ± 0.85 b | 1 | 16.76 ± 0.99 b | 40.00 ± 2.35 a | 25.00 ± 1.47 a |
CB | 5.32 ± 0.32 b | 1 | 12.98 ± 1.21 b | 35.00 ± 2.47 a,b | 30.00 ± 1.66 a | |
OW | 10.21 ± 0.66 a | 1 | 26.58 ± 1.87 a | 35.00 ± 2.85 a,b | 29.00 ± 1.74 a | |
OB | 10.34 ± 0.79 a | 1 | 27.41 ± 2.95 a | 35.00 ± 2.36 a,b | 30.00 ± 1.96 a | |
RW | 5.32 ± 0.25 b | 1 | 13.73 ± 1.24 b | 40.00 ± 2.32 a | 29.00 ± 3.65 a | |
RB | 5.41 ± 0.45 b | 1 | 12.71 ± 1.24 b | 30.00 ± 2.87 b | 28.00 ± 1.44 a |
Mushroom Species | Substrate | %, w/w d.w. | (%, f.w.) | |||
---|---|---|---|---|---|---|
Protein | IPS | Lipid | Ash | kcal | ||
P. ostreatus | CW * | 25.57 ± 1.23 a ** | 38.15 ± 1.25 a,b | 6.76 ± 0.98 a | 8.01 ± 0.98 a | 89.42 ± 10.36 a,b |
CB | 26.34 ± 0.93 a | 41.08 ± 1.33 a | 2.44 ± 0.83 b | 7.85 ± 0.56 a | 52.15 ± 5.58 c | |
OW | 27.49 ± 0.85 a | 37.30 ± 1.85 a,b | 7.18 ± 0.96 a | 7.95 ± 0.87 a | 94.01 ± 6.36 a | |
OB | 27.69 ± 1.79 a | 35.90 ± 1.45 b | 5.60 ± 0.74 a | 7.92 ± 0.85 a | 79.36 ± 4.95 a,b | |
RW | 27.93 ± 0.88 a | 31.80 ± 1.36 c | 5.58 ± 0.65 a | 7.99 ± 0.64 a | 77.74 ± 5.45 a,b | |
RB | 25.09 ± 1.87 a | 29.03 ± 1.22 c | 5.32 ± 0.88 a | 7.69 ± 0.79 a | 72.77 ± 4.85 b | |
P. eryngii | CW | 28.17 ± 1.69 a | 37.50 ± 2.31 a | 6.96 ± 0.96 a | 7.41 ± 0.65 a | 92.41 ± 5.98 a |
CB | 28.42 ± 1.45 a | 35.48 ± 1.85 a,b | 2.96 ± 0.85 b | 7.06 ± 0.49 a | 55.83 ± 5.78 c | |
OW | 28.85 ± 0.98 a | 34.89 ± 1.96 a,b | 4.92 ± 0.69 a,b | 7.45 ± 0.86 a | 73.50 ± 6.95 b | |
OB | 28.05 ± 1.36 a | 35.00 ± 2.01 a,b | 4.52 ± 0.75 b | 7.65 ± 0.36 a | 69.49 ± 4.77 b,c | |
RW | 29.37 ± 1.44 a | 31.04 ± 1.09 b | 4.04 ± 0.85 b | 7.54 ± 0.78 a | 64.43 ± 4.65 b,c | |
RB | 29.58 ± 1.56 a | 30.74 ± 1.33 b | 4.32 ± 0.73 b | 7.32 ± 0.61 a | 67.03 ± 2.36 b,c | |
P. pulmonarius | CW | 27.25 ± 1.56 a | 26.16 ± 1.87 a | 3.80 ± 0.22 a,b | 7.28 ± 0.61 a | 59.22 ± 5.66 a,b |
CB | 28.42 ± 2.31 a | 25.93 ± 1.96 a | 2.42 ± 0.36 b,c | 7.68 ± 0.25 a | 47.35 ± 4.89 b,c | |
OW | 27.82 ± 1.98 a | 25.92 ± 1.56 a | 4.16 ± 0.48 a | 7.84 ± 0.41 a | 62.67 ± 4.78 a | |
OB | 28.39 ± 1.09 a | 24.94 ± 1.48 a | 3.52 ± 0.65 a,b | 7.64 ± 0.62 a | 57.00 ± 4.63 a,b | |
RW | 28.43 ± 1.22 a | 18.26 ± 1.55 b | 1.48 ± 0.74 c | 7.84 ± 0.66 a | 36.10 ± 4.23 c | |
RB | 28.43 ± 1.36 a | 18.83 ± 1.08 b | 1.52 ± 0.98 c | 7.33 ± 0.74 a | 36.64 ± 5.67 c | |
G. resinaceum | CW | 29.23 ± 1.55 a | 38.63 ± 1.87 a,b | 1.32 ± 0.98 a | 5.14 ± 1.21 a | 42.69 ± 3.69 a,b |
CB | 29.90 ± 1.09 a | 42.22 ± 2.33 a | 1.01 ± 0.63 a | 4.85 ± 1.36 a | 41.24 ± 3.84 b | |
OW | 28.81 ± 2.06 a | 34.56 ± 1.99 b | 2.54 ± 0.48 a | 5.85 ± 1.41 a | 51.90 ± 4.56 a | |
OB | 28.71 ± 2.00 a | 35.00 ± 2.07 b | 2.21 ± 0.85 a | 5.78 ± 1.36 a | 49.07 ± 5.21 a,b | |
RW | nm *** | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | nm | |
G. lucidum | CW | 28.54 ± 1.22 a | 33.54 ± 2.01 a | 2.92 ± 0.58 a | 3.25 ± 0.87 a | 54.81 ± 6.98 a |
CB | 29.03 ± 1.98 a | 33.97 ± 2.33 a | 3.14 ± 0.66 a | 4.23 ± 0.69 a | 57.22 ± 5.87 a | |
OW | 29.00 ± 1.54 a | 35.74 ± 2.47 a | 2.74 ± 0.85 a | 3.33 ± 0.84 a | 54.25 ± 4.87 a | |
OB | 29.22 ± 2.03 a | 36.17 ± 1.98 a | 2.41 ± 0.98 a | 4.56 ± 0.69 a | 51.59 ± 5.88 a | |
RW | nm | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | nm | |
G. applanatum | CW | 27.25 ± 2.01 a | 33.45 ± 3.58 a | 2.55 ± 0.75 a | 4.84 ± 0.64 a | 50.76 ± 8.45 a |
CB | 28.42 ± 1.98 a | 33.88 ± 2.54 a | 2.12 ± 0.58 a | 5.33 ± 0.74 a | 47.74 ± 7.15 a | |
OW | 27.82 ± 1.87 a | 35.09 ± 2.87 a | 2.41 ± 0.96 a | 5.19 ± 0.68 a | 50.45 ± 7.41 a | |
OB | 28.39 ± 2.04 a | 34.81 ± 2.45 a | 2.33 ± 0.87 a | 4.71 ± 0.74 a | 49.96 ± 2.36 a | |
RW | nm | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | nm | |
L. edodes | CW | 26.02 ± 1.98 a | 40.22 ± 2.03 a | 2.76 ± 0.56 a | 5.23 ± 0.84 a | 54.46 ± 4.75 a |
CB | 26.49 ± 2.03 a | 40.40 ± 2.74 a | 2.44 ± 0.45 a | 5.65 ± 0.73 a | 51.93 ± 4.67 a | |
OW | 28.26 ± 1.74 a | 39.78 ± 2.14 a | 2.78 ± 0.61 a | 6.01 ± 0.45 a | 55.76 ± 4.85 a | |
OB | 27.70 ± 1.96 a | 40.83 ± 2.30 a | 2.44 ± 0.25 a | 5.98 ± 0.62 a | 52.75 ± 5.61 a | |
RW | 27.56 ± 0.97 a | 38.85 ± 2.15 a | 2.85 ± 0.74 a | 5.71 ± 0.43 a | 55.61 ± 3.33 a | |
RB | 27.35 ± 1.09 a | 39.10 ± 1.97 a | 2.56 ± 0.35 a | 5.62 ± 0.66 a | 52.98 ± 4.51 a |
Mushroom Species | Substrate | Total Phenolic Content (mgGAE/g) | DPPH Radical Scavenging Properties (mg trx/g) | ABTS Radical Scavenging Properties (mg trx/g) | Ferric Reducing Antioxidant Power Assay (FRAP) (mg trx/g) |
---|---|---|---|---|---|
P. ostreatus | CW * | 33.91 ± 3.31 a ** | 2.37 ± 0.21 a | 1.78 ± 0.98 c,d | 9.17 ± 0.87 d |
CB | 32.31 ± 2.85 a | 3.01 ± 0.09 a | 7.42 ± 0.55 a | 37.19 ± 2.01 a | |
OW | 29.05 ± 3.05 a | 3.11 ± 0.54 a | 2.58 ± 0.34 b,c | 21.50 ± 1.02 b | |
OB | 28.47 ± 2.74 a | 3.51 ± 0.41 a | 3.51 ± 0.33 b | 21.51 ± 0.25 b | |
RW | 27.59 ± 2.94 a | 2.54 ± 0.33 a | 1.96 ± 0.41 c,d | 14.62 ± 0.74 c | |
RB | 27.00 ± 2.97 a | 2.68 ± 0.93 a | 0.87 ± 0.12 d | 13.07 ± 0.33 c | |
P. eryngii | CW | 34.39 ± 1.74 a | 2.92 ± 0.24 a,b | 2.13 ± 0.23 a,b | 11.81 ± 0.87 b,c |
CB | 34.72 ± 1.11 a | 3.46 ± 0.15 a | 2.24 ± 0.24 a | 8.90 ± 0.37 e | |
OW | 22.10 ± 2.03 c | 1.88 ± 0.34 b | 1.15 ± 0.15 b,c | 16.83 ± 0.59 a | |
OB | 26.55 ± 1.74 b,c | 1.91 ± 0.66 b | 1.42 ± 0.61 a,b,c | 10.44 ± 0.21 c,d | |
RW | 28.68 ± 1.89 b | 2.10 ± 0.45 b | 2.19 ± 0.48 a | 13.11 ± 0.31 b | |
RB | 26.86 ± 1.64 b | 2.80 ± 0.63 a,b | 1.03 ± 0.24 c | 10.01 ± 0.36 d,e | |
P. pulmonarius | CW | 38.94 ± 2.31 a,b | 2.59 ± 0.64 a,b | 0.10 ± 0.02 c | 10.16 ± 0.23 c |
CB | 37.09 ± 1.98 a,b,c | 1.45 ± 0.54 b,c | 0.05 ± 0.00 d | 9.72 ± 0.97 c | |
OW | 37.78 ± 2.03 a,b,c | 2.81 ± 0.78 a | 1.44 ± 0.02 a | 18.01 ± 0.23 a | |
OB | 40.17 ± 2.41 a | 1.01 ± 0.06 c | 0.23 ± 0.01 b | 5.37 ± 0.66 d | |
RW | 32.52 ± 2.52 b,c | 2.67 ± 0.07 a,b | 0.05 ± 0.00 d | 16.40 ± 1.21 a | |
RB | 31.60 ± 3.05 c | 2.38 ± 0.12 a,b | 0.02 ± 0.00 d | 13.71 ± 1.01 b | |
G. resinaceum | CW | 37.39 ± 2.98 a | 2.23 ± 0.56 a | 6.75 ± 0.98 a | 7.55 ± 0.21 a,b |
CB | 35.04 ± 3.03 a | 2.43 ± 0.23 a | 6.94 ± 0.61 a | 6.94 ± 0.36 b | |
OW | 37.51 ± 2.85 a | 0.99 ± 0.45 a,b | 6.63 ± 0.76 a | 8.29 ± 0.41 a | |
OB | 35.19 ± 2.69 a | 1.58 ± 0.62 b | 6.91 ± 0.83 a | 8.05 ± 0.52 a | |
RW | nm *** | nm | nm | nm | |
RB | nm | nm | nm | nm | |
G. lucidum | CW | 34.39 ± 3.03 a | 2.21 ± 0.36 a | 6.05 ± 0.81 a | 8.60 ± 0.32 a |
CB | 35.79 ± 2.98 a | 2.18 ± 0.25 a | 5.97 ± 0.49 a | 7.71 ± 0.12 a,b | |
OW | 35.20 ± 2.45 a | 1.18 ± 0.34 b | 6.63 ± 0.37 a | 7.43 ± 0.45 b | |
OB | 34.78 ± 2.31 a | 1.04 ± 0.42 b | 6.49 ± 0.71 a | 7.70 ± 0.64 a,b | |
RW | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | |
G. applanatum | CW | 39.91 ± 2.88 a | 1.72 ± 0.31 a | 5.91 ± 0.64 a | 6.39 ± 0.74 a |
CB | 37.09 ± 2.94 a | 1.92 ± 0.16 a | 5.82 ± 0.85 a | 6.66 ± 0.74 a | |
OW | 38.75 ± 2.36 a | 0.82 ± 0.11 b | 6.21 ± 0.45 a | 6.28 ± 0.61 a | |
OB | 37.76 ± 3.06 a | 0.82 ± 0.31 b | 6.36 ± 0.78 a | 6.77 ± 0.54 a | |
RW | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | |
L. edodes | CW | 27.66 ± 2.87 a | 2.28 ± 0.12 a | 0.72 ± 0.02 b | 11.09 ± 0.74 a |
CB | 28.18 ± 2.01 a | 1.48 ± 0.10 b | 0.62 ± 0.05 b,c | 11.15 ± 0.56 a | |
OW | 24.87 ± 1.97 a | 0.91 ± 0.04 c | 0.91 ± 0.06 a | 10.11 ± 0.61 a | |
OB | 25.64 ± 2.03 a | 0.87 ± 0.08 c | 0.94 ± 0.04 a | 10.54 ± 0.23 a | |
RW | 24.36 ± 2.58 a | 0.65 ± 0.11 c | 0.51 ± 0.03 c,d | 10.21 ± 0.45 a | |
RB | 23.33 ± 2.45 a | 0.74 ± 0.21 c | 0.44 ± 0.02 d | 9.85 ± 0.26 a |
Carbohydrates (%, w/w of Total IPS) | ||||
---|---|---|---|---|
Mushroom Species | Substrate | Glucose | Fructose | Mannitol |
P. ostreatus | CW * | 70.5 ± 2.33 a ** | 18.3 ± 1.11 a,b | 11.2 ± 1.01 a |
CB | 72.8 ± 3.05 a | 22.1 ± 1.26 a | 5.1 ± 0.91 b | |
OW | 74.5 ± 2.88 a | 21.3 ± 2.34 a | 4.2 ± 0.87 b | |
OB | 74.6 ± 2.91 a | 20.2 ± 1.87 a | 5.2 ± 0.88 b | |
RW | 70.7 ± 2.46 a | 20.4 ± 2.03 a | 8.9 ± 0.91 a | |
RB | 75.4 ± 2.34 a | 14.0 ± 1.74 b | 10.6 ± 0.86 a | |
P. eryngii | CW | 75.5 ± 3.01 a | 14.2 ± 1.22 a | 10.3 ± 0.23 c |
CB | 76.2 ± 2.99 a | 15.2 ± 1.41 a | 8.6 ± 0.11 d | |
OW | 73.1 ± 2.64 a | 14.7 ± 1.23 a | 12.2 ± 0.10 a | |
OB | 80.3 ± 2.85 a | 15.2 ± 1.24 a | 4.5 ± 0.03 e | |
RW | 72.6 ± 3.41 a | 16.1 ± 1.31 a | 11.3 ± 0.47 b | |
RB | 75.8 ± 3.03 a | 14.2 ± 1.17 a | 10.0 ± 0.24 c | |
P. pulmonarius | CW | 81.7 ± 3.02 a | 10.2 ± 0.23 c | 8.1 ± 0.21 d |
CB | 77.5 ± 3.45 a,b | 11.2 ± 0.74 b,c | 11.3 ± 0.12 b | |
OW | 77.0 ± 2.87 a,b | 13.2 ± 0.64 b | 9.8 ± 0.09 c | |
OB | 80.2 ± 2.74 a | 17.5 ± 0.47 a | 2.3 ± 0.03 e | |
RW | 70.0 ± 2.55 b | 17.2 ± 1.01 a | 12.8 ± 0.85 a | |
RB | 80.3 ± 2.31 a | 17.5 ± 1.07 a | 2.2 ± 0.02 e | |
G. resinaceum | CW | 74.1 ± 3.02 a | 15.3 ± 0.87 a | 10.6 ± 0.87 b |
CB | 73.5 ± 3.45 a | 14.7 ± 0.88 a,b | 11.8 ± 0.56 b | |
OW | 73.5 ± 3.87 a | 15.2 ± 0.64 a,b | 11.3 ± 0.74 b | |
OB | 73.1 ± 3.85 a | 13.5 ± 0.73 b | 13.4 ± 0.64 a | |
RW | nm *** | nm | nm | |
RB | nm | nm | nm | |
G. lucidum | CW | 71.9 ± 3.69 b | 13.9 ± 0.67 a | 14.2 ± 0.98 a |
CB | 71.5 ± 3.45 b | 14.2 ± 0.47 a | 14.3 ± 0.78 a | |
OW | 81.2 ± 3.84 a | 6.3 ± 0.03 b | 12.5 ± 0.45 b | |
OB | 84.4 ± 2.98 a | 8.6 ± 0.12 b | 7.0 ± 0.23 c | |
RW | nm | nm | nm | |
RB | nm | nm | nm | |
G. applanatum | CW | 72.3 ± 2.47 b | 14.2 ± 1.45 a | 13.5 ± 1.44 a |
CB | 71.6 ± 2.64 b | 13.8 ± 2.10 a | 14.6 ± 1.74 a | |
OW | 82.1 ± 3.02 a | 3.7 ± 0.87 b | 14.2 ± 1.23 a | |
OB | 81.0 ± 3.33 a | 5.1 ± 0.66 b | 13.9 ± 1.07 a | |
RW | nm | nm | nm | |
RB | nm | nm | nm | |
L. edodes | CW | 70.7 ± 3.47 b | 14.6 ± 1.01 a | 14.7 ± 1.87 a,b |
CB | 81.4 ± 2.35 a | 10.3 ± 1.03 c | 8.3 ± 1.47 c | |
OW | 72.3 ± 1.98 b | 16.4 ± 0.97 a | 11.3 ± 1.36 b,c | |
OB | 71.8 ± 2.87 b | 11.2 ± 1.26 b,c | 17.0 ± 1.26 a | |
RW | 69.8 ± 2.34 b | 15.0 ± 1.24 a | 15.2 ± 1.22 a,b | |
RB | 70.2 ± 2.21 b | 13.6 ± 1.45 a,b | 16.2 ± 1.42 a |
Mushroom Species | Substrate/FA (%, w/w) | Lauric Acid (C12:0) | Myristic Acid (C14:0) | Pentadecanoic Acid (C15:0) | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Oleic Acid (C18:1) | Linoleic Acid (C18:2) |
---|---|---|---|---|---|---|---|---|
P. ostreatus | CW * | 0.3 ± 0.0 a ** | 0.6 ± 0.0 c | 1.8 ± 0.0 d | 13.5 ± 0.8 a | 1.8 ± 0.0 b,c | 9.1 ± 0.2 b | 70.0 ± 1.5 a |
CB | 0.4 ± 0.0 a | 0.6 ± 0.0 c | 2.3 ± 0.0 b | 13.6 ± 0.7 a | 1.6 ± 0.0 d | 9.6 ± 0.1 b | 65.5 ± 1.8 a | |
OW | 0.3 ± 0.0 a | 0.6 ± 0.0 c | 2.1 ± 0.1 b,c | 13.9 ± 0.9 a | 1.8 ± 0.0 b,c | 9.8 ± 0.3 a,b | 68.8 ± 3.1 a | |
OB | 0.2 ± 0.0 a | 0.4 ± 0.0 c | 1.9 ± 0.1 c,d | 13.8 ± 0.5 a | 1.7 ± 0.0 c,d | 11.0 ± 0.1 a | 68.2 ± 2.2 a | |
RW | 0.3 ± 0.0 a | 1.8 ± 0.0 a | 4.0 ± 0.2 a | 13.1 ± 0.8 a | 2.2 ± 0.1 a | 7.5 ± 0.8 c | 54.0 ± 2.3b | |
RB | 0.4 ± 0.0 a | 0.8 ± 0.0 b | 1.7 ± 0.1 d | 13.9 ± 0.7 a | 1.9 ± 0.0 b | 9.0 ± 0.8 b | 69.1 ± 1.4 a | |
P. eryngii | CW | 0.9 ± 0.0 a | 1.3 ± 0.0 a | 2.2 ± 0.0 a | 13.1 ± 0.0 a,b | 3.6 ± 0.0 a | 12.3 ± 0.1 c | 63.4 ± 2.5 a |
CB | 0.5 ± 0.0 d | 1.1 ± 0.0 b | 2.0 ± 0.0 b | 11.0 ± 0.7 c | 3.1 ± 0.1 b | 12.3 ± 0.2 c | 63.1 ± 1.9 a | |
OW | 0.3 ± 0.0 f | 0.7 ± 0.0 e | 1.8 ± 0.0 c | 13.4 ± 0.3 a | 2.1 ± 0.1 d,e | 15.9 ± 0.4 a | 62.7 ± 1.7 a | |
OB | 0.6 ± 0.0 c | 0.9 ± 0.0 c | 1.9 ± 0.1 b,c | 12.1 ± 0.4 b | 2.0 ± 0.0 e | 14.3 ± 0.2 b | 61.2 ± 3.7 a | |
RW | 0.7 ± 0.0 b | 0.4 ± 0.0 f | 2.0 ± 0.0 b | 12.2 ± 0.4 b | 2.2 ± 0.0 d | 11.3 ± 0.0 d | 58.7 ± 1.2 a | |
RB | 0.4 ± 0.0 e | 0.8 ± 0.0 d | 2.2 ± 0.1 a | 12.1 ± 0.0 b | 2.4 ± 0.1 c | 11.5 ± 0.3 d | 59.3 ± 3.1 a | |
P. pulmonarius | CW | 0.3 ± 0.0 d | 1.0 ± 0.0 a | 1.7 ± 0.0 b,c | 13.3 ± 0.7 a | 2.5 ± 0.0 a | 10.8 ± 0.2 a | 67.2 ± 2.8 a |
CB | 0.2 ± 0.0 e | 0.7 ± 0.0 d | 1.9 ± 0.0 a | 13.2 ± 0.7 a | 2.4 ± 0.0 a | 10.7 ± 0.4 a | 68.3 ± 2.8 a | |
OW | 0.4 ± 0.0 c | 0.8 ± 0.0 c | 1.8 ± 0.1 a,b | 13.4 ± 0.5 a | 1.9 ± 0.0 c | 11.2 ± 0.1 a | 66.5 ± 2.5 a | |
OB | 0.3 ± 0.0 d | 0.7 ± 0.0 d | 1.8 ± 0.0 a,b | 13.5 ± 0.5 a | 2.5 ± 0.1 a | 7.9 ± 0.4 b | 69.8 ± 3.5 a | |
RW | 0.5 ± 0.0 b | 0.9 ± 0.0 b | 1.7 ± 0.0 b,c | 12.7 ± 0.4 a | 2.0 ± 0.0 b,c | 7.0 ± 0.2 c | 65.3 ± 2.0 a | |
RB | 0.7 ± 0.0 a | 0.8 ± 0.0 c | 1.6 ± 0.1 c | 12.6 ± 0.0 a | 2.1 ± 0.1 b | 7.6 ± 0.3 b,c | 67.4 ± 3.2 a | |
G. resinaseum | CW | 0.9 ± 0.0 a | 1.4 ± 0.0 b | 2.5 ± 0.0 a | 15.7 ± 0.9 a | 5.2 ± 0.1 a | 9.2 ± 0.8 a | 49.6 ± 2.2 a |
CB | 0.8 ± 0.0 a | 1.2 ± 0.0 d | 2.2 ± 0.0 b | 15.3 ± 0.8 a | 4.8 ± 0.2 b | 9.8 ± 0.4 a | 47.8 ± 2.1 a | |
OW | 0.8 ± 0.0 a | 1.7 ± 0.1 a | 2.0 ± 0.0 c | 15.2 ± 0.4 a | 5.3 ± 0.1 a | 9.7 ± 0.8 a | 50.0 ± 3.2 a | |
OB | 0.9 ± 0.0 a | 1.3 ± 0.0 b,c | 2.0 ± 0.1 c | 15.6 ± 0.5 a | 5.1 ± 0.1 a | 9.0 ± 0.7 a | 46.9 ± 3.3 a | |
RW | nm *** | nm | nm | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | nm | nm | nm | |
G. lucidum | CW | 0.9 ± 0.0 a | 1.3 ± 0.0 a | 2.2 ± 0.0 c | 15.7 ± 0.4 a,b | 5.7 ± 0.5 a | 9.2 ± 0.7 a | 64.3 ± 2.3 a |
CB | 0.8 ± 0.0 a | 1.2 ± 0.0 a | 2.5 ± 0.0 b | 15.0 ± 0.5 b | 5.8 ± 0.4 a | 9.8 ± 0.4 a | 64.9 ± 4.1 a | |
OW | 0.7 ± 0.0 a | 1.4 ± 0.0 a | 2.5 ± 0.1 b | 15.7 ± 0.3 a,b | 5.3 ± 0.1 a | 9.7 ± 0.4 a | 63.4 ± 4.2 a | |
OB | 0.9 ± 0.0 a | 1.5 ± 0.0 a | 3.0 ± 0.0 a | 15.9 ± 0.2 a | 5.7 ± 0.2 a | 9.0 ± 0.3 a | 62.3 ± 3.3 a | |
RW | nm | nm | nm | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | nm | nm | nm | |
G. applanatum | CW | 0.6 ± 0.0 a | 1.4 ± 0.1 a,b | 3.0 ± 0.1 a | 15.4 ± 1.2 a | 5.7 ± 0.2 a | 9.2 ± 0.1 a,b | 58.2 ± 2.0 a |
CB | 0.9 ± 0.0 a | 1.3 ± 0.0 b | 2.7 ± 0.0 b | 14.8 ± 1.1 a | 5.6 ± 0.3 a,b | 9.8 ± 0.4 a | 57.4 ± 1.7 a,b | |
OW | 0.9 ± 0.0 a | 1.5 ± 0.0 a | 2.4 ± 0.0 c | 15.2 ± 1.3 a | 5.2 ± 0.2 a | 9.7 ± 0.3 a | 52.9 ± 1.3 c | |
OB | 0.7 ± 0.0 a | 1.6 ± 0.1 a | 2.9 ± 0.1 a | 15.3 ± 0.9 a | 5.5 ± 0.1 a,b | 9.0 ± 0.2 b | 54.4 ± 1.2 b,c | |
RW | nm | nm | nm | nm | nm | nm | nm | |
RB | nm | nm | nm | nm | nm | nm | nm | |
L. edodes | CW | 0.3 ± 0.0 c | 0.4 ± 0.0 c | 0.7 ± 0.0 d | 13.2 ± 0.4 a,b | 1.0 ± 0.0 d | 3.0 ± 0.1 b | 81.3 ± 1.4 a |
CB | 0.2 ± 0.0 d | 0.3 ± 0.0 d | 1.1 ± 0.0 a | 12.9 ± 0.3 a,b | 1.7 ± 0.0 c | 3.2 ± 0.1 a | 79.8 ± 1.3 a | |
OW | 0.4 ± 0.0 b | 0.7 ± 0.0 a | 0.8 ± 0.0 c | 13.8 ± 0.4 a | 1.9 ± 0.1 b,c | 2.2 ± 0.0 c | 80.1 ± 1.2 a | |
OB | 0.5 ± 0.0 a | 0.4 ± 0.0 c | 0.9 ± 0.0 b | 14.0 ± 0.4 a | 2.1 ± 0.1 b | 2.0 ± 0.0 d | 78.3 ± 1.0 a | |
RW | 0.2 ± 0.0 d | 0.5 ± 0.0 b | 0.3 ± 0.0 e | 12.9 ± 0.3 a,b | 1.7 ± 0.0 c | 2.0 ± 0.0 d | 82.1 ± 3.1 a | |
RB | 0.2 ± 0.0 d | 0.5 ± 0.0 b | 1.1 ± 0.0 a | 12.5 ± 0.5 b | 2.4 ± 0.2 a | 1.5 ± 0.0 e | 79.4 ± 2.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melanouri, E.-M.; Diamantis, I.; Papanikolaou, S.; Diamantopoulou, P. Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms. Processes 2024, 12, 2792. https://doi.org/10.3390/pr12122792
Melanouri E-M, Diamantis I, Papanikolaou S, Diamantopoulou P. Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms. Processes. 2024; 12(12):2792. https://doi.org/10.3390/pr12122792
Chicago/Turabian StyleMelanouri, Eirini-Maria, Ilias Diamantis, Seraphim Papanikolaou, and Panagiota Diamantopoulou. 2024. "Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms" Processes 12, no. 12: 2792. https://doi.org/10.3390/pr12122792
APA StyleMelanouri, E.-M., Diamantis, I., Papanikolaou, S., & Diamantopoulou, P. (2024). Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms. Processes, 12(12), 2792. https://doi.org/10.3390/pr12122792