Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,456)

Search Parameters:
Keywords = Landslides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1212 KiB  
Article
A Semi-Supervised Approach to Characterise Microseismic Landslide Events from Big Noisy Data
by David Murray, Lina Stankovic and Vladimir Stankovic
Geosciences 2025, 15(8), 304; https://doi.org/10.3390/geosciences15080304 - 6 Aug 2025
Abstract
Most public seismic recordings, sampled at hundreds of Hz, tend to be unlabelled, i.e., not catalogued, mainly because of the sheer volume of samples and the amount of time needed by experts to confidently label detected events. This is especially challenging for very [...] Read more.
Most public seismic recordings, sampled at hundreds of Hz, tend to be unlabelled, i.e., not catalogued, mainly because of the sheer volume of samples and the amount of time needed by experts to confidently label detected events. This is especially challenging for very low signal-to-noise ratio microseismic events that characterise landslides during rock and soil mass displacement. Whilst numerous supervised machine learning models have been proposed to classify landslide events, they rely on a large amount of labelled datasets. Therefore, there is an urgent need to develop tools to effectively automate the data-labelling process from a small set of labelled samples. In this paper, we propose a semi-supervised method for labelling of signals recorded by seismometers that can reduce the time and expertise needed to create fully annotated datasets. The proposed Siamese network approach learns best class-exemplar anchors, leveraging learned similarity between these anchor embeddings and unlabelled signals. Classification is performed via soft-labelling and thresholding instead of hard class boundaries. Furthermore, network output explainability is used to explain misclassifications and we demonstrate the effect of anchors on performance, via ablation studies. The proposed approach classifies four landslide classes, namely earthquakes, micro-quakes, rockfall and anthropogenic noise, demonstrating good agreement with manually detected events while requiring few training data to be effective, hence reducing the time needed for labelling and updating models. Full article
Show Figures

Figure 1

17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

20 pages, 3618 KiB  
Article
Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador
by Marlon Ponce-Zambrano, Julio Garzón-Roca, Francisco J. Torrijo and Olegario Alonso-Pandavenes
Sustainability 2025, 17(15), 7080; https://doi.org/10.3390/su17157080 - 5 Aug 2025
Abstract
This paper presents a geomechanical characterization for unwelded volcanic bimrock materials. Bimrocks are geological materials consisting of blocks of rock of different sizes embedded in a finer matrix. Many volcanic deposits and outcrops can be classified as bimrocks, and some of them correspond [...] Read more.
This paper presents a geomechanical characterization for unwelded volcanic bimrock materials. Bimrocks are geological materials consisting of blocks of rock of different sizes embedded in a finer matrix. Many volcanic deposits and outcrops can be classified as bimrocks, and some of them correspond to unwelded bimrocks, i.e., with the absence of strong bonds between blocks of rock and matrix. The geomechanical characterization proposed is oriented towards bimrocks slopes, their stability and landslide hazard occurrence. It consists of five steps which includes the material description, the volcanic deposit classification, the definition of block size range, the computation of the volumetric block percentage, the geotechnical characterization of the blocks of rock, and the geological and geotechnical analysis of the matrix that surrounds the blocks. The geomechanical characterization proposed is applied to four slopes at the Western Cordillera of Ecuador, where slopes instabilities are common. Results show that the geomechanical characterization sets a reliable framework for geotechnically describing bimrocks materials, explaining the actual stability state of the slopes. It also enables taking appropriate and optimum decisions in the design and management of volcanic slopes, thus contributing to a sustainable approach of landslide mitigation. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 355
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

25 pages, 28131 KiB  
Article
Landslide Susceptibility Assessment in Ya’an Based on Coupling of GWR and TabNet
by Jiatian Li, Ruirui Wang, Wei Shi, Le Yang, Jiahao Wei, Fei Liu and Kaiwei Xiong
Remote Sens. 2025, 17(15), 2678; https://doi.org/10.3390/rs17152678 - 2 Aug 2025
Viewed by 359
Abstract
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes [...] Read more.
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes an innovative approach to negative sample construction using Geographically Weighted Regression (GWR), which is then integrated with Tabular Network (TabNet), a deep learning architecture tailored to structured tabular data, to assess landslide susceptibility. The performance of TabNet is compared against Random Forest, Light Gradient Boosting Machine, deep neural networks, and Residual Networks. The experimental results indicate that (1) the GWR-based sampling strategy substantially improves model performance across all tested models; (2) TabNet trained using the GWR-based negative samples achieves superior performance over all other evaluated models, with an average AUC of 0.9828, exhibiting both high accuracy and interpretability; and (3) elevation, land cover, and annual Normalized Difference Vegetation Index are identified as dominant predictors through TabNet’s feature importance analysis. The results demonstrate that combining GWR and TabNet substantially enhances landslide susceptibility modeling by improving both accuracy and interpretability, establishing a more scientifically grounded approach to negative sample construction, and providing an interpretable, high-performing modeling framework for geological hazard risk assessment. Full article
Show Figures

Figure 1

36 pages, 12384 KiB  
Article
A Soil Moisture-Informed Seismic Landslide Model Using SMAP Satellite Data
by Ali Farahani and Majid Ghayoomi
Remote Sens. 2025, 17(15), 2671; https://doi.org/10.3390/rs17152671 - 1 Aug 2025
Viewed by 294
Abstract
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating [...] Read more.
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating satellite-based soil moisture data from NASA’s Soil Moisture Active Passive (SMAP) mission into the assessment of seismic landslide occurrence. Using landslide inventories from five major earthquakes (Nepal 2015, New Zealand 2016, Papua New Guinea 2018, Indonesia 2018, and Haiti 2021), a balanced global dataset of landslide and non-landslide cases was compiled. Exploratory analysis revealed a strong association between elevated pre-event soil moisture and increased landslide occurrence, supporting its relevance in seismic slope failure. Moreover, a Random Forest model was trained and tested on the dataset and demonstrated excellent predictive performance. To assess the generalizability of the model, a leave-one-earthquake-out cross-validation approach was also implemented, in which the model trained on four events was tested on the fifth. This approach outperformed comparable models that did not consider soil moisture, such as the United States Geological Survey (USGS) seismic landslide model, confirming the added value of satellite-based soil moisture data in improving seismic landslide susceptibility assessments. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Figure 1

27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

21 pages, 33884 KiB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 - 1 Aug 2025
Viewed by 216
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

20 pages, 4782 KiB  
Article
Enhanced Spatiotemporal Landslide Displacement Prediction Using Dynamic Graph-Optimized GNSS Monitoring
by Jiangfeng Li, Jiahao Qin, Kaimin Kang, Mingzhi Liang, Kunpeng Liu and Xiaohua Ding
Sensors 2025, 25(15), 4754; https://doi.org/10.3390/s25154754 - 1 Aug 2025
Viewed by 237
Abstract
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology [...] Read more.
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology first employs the Maximum Overlap Discrete Wavelet Transform (MODWT) to denoise raw Global Navigation Satellite System (GNSS)-monitored displacement time series data, enhancing the underlying deformation features. Subsequently, a geology-aware graph is constructed, using the temporal correlation of displacement series as a practical proxy for physical relatedness between monitoring nodes. The framework’s core innovation lies in a dynamic graph optimization model with low-rank constraints, which adaptively refines the graph topology to reflect time-varying inter-sensor dependencies driven by factors like mining activities. Experiments conducted on a real-world dataset from an active open-pit mine demonstrate the framework’s superior performance. The DCRNN-proposed model achieved the highest accuracy among eight competing models, recording a Root Mean Square Error (RMSE) of 2.773 mm in the Vertical direction, a 39.1% reduction compared to its baseline. This study validates that the proposed dynamic graph optimization approach provides a robust and significantly more accurate solution for landslide prediction in complex, real-world engineering environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

44 pages, 58273 KiB  
Article
Geological Hazard Susceptibility Assessment Based on the Combined Weighting Method: A Case Study of Xi’an City, China
by Peng Li, Wei Sun, Chang-Rao Li, Ning Nan and Sheng-Rui Su
Geosciences 2025, 15(8), 290; https://doi.org/10.3390/geosciences15080290 - 1 Aug 2025
Viewed by 223
Abstract
Xi’an, China, has a complex geological environment, with geological hazards seriously hindering urban development and safety. This study analyzed the conditions leading to disaster formation and screened 12 evaluation factors (e.g., slope and slope direction) using Spearman’s correlation. Furthermore, it also introduced an [...] Read more.
Xi’an, China, has a complex geological environment, with geological hazards seriously hindering urban development and safety. This study analyzed the conditions leading to disaster formation and screened 12 evaluation factors (e.g., slope and slope direction) using Spearman’s correlation. Furthermore, it also introduced an innovative combined weighting method, integrating subjective weights from the hierarchical analysis method and objective weights from the entropy method, as well as an information value model for susceptibility assessment. The main results are as follows: (1) There are 787 hazard points—landslides/collapses are concentrated in loess areas and Qinling foothills, while subsidence/fissures are concentrated in plains. (2) The combined weighting method effectively overcame the limitations of single methods. (3) Validation using hazard density and ROC curves showed that the combined weighting information value model achieved the highest accuracy (AUC = 0.872). (4) The model was applied to classify the disaster susceptibility of Xi’an into high (12.31%), medium (18.68%), low (7.88%), and non-susceptible (61.14%) zones. The results are consistent with the actual distribution of disasters, thus providing a scientific basis for disaster prevention. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

17 pages, 4148 KiB  
Article
Disastrous Effects of Hurricane Helene in the Southern Appalachian Mountains Including a Review of Mechanisms Producing Extreme Rainfall
by Jeff Callaghan
Hydrology 2025, 12(8), 201; https://doi.org/10.3390/hydrology12080201 - 31 Jul 2025
Viewed by 179
Abstract
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well [...] Read more.
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well to the north around the City of Ashville (Latitude 35.6 N) where extreme rainfall fell and some of the strongest wind gusts were reported. This paper describes the change in the hurricane’s structure as it tracked northwards, how it gathered tropical moisture from the Atlantic and a turning wind profile between the 850 hPa and 500 hPa elevations, which led to such extreme rainfall. This turning wind profile is shown to be associated with extreme rainfall and loss of life from drowning and landslides around the globe. The area around Ashville suffered 157 fatalities, which is a considerable proportion of the 250 fatalities so far recorded in the whole United Stares from Helene. This is of extreme concern and should be investigated in detail as the public expect the greatest impact from hurricanes to be confined to coastal areas near the landfall site. It is another example of increased death tolls from tropical cyclones moving inland and generating heavy rainfall. As the global population increases and inland centres become more urbanised, run off from such rainfall events increases, which causes greater devastation. Full article
Show Figures

Figure 1

37 pages, 23165 KiB  
Article
Leveraging High-Frequency UAV–LiDAR Surveys to Monitor Earthflow Dynamics—The Baldiola Landslide Case Study
by Francesco Lelli, Marco Mulas, Vincenzo Critelli, Cecilia Fabbiani, Melissa Tondo, Marco Aleotti and Alessandro Corsini
Remote Sens. 2025, 17(15), 2657; https://doi.org/10.3390/rs17152657 - 31 Jul 2025
Viewed by 218
Abstract
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and [...] Read more.
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and photogrammetric surveys, acquired at average intervals of 14 days over a four-month period. UAV-derived orthophotos and DEMs supported displacement analysis through homologous point tracking (HPT), with robotic total station measurements serving as ground-truth data for validation. DEMs were also used for multi-temporal DEM of Difference (DoD) analysis to assess elevation changes and identify depletion and accumulation patterns. Displacement trends derived from HPT showed strong agreement with RTS data in both horizontal (R2 = 0.98) and vertical (R2 = 0.94) components, with cumulative displacements ranging from 2 m to over 40 m between April and August 2024. DoD analysis further supported the interpretation of slope processes, revealing sector-specific reactivations and material redistribution. UAV-based monitoring provided accurate displacement measurements, operational flexibility, and spatially complete datasets, supporting its use as a reliable and scalable tool for landslide analysis. The results support its potential as a stand-alone solution for both monitoring and emergency response applications. Full article
Show Figures

Figure 1

32 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 (registering DOI) - 30 Jul 2025
Viewed by 217
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 10854 KiB  
Article
A Novel Method for Predicting Landslide-Induced Displacement of Building Monitoring Points Based on Time Convolution and Gaussian Process
by Jianhu Wang, Xianglin Zeng, Yingbo Shi, Jiayi Liu, Liangfu Xie, Yan Xu and Jie Liu
Electronics 2025, 14(15), 3037; https://doi.org/10.3390/electronics14153037 - 30 Jul 2025
Viewed by 187
Abstract
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks [...] Read more.
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks (TCNs), herein referred to as the GTCN model, to forecast displacement at building monitoring points subject to landslide activity. The proposed methodology is validated using time-series monitoring data collected from the slope adjacent to the Zhongliang Reservoir in Wuxi County, Chongqing, an area where slope instability poses a significant threat to nearby structural assets. Experimental results demonstrate the GTCN model’s superior predictive performance, particularly under challenging conditions of incomplete or sparsely sampled data. The model proves highly effective in accurately characterizing both abrupt fluctuations within the displacement time series and capturing long-term deformation trends. Furthermore, the GTCN framework outperforms comparative hybrid models based on Gated Recurrent Units (GRUs) and GPR, with its advantage being especially pronounced in data-limited scenarios. It also exhibits enhanced capability for temporal feature extraction relative to conventional imputation-based forecasting strategies like forward-filling. By effectively modeling both nonlinear trends and uncertainty within displacement sequences, the GTCN framework offers a robust and scalable solution for landslide-related risk assessment and early warning applications. Its applicability to building safety monitoring underscores its potential contribution to geotechnical hazard mitigation and resilient infrastructure management. Full article
Show Figures

Figure 1

Back to TopTop