Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = Larix olgensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 932 KiB  
Article
Determining Large Trees and Population Structures of Typical Tree Species in Northeast China
by Yutong Yang, Zhiyuan Jia, Shusen Ge, Yutang Li, Dongwei Kang and Junqing Li
Diversity 2025, 17(7), 491; https://doi.org/10.3390/d17070491 - 18 Jul 2025
Viewed by 218
Abstract
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in [...] Read more.
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in the community, as well as large individual standards in diameter at breast height (DBH) and population structures of typical tree species, were analyzed. By setting a DBH ≥ 50 cm as the threshold, 155 individuals across all the recorded trees were determined as large trees in the community, and 32.9% (51/155) of them were national second-class protected plant species in China. By setting the top 5% in DBH of a certain tree species as the threshold of large individuals of that tree species, the large individual criteria of six typical tree species were determined. The proportion of basal area of large trees to all trees was 30.4%, and the mean proportion of basal area of large individuals across the six typical tree species was 23.9% (±4.0%). As for the population characteristics, Abies nephrolepis and Picea jezoensis had large population sizes but relatively thin individuals, Tilia amurensis and Pinus koraiensis had small population sizes but relatively thick individuals, while Betula costata and Larix olgensis had medium population sizes and medium-sized individuals. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

16 pages, 11369 KiB  
Article
Isolation and Expression Pattern Analysis of Larix olgensis LoNAC5: LoNAC5 Acts as a Positive Regulator of Drought and Salt Tolerance
by Qing Cao, Junjie Du, Mengxu Yin, Chen Wang, Tiantian Zhang, Qingrong Zhao, Lu Liu, Hanguo Zhang and Lei Zhang
Plants 2025, 14(10), 1527; https://doi.org/10.3390/plants14101527 - 19 May 2025
Viewed by 440
Abstract
NAC transcription factors are a kind of plant specific transcription factor widely distributed in plants, and they play an important role in the process of plant growth and development. According to the transcriptome data, a transcription factor with typical NAC characteristics was isolated [...] Read more.
NAC transcription factors are a kind of plant specific transcription factor widely distributed in plants, and they play an important role in the process of plant growth and development. According to the transcriptome data, a transcription factor with typical NAC characteristics was isolated from Larix olgensis (common name “Dahurian larch”), that we named LoNAC5. The length of the coding sequence (CDS) was 1164 bp, encoding 387 amino acids. The LoNAC5 protein harbors a NAM (NAC family) domain at the 14–139 aa region of its N-terminus and an activation domain at the 324–364 aa region of the C-terminus. Phylogenetic tree analysis revealed that LoNAC5 belonged to the ATNAC3 subgroup. Cis-acting element analysis showed that there were multiple plant stress-resistance-related elements on the promoter of LoNAC5, including hormone and light responsiveness elements. LoNAC5 was localized in the nucleus by injection transformation of tobacco leaves. Results suggested that the LoNAC5 protein is active as a homodimer and that it binds to the GATGTG motif. The results of RT-qPCR showed that LoNAC5 is a highly expressed gene in L. olgensis, and the expression level is highest in 180-day needles. LoNAC5 responded to various hormone treatments and was induced by drought and salt stress. The yeast phenotype test showed that overexpression of LoNAC5 could make yeast grow better under drought and salt stress. It was speculated that LoNAC5 might act in L. olgensis as a positive regulator of drought and salt tolerance. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 4756 KiB  
Article
Ecological Niches of Generalist and Specialist Plants in the Subalpine Conifer Habitats (Abies sp.) of Northeast Asia: From South Korea to the Manchurian Region of China
by Byeong-Joo Park, Tae-Im Heo and Kwangil Cheon
Forests 2024, 15(12), 2119; https://doi.org/10.3390/f15122119 - 29 Nov 2024
Viewed by 909
Abstract
Herein, we explored the ecologic niches of generalist and specialist species within the subalpine vegetation zone, a habitat of Abies sp. distributed throughout South Korea and China. We included Abies sp. habitats in inland areas of South Korea and parts of the Manchurian [...] Read more.
Herein, we explored the ecologic niches of generalist and specialist species within the subalpine vegetation zone, a habitat of Abies sp. distributed throughout South Korea and China. We included Abies sp. habitats in inland areas of South Korea and parts of the Manchurian region of China. Rhododendron schlippenbachii Maxim., Acer pseudosieboldianum (Pax) Kom., Picea jezoensis (Siebold & Zucc.) Carrière, Betula ermanii Cham., Acer komarovii Pojark., Pinus koraiensis Siebold & Zucc., Betula davurica Pall., Betula costata Trautv., Quercus mongolica Fisch. ex Ledeb, and Sorbus commixta Hedl. were selected as generalist species. Betula chinensis Maxim., Betula platyphylla var. japonica (Miq.) H. Hara, Euonymus pauciflorus Maxim., Salix maximowiczii Kom., Cornus walteri F.T. Wangerin, Carpinus laxiflora (Siebold & Zucc.) Blume, Populus davidiana Dode, Philadelphus tenuifolius Rupr. & Maxim., Rhododendron brachycarpum D. Don ex G. Don, and Larix olgensis var. koreana (Nakai) Nakai were selected as specialist species. NMS ordination analysis showed that specialist, generalist, and other plant species distribution correlated with basal area at breast height, stand density, and species diversity index. Generalist species could be grouped based on Quercus sp., Betula sp., and Acer sp. niche spaces. Specialist species shared ecological niches with plant species found in the limestone zone, sedimentary rock zone, and valley area. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

13 pages, 4110 KiB  
Article
Evaluation on the Efficacy of Farrerol in Inhibiting Shoot Blight of Larch (Neofusicoccum laricinum)
by Evaristo A. Bruda, Rui Xia, Ruizhi Zhang, Haoru Wang, Qi Yu, Mengyao Hu and Feng Wang
Plants 2024, 13(21), 3004; https://doi.org/10.3390/plants13213004 - 28 Oct 2024
Cited by 2 | Viewed by 1096
Abstract
Neofusicoccum laricinum is the causal agent of larch shoot blight, a fungal disease affecting several species of larch. It causes severe damage, including stunting and mortality. This study aims to address the severe impact of larch shoot blight by evaluating the effect of [...] Read more.
Neofusicoccum laricinum is the causal agent of larch shoot blight, a fungal disease affecting several species of larch. It causes severe damage, including stunting and mortality. This study aims to address the severe impact of larch shoot blight by evaluating the effect of farrerol on the inhibition of Neofusicoccum laricinum in Larix olgensis. We used LC-MS/MS and weighted gene co-expression network analysis to investigate farrerol’s effects on Neofusicoccum laricinum and identify associated genes in resistant and susceptible larch. Our study identified significant differences in metabolite profiles between resistant and susceptible cultivars, with higher concentrations of farrerol showing complete inhibition of N. laricinum. Additionally, specific genes associated with farrerol content were up-regulated in resistant larch. Farrerol at higher concentrations completely inhibited N. laricinum, showing a strong correlation with increased disease resistance. This research suggests that farrerol enhances disease resistance in larch and provides a foundation for developing disease-resistant larch varieties based on antifungal metabolite traits. Full article
(This article belongs to the Special Issue Integrated Pest Management and Plants Health)
Show Figures

Figure 1

14 pages, 4597 KiB  
Article
Needle and Branch Trait Variation Analysis and Associated SNP Loci Mining in Larix olgensis
by Ying Cui, Jiawei Yan, Luping Jiang, Junhui Wang, Manman Huang, Xiyang Zhao and Shengqing Shi
Int. J. Mol. Sci. 2024, 25(18), 10212; https://doi.org/10.3390/ijms251810212 - 23 Sep 2024
Viewed by 1185
Abstract
Needles play key roles in photosynthesis and branch growth in Larix olgensis. However, genetic variation and SNP marker mining associated with needle and branch-related traits have not been reported yet. In this study, we examined 131 samples of unrelated genotypes from L. [...] Read more.
Needles play key roles in photosynthesis and branch growth in Larix olgensis. However, genetic variation and SNP marker mining associated with needle and branch-related traits have not been reported yet. In this study, we examined 131 samples of unrelated genotypes from L. olgensis provenance trails. We investigated phenotypic data for seven needle and one branch-related traits before whole genome resequencing (WGRS) was employed to perform a genome-wide association study (GWAS). Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci that were significantly correlated with the studied traits. We identified a total of 243,090,868 SNP loci, and among them, we discovered a total of 161 SNP loci that were significantly associated with these traits using a general linear model (GLM). Based on the GWAS results, Kompetitive Allele-Specific PCR (KASP), designed based on the DNA of population samples, were used to validate the loci associated with L. olgensis phenotypes. In total, 20 KASP markers were selected from the 161 SNPs loci, and BSBM01000635.1_4693780, BSBM01000114.1_5114757, and BSBM01000114.1_5128586 were successfully amplified, were polymorphic, and were associated with the phenotypic variation. These developed KASP markers could be used for the genetic improvement of needle and branch-related traits in L. olgensis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

28 pages, 13305 KiB  
Article
Changes in Spatiotemporal Pattern and Its Driving Factors of Suburban Forest Defoliating Pest Disasters
by Xuefei Jiang, Ting Liu, Mingming Ding, Wei Zhang, Chang Zhai, Junyan Lu, Huaijiang He, Ye Luo, Guangdao Bao and Zhibin Ren
Forests 2024, 15(9), 1650; https://doi.org/10.3390/f15091650 - 19 Sep 2024
Cited by 1 | Viewed by 1474
Abstract
Forest defoliating pests are significant global forest disturbance agents, posing substantial threats to forest ecosystems. However, previous studies have lacked systematic analyses of the continuous spatiotemporal distribution characteristics over a complete 3–5 year disaster cycle based on remote sensing data. This study focuses [...] Read more.
Forest defoliating pests are significant global forest disturbance agents, posing substantial threats to forest ecosystems. However, previous studies have lacked systematic analyses of the continuous spatiotemporal distribution characteristics over a complete 3–5 year disaster cycle based on remote sensing data. This study focuses on the Dendrolimus superans outbreak in the Changbai Mountain region of northeastern China. Utilizing leaf area index (LAI) data derived from Sentinel-2A satellite images, we analyze the extent and dynamic changes of forest defoliation. We comprehensively examine the spatiotemporal patterns of forest defoliating pest disasters and their development trends across different forest types. Using the geographical detector method, we quantify the main influencing factors and their interactions, revealing the differential impacts of various factors during different growth stages of the pests. The results show that in the early stage of the Dendrolimus superans outbreak, the affected area is extensive but with mild severity, with newly affected areas being 23 times larger than during non-outbreak periods. In the pre-hibernation stage, the affected areas are smaller but more severe, with a cumulative area reaching up to 8213 hectares. The spatial diffusion characteristics of the outbreak follow a sequential pattern across forest types: Larix olgensis, Pinus sylvestris var. mongolica, Picea koraiensis, and Pinus koraiensis. The most significant influencing factor during the pest development phase was the relative humidity of the year preceding the outbreak, with a q-value of 0.27. During the mitigation phase, summer precipitation was the most influential factor, with a q-value of 0.12. The combined effect of humidity and the low temperatures of 2020 had the most significant impact on both the development and mitigation stages of the outbreak. This study’s methodology achieves a high-precision quantitative inversion of long-term disaster spatial characteristics, providing new perspectives and tools for real-time monitoring and differentiated control of forest pest infestations. Full article
Show Figures

Figure 1

14 pages, 2985 KiB  
Article
Interruption after Short-Term Nitrogen Additions Improves Ecological Stability of Larix olgensis Forest Soil by Affecting Bacterial Communities
by Tongbao Qu, Xiaoting Zhao, Siyu Yan, Yushan Liu, Muhammad Jamal Ameer and Lei Zhao
Microorganisms 2024, 12(5), 969; https://doi.org/10.3390/microorganisms12050969 - 11 May 2024
Cited by 1 | Viewed by 1699
Abstract
Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate [...] Read more.
Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate whether interruption after different levels of short-term N additions still benefit soil health, we conducted a 2-year interruption after a 4-year short-term nitrogen addition (10 and 20 kg N·hm−2·yr−1) experiment; then, we compared soil microbial diversity and structure and analyzed soil physicochemical properties and their correlations before and after the interruption in Larix olgensis forest soil in northeast China. The results showed that soil ecological stabilization of Larix olgensis forest further improved after the interruption compared to pre-interruption. The TN, C:P, N:P, and C:N:P ratios increased significantly regardless of the previous nitrogen addition concentration, and soil nutrient cycling was further promoted. The relative abundance of the original beneficial microbial taxa Gemmatimonas, Sphingomonas, and Pseudolabrys increased; new beneficial bacteria Ellin6067, Massilia, Solirubrobacter, and Bradyrhizobium appeared, and the species of beneficial soil microorganisms were further improved. The results of this study elucidated the dynamics of the bacterial community before and after the interruption of short-term nitrogen addition and could provide data support and a reference basis for forest ecosystem restoration strategies and management under the background of global nitrogen deposition. Full article
(This article belongs to the Special Issue Soil Microbial Communities under Environmental Change)
Show Figures

Figure 1

14 pages, 4289 KiB  
Article
Response of Soil Physicochemical Properties and Microbial Community Composition in Larix olgensis Plantations to Disturbance by a Large Outbreak of Bark Beetle
by Yuqi Zhang, Zhihu Sun and Sainan Yin
Forests 2024, 15(4), 677; https://doi.org/10.3390/f15040677 - 9 Apr 2024
Cited by 2 | Viewed by 1358
Abstract
Forests are affected by a wide range of disturbances globally, resulting in the decline or death of large areas of them. There is a lack of comparative studies on how soil properties change in forests that die under the influence of disturbances, especially [...] Read more.
Forests are affected by a wide range of disturbances globally, resulting in the decline or death of large areas of them. There is a lack of comparative studies on how soil properties change in forests that die under the influence of disturbances, especially considering different levels of disturbance. For this study, we took Larix olgensis—a major plantation forest species in northeast China—as the research object, one in which a large outbreak of bark beetle led to large-scale forest death, and set up fixed sample plots characterized by different disturbance intensities. We investigated the responses of soil physicochemical properties and microbial community compositions to different disturbance intensities through the determination of soil nutrient indices and high-throughput sequencing. The results show that there were significant differences (p < 0.05) in the effects of different disturbance intensities on soil physicochemical properties, where the soil moisture content, total nitrogen, total carbon, and total phosphorus in the control group were significantly higher than those in the disturbed groups. The soil pH was highest under low-intensity disturbance and the soil total potassium content was highest under high-intensity disturbance. At different disturbance intensities, the highest soil moisture content was found in the high-intensity group. Proteobacteria, Actinobacteria, Verrucomicrobia, Acidobacteria, Candidatus_Rokubacteria, Chloroflexi, Gemmatimonadetes, and Thaumarchaeota were the dominant populations with higher abundances; meanwhile, the relative abundance of Bacteroidetes, Tenericutes, and a tentatively unclassified fungus differed significantly (p < 0.05) across disturbance intensities. Among the dominant microbial populations, Acidobacteria showed a significant negative correlation with soil pH and a significant positive correlation with total potassium content, Thaumarchaeota showed significant positive correlations with soil moisture content and total nitrogen content, and Firmicutes and Gemmatimonadetes showed significant negative correlations with total carbon content in the soil. Furthermore, soil total nitrogen content was the key factor driving changes in microbial communities. The results of this study provide a scientific basis for the study of the long-term effects of tree mortality caused by insect pests on soil microbial communities and their response mechanisms, which is of great theoretical value for the establishment of scientific and effective methods for woodland restoration. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 3239 KiB  
Article
H2O2 Significantly Affects Larix kaempferi × Larix olgensis Somatic Embryogenesis
by Junjie Zhu, Kaikai Zhang, Huiru Xiong, Yunhui Xie, Rui Li, Xinru Wu, Yun Yang, Hua Wu, Zhaodong Hao, Xiaomei Sun and Jinhui Chen
Int. J. Mol. Sci. 2024, 25(1), 669; https://doi.org/10.3390/ijms25010669 - 4 Jan 2024
Cited by 7 | Viewed by 2297
Abstract
Larch is widely distributed throughout the world and is an important species for timber supply and the extraction of industrial raw materials. In recent years, the hybrid breeding of Larix kaempferi and Larix olgensis has shown obvious heterosis in quick-growth, stress resistance and [...] Read more.
Larch is widely distributed throughout the world and is an important species for timber supply and the extraction of industrial raw materials. In recent years, the hybrid breeding of Larix kaempferi and Larix olgensis has shown obvious heterosis in quick-growth, stress resistance and wood properties. However, its growth and development cycle is too long to meet general production needs. In order to shorten the breeding cycle, we have for the first time successfully established and optimized a somatic embryogenesis system for Larix kaempferi × Larix olgensis. We found that the highest rate of embryonal-suspensor mass (ESM) induction was observed when late cotyledonary embryos were used as explants. The induced ESMs were subjected to stable proliferation, after which abscisic acid (ABA) and polyethylene glycol (PEG) were added to successfully induce somatic embryos. Treatment with PEG and ABA was of great importance to somatic embryo formation and complemented each other’s effect. ABA assisted embryo growth, whereas PEG facilitated the formation of proembryo-like structures. On top of this, we studied in more detail the relationship between redox homeostasis and the efficiency of somatic embryogenesis (frequency of ESM induction). During subculture, we observed the gradual formation of three distinct types of ESM. The Type I ESM is readily able to form somatic embryos. In contrast to type I, the type III ESM suffers from severe browning, contains a higher level of hydrogen peroxide (H2O2) and demonstrates a decreased ability to form somatic embryos. External treatment with H2O2 decreased the somatic embryogenesis efficiency of Type I and type III ESMs, or the higher the exogenous H2O2 content, the lower the resulting somatic embryogenesis efficiency. We found that treatment with the H2O2 scavenger DMTU (dimethylthiourea) could significantly increase the somatic embryogenesis efficiency of the type III ESM, as a result of a decline in endogenous H2O2 content. Overall, these findings have contributed to setting up a successful somatic embryogenesis system for larch production. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 5433 KiB  
Article
Analysis of the Expression Patterns of 13 DREB Family Genes Related to Cone-Setting Genes in Hybrid Larch (Larix kaempferi × Larix olgensis)
by Daixi Xu, Junfei Hao, Chen Wang, Lei Zhang and Hanguo Zhang
Forests 2023, 14(12), 2300; https://doi.org/10.3390/f14122300 - 23 Nov 2023
Cited by 2 | Viewed by 1384
Abstract
AP2/ERF is an important transcription factor family involved in physiological processes such as plant development and hormone signaling. In this study, based on the available transcriptome data of hybrid larch during floral induction, 13 DREB genes belonging to the AP2/EREBP family with complete [...] Read more.
AP2/ERF is an important transcription factor family involved in physiological processes such as plant development and hormone signaling. In this study, based on the available transcriptome data of hybrid larch during floral induction, 13 DREB genes belonging to the AP2/EREBP family with complete CDS regions were identified through alignment using the NCBI website. We conducted a bioinformatics analysis on the gene sequences, examining their tissue specificity, response to hormone treatment, and response to environmental factors. The DREB genes in hybrid larch (Larix kaempferi × Larix olgensis) showed tissue-specific expression, with DREB7, DREB8, DREB10, DREB12, and DREB13 exhibiting higher expression levels in nascent buds and higher expression in female cones compared to male cones. They also showed high expression during signal convergence and floral induction, and were highly expressed in materials with good fertility, suggesting their positive role in the cone-setting process of hybrid larch. Additionally, 13 DREB genes were all induced by abscisic acid (ABA), gibberellin 3 (GA3), and indoleacetic acid (IAA), with the most pronounced expression changes observed after ABA treatment, indicating that these genes might be mainly regulated by ABA. In response to temperature and photoperiod treatments, DREB7, DREB8, DREB10, DREB12, and DREB13 showed significant responses, with increased expression levels induced by low temperature, while no clear pattern was observed after long or short-day treatments. These results of the study provide a reference for understanding the function of the DREB gene family in hybrid larch, offer a theoretical basis for inducing floral bud differentiation in hybrid larch, and contribute to a better understanding of the molecular mechanisms underlying cone-setting in hybrid larch. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

23 pages, 20392 KiB  
Article
Combining Multisource Data and Machine Learning Approaches for Multiscale Estimation of Forest Biomass
by Yifeng Hong, Jiaming Xu, Chunyan Wu, Yong Pang, Shougong Zhang, Dongsheng Chen and Bo Yang
Forests 2023, 14(11), 2248; https://doi.org/10.3390/f14112248 - 15 Nov 2023
Cited by 6 | Viewed by 2383
Abstract
Forest biomass is an important indicator of forest ecosystem productivity, and it plays vital roles in the global carbon cycling, global climate change mitigating, and ecosystem researches. Multiscale, rapid, and accurate extraction of forest biomass information is always a research topic. In this [...] Read more.
Forest biomass is an important indicator of forest ecosystem productivity, and it plays vital roles in the global carbon cycling, global climate change mitigating, and ecosystem researches. Multiscale, rapid, and accurate extraction of forest biomass information is always a research topic. In this study, comprehensive investigation of a larch (Larix olgensis) plantation was performed using remote sensing and field-based monitoring methods, in combination with LiDAR-based multisource data and machine learning methods. On this basis, a universal, multiscale (single tree, stand, management unit, and region), and unit-high-precision continuous monitoring method was proposed for forest biomass components. The results revealed the following. (1) Airborne LiDAR point cloud variables exhibited significant correlation with the aboveground components (except leaves) and the whole-plant biomass (Radj2 > 0.91), suitable for extraction or estimation of forest parameters such as biomass and stock volume. (2) In terms of biomass monitoring at forest stand and management unit scale, a random forest model performed well in fitting accuracy and generalization ability, whereas a multiple linear regression model produced clearer explanation regarding the biomass of each forest component. (3) Using seasonal phenological characteristics in the study area, larch distribution information was extracted effectively. The overall accuracy reached 90.0%, and the kappa coefficient reached 0.88. (4) A regional-scale forest biomass component estimation model was constructed using a long short-term memory model, which effectively reduced the probability of biomass underestimation while ensuring good estimation accuracy, with R2 exceeding 0.6 for the biomass of the aboveground and whole-plant components. This research provides theoretical support for rapid and accurate acquisition of large-scale forest biomass information. Full article
Show Figures

Figure 1

13 pages, 12222 KiB  
Article
Effects of Tree Competition on Biomass Allocation of Stump and Coarse Roots of Larix olgensis of Different Site Classes
by Xiuli Men, Yang Yue, Huiyan Gu, Xiuwei Wang and Xiangwei Chen
Forests 2023, 14(7), 1431; https://doi.org/10.3390/f14071431 - 12 Jul 2023
Cited by 4 | Viewed by 1463
Abstract
Site class is a quantitative indicator used to evaluate site quality. It reflects site conditions, mainly climate, the suitability of soil for tree species and soil fertility. Despite the economic and ecological importance of tree competition and site class in sustainable forest management, [...] Read more.
Site class is a quantitative indicator used to evaluate site quality. It reflects site conditions, mainly climate, the suitability of soil for tree species and soil fertility. Despite the economic and ecological importance of tree competition and site class in sustainable forest management, there has been little research on its impact on the stump and coarse root biomass allocation within plantations. The stump and coarse roots were divided into five components ((stump disc (SD), stump knot (SK), coarse roots (>10 cm in diameter) (CR1), medium coarse roots (5–10 cm) (CR2) and fine coarse roots (2–5 cm) (CR3)), and the biomass of each component was obtained via the weighing method. It was found that the biomass of SD, CR1, CR2 and CR3 was mainly affected by competition (p ≤ 0.01). In the three site classes, the biomass of CR3 increased significantly with the increase in the competition index (CI) (p < 0.01); the biomass of CR1 decreased gradually. In site V, the biomass of SK, sapwood and heartwood increased significantly with the increase in CI. The results show that competition affects the allocation of stump and coarse root biomass mainly by changing the coarse root biomass. The development of stump knots is greatly influenced by site class. This study provides a reference for solving the competition mechanism underlying larch wood forest development, which will in turn promote more effective utilization of larch wood forests. This study also provides a scientific basis for accurately estimating the belowground biomass and carbon storage of artificial plantation forests. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 2938 KiB  
Article
Decomposition and Nutrient Release from Larix olgensis Stumps and Coarse Roots in Northeast China 33-Year Chronosequence Study
by Xiuli Men, Yang Yue, Xiuwei Wang and Xiangwei Chen
Forests 2023, 14(6), 1253; https://doi.org/10.3390/f14061253 - 16 Jun 2023
Cited by 2 | Viewed by 1579
Abstract
Stumps and coarse roots form an important C pool and nutrient pool in a Larix olgensis (Larix olgensis Henry) plantation ecosystem, and their decomposition processes would affect nutrient cycling dynamics of the overall Larix olgensis plantation. We studied the decomposition and release of [...] Read more.
Stumps and coarse roots form an important C pool and nutrient pool in a Larix olgensis (Larix olgensis Henry) plantation ecosystem, and their decomposition processes would affect nutrient cycling dynamics of the overall Larix olgensis plantation. We studied the decomposition and release of nutrients from stumps and coarse roots that were cleared 0, 6, 16, 26 and 33 years ago in Northeast China. The stumps and coarse roots were divided into stump discs (SD), stump knots (SK), coarse roots (>10 cm in diameter) (CR1), medium-coarse roots (5–10 cm in diameter) (CR2) and fine-coarse roots (2–5 cm in diameter) (CR3). During the entire 33-year study period, SK, CR1, CR2 and CR3 lost 87.37%, 96.24%, 75.76% and 91.98% of their initial mass, respectively. The average annual decomposition rate (k) was 0.068 for SD, 0.052 for SK, 0.092 for CR1, 0.068 for CR2 and 0.066 for CR3. After 33 years of decomposition, CR3 lost 5% of its initial C, CR2 lost 2%, and SK accumulated 1%, indicating slow C release. The N residues in SK, CR1, CR2 and CR3 were 186%, 109%, 158% and 170%, respectively. Coarse roots released P significantly faster than SD and SK, with 13% of the initial P released in CR1. SD and SK release cellulose, hemicellulose and lignin faster than coarse roots. The results show that Larix olgensis stumps and coarse roots could contribute to soil fertility recovery and serve as a long-term nutrient reservoir for forest vegetation. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 4819 KiB  
Article
Quantifying the Profiles of Heartwood, Sapwood, and Bark Using a Seemingly Unrelated Mixed-Effect Model for Larix Olgensis in Northeast China
by Yudan Qiao, Sheng-I Yang, Yuanshuo Hao, Zheng Miao, Lihu Dong and Fengri Li
Forests 2023, 14(6), 1216; https://doi.org/10.3390/f14061216 - 12 Jun 2023
Cited by 3 | Viewed by 1953
Abstract
Heartwood, sapwood, and bark constitute the main components of the tree stem. The stem is the main component of the tree and plays an important role in supporting the tree and transporting nutrients and water. Therefore, quantifying the profiles of heartwood, sapwood, and [...] Read more.
Heartwood, sapwood, and bark constitute the main components of the tree stem. The stem is the main component of the tree and plays an important role in supporting the tree and transporting nutrients and water. Therefore, quantifying the profiles of heartwood, sapwood, and bark is fundamental to understanding the different components of the tree stem. A seemingly unrelated mixed-effect model system was developed based on 179 destructively sampled trees for 31 permanent sample plots in Korean larch plantation in Northeast China. The heartwood radius and sapwood width were estimated and calibrated only by the observed bark thickness or by all response variables considering the correlations of submodel random effects. The results indicated that the model system achieved good fitting performance and prediction. In addition, after including one to ten bark thickness points and all response variables of sampling below the 2 m height of the tree, the estimated best linear predictor (EBLUP) for local calibration improved the prediction performance, indicating that the heartwood radius and sapwood width could be effectively calibrated by bark thickness while keeping intact the complete inner structure inside the stem. The results provided important information for forest managers and ecologists when selecting appropriate approaches for quantifying the profiles of heartwood, sapwood, and bark. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

12 pages, 4084 KiB  
Article
Exploring the Role of Stumps in Soil Ecology: A Study of Microsite Organic Carbon and Enzyme Activities in a Larix olgensis Henry Plantation
by Yang Yue, Xiuli Men, Zhihu Sun and Xiangwei Chen
Forests 2023, 14(5), 1027; https://doi.org/10.3390/f14051027 - 16 May 2023
Cited by 4 | Viewed by 1979
Abstract
Stumps are a significant component of coarse woody debris in plantations, but their effect on microsite soil organic carbon (C) and enzyme activities remains understudied. Soil (Alfisol) samples were collected at varying distances from larch (Larix olgensis Henry) stumps and at different [...] Read more.
Stumps are a significant component of coarse woody debris in plantations, but their effect on microsite soil organic carbon (C) and enzyme activities remains understudied. Soil (Alfisol) samples were collected at varying distances from larch (Larix olgensis Henry) stumps and at different soil depths (0–20 cm and 20–40 cm) to analyze soil total organic C (TOC), particulate organic C (POC), easily oxidizable C (EOC), microbial biomass C (MBC), and enzyme activities. Results indicated that stumps significantly affected TOC and POC contents, with the greatest horizontal range of impact reaching up to 15 cm in both the topsoil and subsoil layers. Stumps also significantly affected MBC content, with the greatest horizontal range of impact reaching up to 55 cm in the subsoil layer. EOC content was the most affected, with the stumps’ impact extending to 55 cm in both soil layers. Additionally, the study showed that stumps had a significant impact on the activities of β-glucosidase and β-cellobiohydrolase, with the greatest horizontal range of impact reaching up to 15 cm for glucosidase and 35 cm for cellobiohydrolase in the topsoil layer. Stumps also significantly affected the activities of phenol oxidase and peroxidase, with the maximum horizontal range of stump impact extending up to 35 cm for phenol oxidase and 55 cm for peroxidase in the topsoil layer. This study enhances our understanding of the role of stumps in plantation ecosystems and offers valuable insights for future management strategies to maintain soil fertility and improve site productivity. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop