Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = LMI condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2449 KiB  
Article
Tracking Consensus for Nonlinear Multi-Agent Systems Under Asynchronous Switching and Undirected Topology
by Shanyan Hu and Mengling Wang
Sensors 2025, 25(15), 4760; https://doi.org/10.3390/s25154760 (registering DOI) - 1 Aug 2025
Abstract
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to [...] Read more.
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to address asynchronous delays during topology switching, the system operation is divided into synchronized and delayed modes based on the status of the controller and topology. Every operating mode has a corresponding control strategy. To alleviate the burden of communication and computation, an event-triggered mechanism (ETM) is introduced to reduce the number of controller updates. By constructing an augmented Lyapunov function that incorporates both matching and mismatching periods, sufficient conditions ensuring system stability are established. The required controller based on the dynamic ETM is obtained by solving Linear Matrix Inequalities (LMIs). Finally, a simulation example is conducted to verify its effectiveness. Full article
Show Figures

Figure 1

18 pages, 451 KiB  
Article
Distinctive LMI Formulations for Admissibility and Stabilization Algorithms of Singular Fractional-Order Systems with Order Less than One
by Xinhai Wang, Xuefeng Zhang, Qing-Guo Wang and Driss Boutat
Fractal Fract. 2025, 9(7), 470; https://doi.org/10.3390/fractalfract9070470 - 19 Jul 2025
Viewed by 206
Abstract
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full [...] Read more.
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full rank matrices. This admissibility criterion does not involve complex variables and is different from all previous results, filling a gap in this area. Based on the LMIs in the generalized condition, the improved criterion utilizes a variable substitution technique to reduce the number of matrix variables to be solved from one pair to one, reflecting the admissibility more essentially. This improved result simplifies the programming process compared to the traditional approach that requires two matrix variables. To complete the state feedback controller design, the system matrices in the generalized admissibility criterion are decoupled, but bilinear constraints still occur in the stabilization criterion. For this case, where a feasible solution cannot be found using the MATLAB LMI toolbox, a branch-and-bound algorithm (BBA) is designed to solve it. Finally, the validity of these criteria and the BBA is verified by three examples, including a real circuit model. Full article
Show Figures

Figure 1

14 pages, 380 KiB  
Article
Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations
by Marina Bershadsky and Leonid Shaikhet
Mathematics 2025, 13(14), 2265; https://doi.org/10.3390/math13142265 - 14 Jul 2025
Viewed by 201
Abstract
A well-known model of infectious diseases, described by a nonlinear system of delay differential equations, is investigated under the influence of stochastic perturbations. Using the general method of Lyapunov functional construction combined with the linear matrix inequality (LMI) approach, we derive sufficient conditions [...] Read more.
A well-known model of infectious diseases, described by a nonlinear system of delay differential equations, is investigated under the influence of stochastic perturbations. Using the general method of Lyapunov functional construction combined with the linear matrix inequality (LMI) approach, we derive sufficient conditions for the stability of the equilibria of the considered system. Numerical simulations illustrating the system’s behavior under stochastic perturbations are provided to support the thoretical findings. The proposed method for stability analysis is broadly applicable to other systems of nonlinear stochastic differential equations across various fields. Full article
Show Figures

Figure 1

16 pages, 1648 KiB  
Article
Robust Control and Energy Management in Wind Energy Systems Using LMI-Based Fuzzy H∞ Design and Neural Network Delay Compensation
by Kaoutar Lahmadi, Oumaima Lahmadi, Soufiane Jounaidi and Ismail Boumhidi
Processes 2025, 13(7), 2097; https://doi.org/10.3390/pr13072097 - 2 Jul 2025
Viewed by 291
Abstract
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach [...] Read more.
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach with a neural network-based delay compensation mechanism. A fuzzy observer-based H∞ tracking controller is developed to enhance robustness and minimize the impact of disturbances. The stability conditions are rigorously derived using a quadratic Lyapunov function, H∞ performance criteria, and Young’s inequality and are expressed as Linear Matrix Inequalities (LMIs) for computational efficiency. In parallel, a neural network-based controller is employed to compensate for the input delays introduced by online learning processes. Furthermore, an energy management layer is incorporated to regulate the power flow and optimize energy utilization under varying operating conditions. The proposed framework effectively combines control and energy coordination to improve the systems’ performance. The simulation results confirm the effectiveness of the proposed strategies, demonstrating enhanced stability, robustness, delay tolerance, and energy efficiency in wind energy systems. Full article
Show Figures

Figure 1

18 pages, 2714 KiB  
Article
Quasi-LPV Approach for the Stabilization of an Innovative Quadrotor
by Said Chaabani and Naoufel Azouz
Modelling 2025, 6(3), 60; https://doi.org/10.3390/modelling6030060 - 1 Jul 2025
Viewed by 335
Abstract
In recent decades, the deployment of quadcopters has significantly expanded, particularly in outdoor applications such as parcel delivery. These missions require highly stable aerial platforms capable of maintaining balance under diverse environmental conditions, ensuring the safe operation of both the drone and its [...] Read more.
In recent decades, the deployment of quadcopters has significantly expanded, particularly in outdoor applications such as parcel delivery. These missions require highly stable aerial platforms capable of maintaining balance under diverse environmental conditions, ensuring the safe operation of both the drone and its payload. This paper focuses on the stabilization of a quadcopter designed for outdoor use. A detailed dynamic model of a compact vertical takeoff and landing (VTOL) drone forms the basis for a non-linear control strategy targeting stability during the critical takeoff phase. The control law is designed using a quasi-linear parameter-varying (quasi-LPV) model that captures the system’s non-linear dynamics. Lyapunov theory and linear matrix inequalities (LMIs) are employed to validate the stability and design the controller. Numerical simulations demonstrate the controller’s effectiveness, and a comparative study is conducted to benchmark its performance against a reference quadrotor model. Full article
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults
by A. Srinidhi, R. Raja, J. Alzabut, S. Vimal Kumar and M. Niezabitowski
Automation 2025, 6(3), 28; https://doi.org/10.3390/automation6030028 - 30 Jun 2025
Viewed by 334
Abstract
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, [...] Read more.
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, often address these challenges in isolation and with increased conservatism. In contrast, this work introduces a unified framework that integrates fault-tolerant control, delay compensation, and robust state estimation within a dissipativity-based setting. A novel dissipativity analysis tailored to Electric Vehicle Active Suspension Systems (EV-ASSs) is developed, with nonzero delay bounds explicitly incorporated into the stability conditions. The observer is designed to ensure accurate state estimation under gain perturbations, enabling robust full-state feedback control. Stability and performance criteria are formulated via Linear Matrix Inequalities (LMIs) using advanced integral inequalities to reduce conservatism. Numerical simulations validate the proposed method, demonstrating effective fault-tolerant performance, disturbance rejection, and precise state reconstruction, thereby extending beyond the capabilities of traditional control frameworks. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

25 pages, 2044 KiB  
Article
Global Mittag-Leffler Synchronization of Fractional-Order Fuzzy Inertia Neural Networks with Reaction–Diffusion Terms Under Boundary Control
by Lianyang Hu, Haijun Jiang, Cheng Hu, Yue Ren, Lvming Liu and Xuejiao Qin
Fractal Fract. 2025, 9(7), 405; https://doi.org/10.3390/fractalfract9070405 - 23 Jun 2025
Viewed by 490
Abstract
This study is devoted to solving the global Mittag-Leffler synchronization problem of fractional-order fuzzy reaction–diffusion inertial neural networks by using boundary control. Firstly, the considered network model incorporates the inertia term, reaction–diffusion term and fuzzy logic, thereby enhancing the existing model framework. Secondly, [...] Read more.
This study is devoted to solving the global Mittag-Leffler synchronization problem of fractional-order fuzzy reaction–diffusion inertial neural networks by using boundary control. Firstly, the considered network model incorporates the inertia term, reaction–diffusion term and fuzzy logic, thereby enhancing the existing model framework. Secondly, to prevent an increase in the number of state variables due to the reduced-order approach, a non-reduced-order method is fully utilized. Additionally, a boundary controller is designed to lower resource usage. Subsequently, under the Neumann boundary condition, the mixed boundary condition and the Robin boundary condition, three synchronization conditions are established with the help of the non-reduced-order approach and LMI technique, respectively. Lastly, two numerical examples are offered to verify the reliability of the theoretical results and the availability of the boundary controller through MATLAB simulations. Full article
Show Figures

Figure 1

24 pages, 2289 KiB  
Article
Advanced Control Strategy for Induction Motors Using Dual SVM-PWM Inverters and MVT-Based Observer
by Omar Allag, Abdellah Kouzou, Meriem Allag, Ahmed Hafaifa, Jose Rodriguez and Mohamed Abdelrahem
Machines 2025, 13(6), 520; https://doi.org/10.3390/machines13060520 - 14 Jun 2025
Viewed by 371
Abstract
This paper introduces a novel field-oriented control (FOC) strategy for an open-end stator three-phase winding induction motor (OEW-TP-IM) using dual space vector modulation-pulse width modulation (SVM-PWM) inverters. This configuration reduces common mode voltage at the motor’s terminals, enhancing efficiency and reliability. The study [...] Read more.
This paper introduces a novel field-oriented control (FOC) strategy for an open-end stator three-phase winding induction motor (OEW-TP-IM) using dual space vector modulation-pulse width modulation (SVM-PWM) inverters. This configuration reduces common mode voltage at the motor’s terminals, enhancing efficiency and reliability. The study presents a backstepping control approach combined with a mean value theorem (MVT)-based observer to improve control accuracy and stability. Stability analysis of the backstepping controller for key control loops, including flux, speed, and currents, is conducted, achieving asymptotic stability as confirmed through Lyapunov’s methods. An advanced observer using sector nonlinearity (SNL) and time-varying parameters from convex theory is developed to manage state observer error dynamics effectively. Stability conditions, defined as linear matrix inequalities (LMIs), are solved using MATLAB R2016b to optimize the observer’s estimator gains. This approach simplifies system complexity by measuring only two line currents, enhancing responsiveness. Comprehensive simulations validate the system’s performance under various conditions, confirming its robustness and effectiveness. This strategy improves the operational dynamics of OEW-TP-IM machine and offers potential for broad industrial applications requiring precise and reliable motor control. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

20 pages, 2636 KiB  
Article
Event-Triggered Secure Control Design Against False Data Injection Attacks via Lyapunov-Based Neural Networks
by Neslihan Karas Kutlucan, Levent Ucun and Janset Dasdemir
Sensors 2025, 25(12), 3634; https://doi.org/10.3390/s25123634 - 10 Jun 2025
Viewed by 453
Abstract
This paper presents a secure control framework enhanced with an event-triggered mechanism to ensure resilient and resource-efficient operation under false data injection (FDI) attacks on sensor measurements. The proposed method integrates a Kalman filter and a neural network (NN) to construct a hybrid [...] Read more.
This paper presents a secure control framework enhanced with an event-triggered mechanism to ensure resilient and resource-efficient operation under false data injection (FDI) attacks on sensor measurements. The proposed method integrates a Kalman filter and a neural network (NN) to construct a hybrid observer capable of detecting and compensating for malicious anomalies in sensor measurements in real time. Lyapunov-based update laws are developed for the neural network weights to ensure closed-loop system stability. To efficiently manage system resources and minimize unnecessary control actions, an event-triggered control (ETC) strategy is incorporated, updating the control input only when a predefined triggering condition is violated. A Lyapunov-based stability analysis is conducted, and linear matrix inequality (LMI) conditions are formulated to guarantee the boundedness of estimation and system errors, as well as to determine the triggering threshold used in the event-triggered mechanism. Simulation studies on a two-degree-of-freedom (2-DOF) robot manipulator validate the effectiveness of the proposed scheme in mitigating various FDI attack scenarios while reducing control redundancy and computational overhead. The results demonstrate the framework’s suitability for secure and resource-aware control in safety-critical applications. Full article
(This article belongs to the Special Issue Anomaly Detection and Fault Diagnosis in Sensor Networks)
Show Figures

Figure 1

21 pages, 1525 KiB  
Article
Fuzzy-Based Composite Nonlinear Feedback Cruise Control for Heavy-Haul Trains
by Qian Zhang, Jia Wang, Zhiqiang Chen, Yougen Xu, Zhiguo Zhou and Zhiwen Liu
Electronics 2025, 14(12), 2317; https://doi.org/10.3390/electronics14122317 - 6 Jun 2025
Viewed by 287
Abstract
To improve the transient performance of speed tracking control while ensuring stability and considering actuator constraints in heavy-haul train systems, this paper proposes a novel cruise control method based on a nonparallel distributed compensation (non-PDC) fuzzy-based composite nonlinear feedback (CNF) technique. First, a [...] Read more.
To improve the transient performance of speed tracking control while ensuring stability and considering actuator constraints in heavy-haul train systems, this paper proposes a novel cruise control method based on a nonparallel distributed compensation (non-PDC) fuzzy-based composite nonlinear feedback (CNF) technique. First, a low-dimensional nonlinear multi-particle error dynamics model is established based on the fencing concept, simplifying the model significantly. To facilitate controller design, a Takagi–Sugeno (T-S) fuzzy model is derived from the nonlinear model. Subsequently, sufficient conditions for the non-PDC fuzzy-based CNF controller are provided in terms of linear matrix inequalities (LMIs), with the controller design addressing asymmetric constraints on control inputs due to differing maximums of traction and braking forces. Simulations based on MATLAB/Simulink are conducted under different maneuvers to validate the effectiveness and superiority of the proposed method. The simulation results demonstrate a notable enhancement in transient performance (over 22.3% improvement in settling time) and steady-state cruise control performance for heavy-haul trains using the proposed strategy. Full article
Show Figures

Figure 1

15 pages, 2646 KiB  
Article
Control of Nonlinear Systems with Input Delays and Disturbances Using State and Disturbance Sub-Predictors
by Ba Huy Nguyen, The Dong Dang, Igor B. Furtat, Anh Quan Dao and Pavel A. Gushchin
Mathematics 2025, 13(11), 1713; https://doi.org/10.3390/math13111713 - 23 May 2025
Viewed by 355
Abstract
This paper proposes a new method for controlling nonlinear systems with input signal delays in the presence of external disturbances. The control law consists of two components: the first component, based on a sub-predictor for the controlled variable, stabilizes the unstable system, while [...] Read more.
This paper proposes a new method for controlling nonlinear systems with input signal delays in the presence of external disturbances. The control law consists of two components: the first component, based on a sub-predictor for the controlled variable, stabilizes the unstable system, while the second component, which is based on a disturbance sub-predictor, compensates for external disturbances. The tracking error (stabilization error), which depends on the magnitude of the disturbances, can be reduced by increasing the order of the disturbance sub-predictor. Sufficient conditions for the stability of the closed-loop system with a given maximum delay are derived using the Lyapunov–Krasovskii method and formulated as linear matrix inequalities (LMIs). Numerical simulations are presented to demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

22 pages, 2990 KiB  
Article
Fault Estimation for Semi-Markov Jump Neural Networks Based on the Extended State Method
by Lihong Rong, Yuexin Pan and Zhimin Tong
Appl. Sci. 2025, 15(9), 5213; https://doi.org/10.3390/app15095213 - 7 May 2025
Viewed by 332
Abstract
This paper addresses fault estimation in discrete-time semi-Markov jump neural networks (s-MJNNs) under the Round-Robin protocol and proposes an innovative extended state observer-based approach. Unlike studies considering only constant transition rates, this work investigates s-MJNNs with time-varying transition probabilities, which more closely reflect [...] Read more.
This paper addresses fault estimation in discrete-time semi-Markov jump neural networks (s-MJNNs) under the Round-Robin protocol and proposes an innovative extended state observer-based approach. Unlike studies considering only constant transition rates, this work investigates s-MJNNs with time-varying transition probabilities, which more closely reflect practical situations. By incorporating actuator and sensor faults as augmented state variables, an extended state observer is proposed to estimate system states and faults simultaneously. To alleviate network congestion and optimize communication resources, the Round-Robin protocol is adopted to schedule data transmission efficiently. By constructing a Lyapunov–Krasovskii functional and applying the discrete Wirtinger inequality, sufficient conditions are derived to ensure the mean square exponential stability and dissipative performance of the system. The observer gain parameters are computed using the linear matrix inequality (LMI) method. Numerical simulations validate the effectiveness and performance of the proposed fault estimation method. Full article
Show Figures

Figure 1

29 pages, 6458 KiB  
Article
Performance Evaluation of Inherent Optical Property Algorithms and Identification of Potential Water Quality Indicators Using GCOM-C Data in Eutrophic Lake Kasumigaura, Japan
by Misganaw Choto, Hiroto Higa, Salem Ibrahim Salem, Eko Siswanto, Takayuki Suzuki and Martin Mäll
Remote Sens. 2025, 17(9), 1621; https://doi.org/10.3390/rs17091621 - 2 May 2025
Viewed by 499
Abstract
Lake Kasumigaura, one of Japan’s largest lakes, presents significant challenges for remote sensing due to its eutrophic conditions and complex optical properties. Although the Global Change Observation Mission-Climate (GCOM-C)/Second-generation Global Imager (SGLI)-derived inherent optical properties (IOPs) offer water quality monitoring potential, their performance [...] Read more.
Lake Kasumigaura, one of Japan’s largest lakes, presents significant challenges for remote sensing due to its eutrophic conditions and complex optical properties. Although the Global Change Observation Mission-Climate (GCOM-C)/Second-generation Global Imager (SGLI)-derived inherent optical properties (IOPs) offer water quality monitoring potential, their performance in such turbid inland waters remains inadequately validated. This study evaluated five established IOP retrieval algorithms, including the quasi-analytical algorithm (QAA_V6), Garver–Siegel–Maritorena (GSM), generalized IOP (GIOP-DC), Plymouth Marine Laboratory (PML), and linear matrix inversion (LMI), using measured remote sensing reflectance (Rrs) and corresponding IOPs between 2017–2018. The results demonstrated that the QAA had the highest performance for retrieving absorption of particles (ap) with a Pearson correlation (r) = 0.98, phytoplankton (aph) with r = 0.97, and non-algal particles (anap) with r = 0.85. In contrast, the GSM algorithm exhibited the best accuracy for estimating absorption by colored dissolved organic matter (aCDOM), with r = 0.87, along with the lowest mean absolute percentage error (MAPE) and root mean square error (RMSE). Additionally, a strong correlation (r = 0.81) was observed between SGLI satellite-derived remote-sensing reflectance (Rrs) and in situ measurements. Notably, a high correlation was observed between the aph (443 nm) and the chlorophyll a (Chl-a) concentration (r = 0.84), as well as between the backscattering coefficient (bbp) at 443 nm and inorganic suspended solids (r = 0.64), confirming that IOPs are reliable water quality assessment indicators. Furthermore, the use of IOPs as variables for estimating water quality parameters such as Chl-a and suspended solids showed better performance compared to empirical methods. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Figure 1

23 pages, 844 KiB  
Article
Optimal Trajectory Tracking for Underactuated Systems via the Takagi–Sugeno Framework: An Autonomous Underwater Vehicle Mission Case Study
by Georgios P. Kladis, Lefteris Doitsidis and Nikos C. Tsourveloudis
Robotics 2025, 14(4), 45; https://doi.org/10.3390/robotics14040045 - 1 Apr 2025
Viewed by 515
Abstract
Autonomy of underwater vehicles has become an imperative feature due to increasingly challenging deep sea mission scenarios. In particular, for trajectory-tracking problems of Autonomous Underwater Vehicles (AUVs), the use of Lyapunov theory tools in state-of-the-art methods is common practice. These often require special [...] Read more.
Autonomy of underwater vehicles has become an imperative feature due to increasingly challenging deep sea mission scenarios. In particular, for trajectory-tracking problems of Autonomous Underwater Vehicles (AUVs), the use of Lyapunov theory tools in state-of-the-art methods is common practice. These often require special assumptions, according to the application considered, and ‘intuition’ for the choice of a control law, which often leads to conservative results. This article suggests a systematic analysis for the horizontal motion of an AUV which ensures global asymptotic stability for the closed loop system. A nonlinear underactuated AUV system is considered with linear and angular velocity constraints. The Takagi–Sugeno (TS) framework design is adopted for the representation of the original nonlinear system. The control law is synthesised using the standard parallel distributed compensation (PDC) control law structure and stability is guaranteed for the closed loop system. The design criteria are posed as linear matrix inequalities (LMIs) where sufficient conditions for the design of the control law are shown. The proposed approach can be easily adopted for different types of autonomous vehicles with minor modifications. Full article
(This article belongs to the Special Issue Autonomous Robotics for Exploration)
Show Figures

Figure 1

25 pages, 31664 KiB  
Article
Takagi–Sugeno Fuzzy Nonlinear Control System for Optical Interferometry
by Murilo Franco Coradini, Luiz Henrique Vitti Felão, Stephany de Souza Lyra, Marcelo Carvalho Minhoto Teixeira and Claudio Kitano
Sensors 2025, 25(6), 1853; https://doi.org/10.3390/s25061853 - 17 Mar 2025
Cited by 1 | Viewed by 662
Abstract
The Takagi-Sugeno (T-S) fuzzy control is a nonlinear method that uses a combination of linear controllers as its control law. This method has been applied in various fields of scientific research: buck converters, biomedicine, civil engineering, etc. To the best of the authors’ [...] Read more.
The Takagi-Sugeno (T-S) fuzzy control is a nonlinear method that uses a combination of linear controllers as its control law. This method has been applied in various fields of scientific research: buck converters, biomedicine, civil engineering, etc. To the best of the authors’ knowledge, although works on traditional fuzzy control and optical interferometry have already been published, this is the first time that T-S fuzzy (specifically) is applied to demodulate interferometry signals. Through a proof-of-concept experiment, the paper describes the fusion of an open-loop interferometer with an external closed-loop digital observer based on T-S fuzzy (both simple and inexpensive), which actuates like a closed-loop interferometer (but without its drawbacks). The observer design is based on stability conditions using linear matrix inequalities (LMIs) solutions. The system is maintained at the optimal 90 operation point (compensating for environmental drifts) and enables the demodulation of optical phase signals with low modulation index. Simulations and measurements were performed by using a Michelson interferometer, verifying that the method demodulates signals up to π/2 rad amplitudes and higher than 100 Hz frequencies (with maximum error of 0.45%). When compared to the important arc tangent method, both presented the same frequency response for the test PZT actuator. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

Back to TopTop