Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = Klf9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 437
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

12 pages, 2351 KiB  
Review
circRNA/miRNA Networks Regulate KLF4 in Tumor Development
by Raffaele Frazzi, Enrico Farnetti and Davide Nicoli
Non-Coding RNA 2025, 11(4), 56; https://doi.org/10.3390/ncrna11040056 - 29 Jul 2025
Viewed by 157
Abstract
Background/Objectives: Krüppel-like factor 4 (KLF4) emerged as an epigenetically regulated gene in a variety of settings, including cell reprogramming and malignant cell proliferation. The aim of the present manuscript is to explore the relationship described in recent years between circular [...] Read more.
Background/Objectives: Krüppel-like factor 4 (KLF4) emerged as an epigenetically regulated gene in a variety of settings, including cell reprogramming and malignant cell proliferation. The aim of the present manuscript is to explore the relationship described in recent years between circular RNAs, miRNAs, and KLF4. These have been shown to be involved in cancers having diverse histological origins, including some of the most prevalent and deadly tumors for the human population. Expression and protein levels of this transcription factor correlate with invasiveness and prognosis in a context- and tissue-specific fashion. Methods: The literature was obtained through two main PubMed queries. The first is “miRNA and KLF4 and cancer” and is limited to the last 5 years. The second is “circRNA and KLF4”, which yielded publications between 2013 and 2024. The oncological publications were selected. Results: A number of circRNA/miRNA axes that regulate the downstream transcription factor KLF4 emerged in the last few years. circRNAs act as sponges for miRNAs and synergize with KLF4, which can function as either a tumor promoter or suppressor in different tumors. Conclusions: The axes represented by circRNA/miRNA/KLF4 emerged as a new layer of epigenetic regulation. These RNA-based modulators explain the complex regulation of this transcription factor and open the way to new therapeutic targeting possibilities. Full article
(This article belongs to the Section Detection and Biomarkers of Non-Coding RNA)
Show Figures

Figure 1

28 pages, 732 KiB  
Systematic Review
Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review
by Ana Caroline Mafra Bezerra, Lucas Elohim Cardoso Viana Baptista, Maria Núbia Alencar Couto and Milton Masahiko Kanashiro
Pharmaceutics 2025, 17(7), 931; https://doi.org/10.3390/pharmaceutics17070931 - 18 Jul 2025
Viewed by 569
Abstract
Background/Objective: Cancer stem cells (CSCs) are a self-renewing subpopulation within tumors that contribute to heterogeneity and resistance to conventional cancer therapies, including chemotherapy and radiotherapy. Despite growing interest in CSCs as therapeutic targets, effective compounds against these cells remain limited. This systematic [...] Read more.
Background/Objective: Cancer stem cells (CSCs) are a self-renewing subpopulation within tumors that contribute to heterogeneity and resistance to conventional cancer therapies, including chemotherapy and radiotherapy. Despite growing interest in CSCs as therapeutic targets, effective compounds against these cells remain limited. This systematic review aims to assess the potential of metal-based coordination complexes as anti-CSC agents in preclinical models. Methods: A systematic literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Twenty-seven original in vitro studies were included, all evaluating the cytotoxic effects of metal-based compounds on cancer cell lines enriched with CSC subpopulations. To ensure methodological rigor, all articles underwent a critical appraisal by independent reviewers who resolved discrepancies through consensus, and only studies meeting predefined quality criteria were included. Results: Several metal complexes, particularly copper-based compounds, demonstrated significant cytotoxicity toward CSCs, mainly through the induction of apoptosis. Breast cancer was the most frequently studied tumor type. Many studies reported modulation of CSC-related markers, including EPCAM, CD44, CD133, CD24, SOX2, KLF4, Oct4, NOTCH1, ALDH1, CXCR4, and HES1, suggesting effects on CSC maintenance pathways. Most studies were conducted in the United Kingdom and relied on in vitro models. Conclusions: Metal coordination complexes, especially those containing copper, show promise as therapeutic agents targeting CSCs. However, further in vivo studies and mechanistic investigations are essential to advance their translational potential. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

20 pages, 3707 KiB  
Article
Genome-Wide CRISPR-Cas9 Knockout Screening Identifies NUDCD2 Depletion as Sensitizer for Bortezomib, Carfilzomib and Ixazomib in Multiple Myeloma
by Sophie Vlayen, Tim Dierckx, Marino Caruso, Swell Sieben, Kim De Keersmaecker, Dirk Daelemans and Michel Delforge
Hemato 2025, 6(3), 21; https://doi.org/10.3390/hemato6030021 - 16 Jul 2025
Viewed by 378
Abstract
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated [...] Read more.
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated with drug resistance or sensitization to proteasome inhibitors. Methods: We performed genome-wide CRISPR-Cas9 knockout (KO) screens in human KMS-28-BM myeloma cells to identify genetic determinants associated with resistance or sensitization to proteasome inhibitors. Results: We show that KO of KLF13 and PSMC4 induces drug resistance, while NUDCD2, OSER1 and HERC1 KO cause drug sensitization. Subsequently, we focused on top sensitization hit, NUDCD2, which acts as a co-chaperone of Hsp90 to regulate the LIS1/dynein complex. RNA sequencing showed downregulation of genes involved in the ERAD pathway and in ER-associated ubiquitin-dependent protein catabolic processes in both untreated and carfilzomib-treated NUDCD2 KO cells, suggesting that NUDCD2 depletion alters protein degradation. Furthermore, bortezomib-treated NUDCD2 KO cells showed a decreased expression of genes that have a function in oxidative phosphorylation and the mitochondrial membrane, such as Carnitine Palmitoyltransferase 1A (CPT1A). CPT1A catalyzes the uptake of long chain fatty acids into mitochondria. Mitochondrial lipid metabolism has recently been reported as a possible therapeutic target for MM drug sensitivity. Conclusions: These results contribute to the search for therapeutic targets that can sensitize MM patients to proteasome inhibitors. Full article
(This article belongs to the Section Plasma Cell Disorders)
Show Figures

Figure 1

18 pages, 9131 KiB  
Article
The Primary Cultivation of Oogonial Stem Cells from Black Rockfish (Sebastes schlegelii): Morphology and Transcriptome Landscape
by Jingjing Zhang, Lei Lin, Shengyu Zhu, Yanming Zhang, Caichao Dong, Yu Yang, Yuyan Liu, Xuwen Cao, Yangbin He, Honglong Ji, Bo Meng, Qian Wang and Changwei Shao
Int. J. Mol. Sci. 2025, 26(14), 6772; https://doi.org/10.3390/ijms26146772 - 15 Jul 2025
Viewed by 269
Abstract
Black rockfish (Sebastes schlegelii) is a marine ovoviviparous teleost that exhibits significant sexual dimorphism, with females growing faster and reaching larger sizes than males. Establishing stable oogonial stem cells (OSCs) is critical for understanding germline stem cell dynamics and facilitating all-female [...] Read more.
Black rockfish (Sebastes schlegelii) is a marine ovoviviparous teleost that exhibits significant sexual dimorphism, with females growing faster and reaching larger sizes than males. Establishing stable oogonial stem cells (OSCs) is critical for understanding germline stem cell dynamics and facilitating all-female breeding. In this study, we successfully isolated and cultured OSCs from S. schlegelii for 12 passages. These cells exhibited alkaline phosphatase activity, expressed germline marker genes (ddx4, cdh1, klf4), and maintained a diploid karyotype (2n = 48). Transcriptomic comparisons between early (P3) and late (P12) passages revealed significant metabolic dysfunction and cell cycle arrest in the late-passage cells. Specifically, the down-regulation of glutathione-related and glycolysis-related genes (gstm3, gstt1, mgst3, gsta1, gsta4, gsto1, gapdh) and key mitotic regulators (cdk1, chk1, cdk4, e2f3, ccne2, ccnb1) suggested that metabolic imbalance contributes to oxidative stress, resulting in cell cycle inhibition and eventual senescence. This study provides a marine fish model for investigating metabolism-cell cycle interactions in germline stem cells and lays the foundation for future applications in germ cell transplantation and all-female breeding. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

22 pages, 4657 KiB  
Article
Development of a Lentiviral Reporter System for In Vitro Reprogramming of Astrocytes to Neuronal Precursors
by Anna Schnaubelt, Guoli Zheng, Maryam Hatami, Johannes Tödt, Hao Wang, Thomas Skutella, Andreas Unterberg, Klaus Zweckberger and Alexander Younsi
Biology 2025, 14(7), 817; https://doi.org/10.3390/biology14070817 - 5 Jul 2025
Viewed by 366
Abstract
Astrocytes, which proliferate after brain injury, represent a promising target for cellular reprogramming due to their abundance and ability to support brain repair. In this study, we investigated the in vitro reprogramming of primary cortical astrocytes from neonatal rats into neuronal precursor cells [...] Read more.
Astrocytes, which proliferate after brain injury, represent a promising target for cellular reprogramming due to their abundance and ability to support brain repair. In this study, we investigated the in vitro reprogramming of primary cortical astrocytes from neonatal rats into neuronal precursor cells (NPCs) using the transcription factors Oct4, Sox2, and Klf4 (OSK), delivered via lentiviral vectors. We designed a reporter system to trace the conversion of astrocytes to NPCs and neurons by using GFAP-driven iCre and Nestin- or Synapsin1-driven fluorescent reporters. After transduction, we observed morphological changes and the expression of neuronal markers in some cells, while many cells remained in a transitional state, expressing both astrocytic and neuronal features. Importantly, the study was not designed to quantify reprogramming efficiency or demonstrate full astrocyte-to-neuron conversion but rather to establish and evaluate a traceable reporter system. Our data suggest that OSK-mediated reprogramming in this in vitro model can initiate conversion of astrocytes to neuronal precursor-like cells, although the process is complex and incomplete within the one-week timeframe. We also highlight limitations in co-transduction efficiency and potential silencing of the reporter system during reprogramming. These findings provide an initial technical platform to explore astrocyte reprogramming in vitro and inform future studies aiming to refine these methods and apply them in vivo. Full article
(This article belongs to the Special Issue Advances in the Fields of Neurotrauma and Neuroregeneration)
Show Figures

Figure 1

22 pages, 6165 KiB  
Article
Single-Cell Transcriptomic Analysis Unveils Key Regulators and Signaling Pathways in Lung Adenocarcinoma Progression
by Jialu Ma, Caleb McQuay, John Talburt, Amit K. Tiwari and Mary Qu Yang
Biomedicines 2025, 13(7), 1606; https://doi.org/10.3390/biomedicines13071606 - 30 Jun 2025
Viewed by 412
Abstract
Background: Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality despite advances in treatments, necessitating more effective therapeutic strategies. Single-cell RNA sequencing (scRNA-seq) technology has revolutionized our ability to dissect the cellular complexity of cancers, which is often obscured in conventional bulk [...] Read more.
Background: Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality despite advances in treatments, necessitating more effective therapeutic strategies. Single-cell RNA sequencing (scRNA-seq) technology has revolutionized our ability to dissect the cellular complexity of cancers, which is often obscured in conventional bulk transcriptomic experiments. Methods: In this study, we performed an integrative analysis of scRNA-seq data from multiple LUAD patient cohorts to investigate cell-type-specific transcriptomic changes across disease stages. Clustering, lineage trajectory analysis, and transcriptional regulatory network reconstruction were employed to identify stage-specific gene markers and their upstream regulators. Additionally, we constructed intercellular communication networks to evaluate signaling changes within the tumor microenvironment (TME) during LUAD progression. Results: Our analysis revealed that epithelial cells from stage IV tumors exhibited a distinct transcriptional profile compared to earlier stages, a separation not observed in immune or stromal cell populations. We identified a panel of gene markers that differentiated epithelial cells across disease stages and effectively stratified patients into subgroups with distinct survival outcomes and TME compositions. Regulatory network analysis uncovered key transcription factors, including ATF3, ATF4, HSF1, KLF4, and NFIC, as potential upstream regulators of these stage-specific genes. Moreover, cell–cell communication analysis revealed a significant increase in signaling originating from epithelial cells and a concomitant decrease in immune-derived signals in late-stage LUAD. We identified several signaling pathways enriched in stage-specific crosstalk, including Wnt, PTN, and PDGF pathways, which may play critical roles in LUAD progression. Conclusions: This study provides a comprehensive single-cell resolution map of LUAD progression, highlighting epithelial-driven regulatory programs and dynamic intercellular communication within the TME. Our findings uncover novel molecular markers and regulatory mechanisms with potential prognostic and therapeutic value for more precise treatment. Full article
Show Figures

Figure 1

39 pages, 2145 KiB  
Review
NLRP3 Inflammasome and Inflammatory Response in Aging Disorders: The Entanglement of Redox Modulation in Different Outcomes
by Bhavana Chhunchha, Eri Kubo, Deepali Lehri and Dhirendra P. Singh
Cells 2025, 14(13), 994; https://doi.org/10.3390/cells14130994 - 29 Jun 2025
Viewed by 956
Abstract
Increasing evidence reveals that the deregulation of cellular antioxidant response with advancing age, resulting in the continuing amplification of oxidative stress-induced inflammatory response, is a pre-eminent cause for the onset of aging-related disease states, including blinding diseases. However, several safeguards, like an antioxidant [...] Read more.
Increasing evidence reveals that the deregulation of cellular antioxidant response with advancing age, resulting in the continuing amplification of oxidative stress-induced inflammatory response, is a pre-eminent cause for the onset of aging-related disease states, including blinding diseases. However, several safeguards, like an antioxidant defense system, are genetically in place to maintain redox homeostasis. Nonetheless, if the homeostatic capacity of such systems fails (like in aging), an inflammatory pathway elicited by excessive oxidative stress-evoked aberrant NLRP3 (NOD, LRR- and pyrin domain-containing protein 3) inflammasome activation can become pathogenic and lead to disease states. Among all known inflammasomes, NLRP3 is the most studied and acts as an intracellular sensor to detect danger(s). Upon activation, NLRP3 recruits apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and facilitates the recruitment of activated Caspase-1 (Cas-1), which results in the release of inflammatory cytokines, IL-1β and IL-18 and the activation of GasderminD, an executor of pyroptosis. NLRP3 inflammasome is tightly regulated in favor of cell health. However, when and how the activation of NLRP3 and its inflammatory components goes awry, leading to cellular derangement, and what regulatory factors are involved in the normal physiological and aging/oxidative conditions will be included in this review. Also, we address the latest findings to highlight the connection between oxidative stress, antioxidants, and NLRP3 activation as this begets aging diseases and explore the cellular pathways that are in place to regulate oxidative-induced inflammations and the pathobiological consequences of dysregulated inflammatory responses and vice versa. Full article
Show Figures

Graphical abstract

18 pages, 2791 KiB  
Article
Cortisol-Induced Chromatin Remodeling and Gene Expression in Skeletal Muscle of Rainbow Trout: Integrative ATAC-Seq and RNA-Seq Analysis
by Rodrigo Zuloaga, Camila Garrido, Luciano Ahumada-Langer, José Luis Galaz, Giorgia Daniela Ugarte, Alfredo Molina and Juan Antonio Valdés
Int. J. Mol. Sci. 2025, 26(13), 6079; https://doi.org/10.3390/ijms26136079 - 25 Jun 2025
Viewed by 567
Abstract
Cortisol, the main glucocorticoid in teleost, plays a central role in mediating the physiological response to stress by regulating metabolism, immune function, and growth. While its transcriptional effects are well known, its role in modulating chromatin accessibility in fish skeletal muscle remains poorly [...] Read more.
Cortisol, the main glucocorticoid in teleost, plays a central role in mediating the physiological response to stress by regulating metabolism, immune function, and growth. While its transcriptional effects are well known, its role in modulating chromatin accessibility in fish skeletal muscle remains poorly understood. In this study, we investigated the epigenomic and transcriptomic changes induced by cortisol in a juvenile rainbow trout’s (Oncorhynchus mykiss) skeletal muscle using ATAC-seq and RNA-seq. Fish were treated with a single intraperitoneal dose of cortisol (10 mg/kg) or vehicle, and muscle samples were collected 3 h post-treatment. ATAC-seq analysis revealed a total of 163,802 differentially accessible regions (DARs), with an important enrichment of open regions near transcription start sites and promoters. A total of 1612 and 1746 differentially accessible genes (DAGs) were identified in the cortisol and control groups, respectively. Motif enrichment analysis identified 89 transcription factors to be significantly enriched, among which key stress-responsive regulators such as Fos, AP-1, FoxO1/3, Mef2a/b/c, Klf5/10, and ATF4 were prominently represented. RNA-seq analysis identified 4050 differentially expressed genes (DEGs), with 2204 upregulated genes involved in autophagy, mitophagy, and FoxO signaling, while 1864 downregulated genes were enriched in spliceosome and chromatin remodeling pathways. Integrative analysis revealed 174 overlapping genes between ATAC-seq and RNA-seq datasets, highlighting pathways linked to autophagy and ATP-dependent chromatin remodeling. Four selected DEGs (sesn1, sesn2, cullin3, samtor) were validated by qPCR, showing high concordance with transcriptomic data. These findings provide new insights into cortisol-mediated regulation of chromatin dynamics and gene expression in teleost skeletal muscle and underscore the importance of epigenetic mechanisms in fish stress responses. Full article
(This article belongs to the Special Issue Fish Genomics and Developmental Biology, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 6401 KiB  
Article
Identification of Transcriptomic Differences in Induced Pluripotent Stem Cells and Neural Progenitors from Amyotrophic Lateral Sclerosis Patients Carrying Different Mutations: A Pilot Study
by Chiara Sgromo, Martina Tosi, Cristina Olgasi, Fabiola De Marchi, Francesco Favero, Giorgia Venturin, Beatrice Piola, Alessia Cucci, Lucia Corrado, Letizia Mazzini, Sandra D’Alfonso and Antonia Follenzi
Cells 2025, 14(13), 958; https://doi.org/10.3390/cells14130958 - 23 Jun 2025
Viewed by 520
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS by generating induced pluripotent stem cells (iPSCs) from peripheral blood of ALS patients and healthy donors. iPSCs showed the typical morphology, expressed stem cell markers both at RNA (OCT4, SOX2, KLF4, and c-Myc) and protein (Oct4, Sox2, SSEA3, and Tra1-60) levels. Moreover, embryoid bodies expressing the three germ-layer markers and neurospheres expressing neural progenitor markers were generated. Importantly, the transcriptomic profiles of iPSCs and neurospheres were analyzed to highlight the differences between ALS patients and healthy controls. Interestingly, the differentially expressed genes (DEGs) shared across all ALS iPSCs are linked to extracellular matrix, highlighting its importance in ALS progression. In contrast, ALS neurospheres displayed widespread deficits in neuronal pathways, although these DEGs were varied among patients, reflecting the disease’s heterogeneity. Overall, we generated iPSC lines from ALS patients with diverse genetic backgrounds offering a tool for unravelling the intricate molecular landscape of ALS, paving the way for identifying key pathways implicated in pathogenesis and the disease’s phenotypic variability. Full article
(This article belongs to the Collection Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

37 pages, 18599 KiB  
Article
Diclofenac Immune-Mediated Hepatitis: Identification of Innate and Adaptive Immune Responses at Clinically Relevant Doses
by Jürgen Borlak and Reinhard Spanel
Int. J. Mol. Sci. 2025, 26(12), 5899; https://doi.org/10.3390/ijms26125899 - 19 Jun 2025
Viewed by 635
Abstract
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at [...] Read more.
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at 3 and 15 mg/kg for 28 days. Histopathology evidenced lobular inflammation, and through a combination of immunogenomics and immunopathology, we detected marked innate and adaptive immune responses. We identified 109 significantly regulated genes linked to neutrophil, monocyte, Kupffer cell, and lymphocyte responses and 32 code for cytokine- and interferon-γ-signaling. In support of wound repair, immunopathology evidenced manifest upregulation of macrophage migration inhibitory factor and CD74. Furthermore, the strong expression of IgG and IgM underscored humoral immune responses. Diclofenac caused an activation of the complement system, especially the C1 inhibitor of the classical pathway and C3 with critical functions in liver regeneration. The marked expression of complement factor B and H of the alternate pathway modulated B-cell responses. Likely, the upregulation of factor H protected hepatocytes from injury by limiting complement-mediated damage of inflamed cells. Additionally, diclofenac treatment elicited marked hepatic expression of lysozyme and KLF6. The latter earmarks M1-polarized Kupffer cells. We observed an extraordinary induction of calprotectin/S100A9 and of the monocyte/macrophage CD163 scavenger receptor, and therefore, we detected innate immune sensing of damaged cells. Lastly, we noted an unprecedented induction of the acute phase reactant SAA1 and DEC-205, which recognize apoptotic and necrotic cells. Together, our results offer mechanistic insights into immune-mediated liver injury patterns following diclofenac treatment. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

17 pages, 10722 KiB  
Article
Fin Cells as a Promising Seed Cell Source for Sustainable Fish Meat Cultivation
by Zongyun Du, Jihui Lao, Yuyan Jiang, Jingyu Liu, Shili Liu, Jianbo Zheng, Fei Li, Yongyi Jia, Zhimin Gu, Jun Chen and Xiao Huang
Foods 2025, 14(12), 2075; https://doi.org/10.3390/foods14122075 - 12 Jun 2025
Viewed by 799
Abstract
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation [...] Read more.
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation efficiency and predictability are limited. Here, we developed TCCF2022, a novel caudal fin-derived cell line from Topmouth culter (Culter alburnus), which expresses pluripotency markers (AP, Oct4, Sox2, Klf4, and Nanog) and aggregated growth to form 3D spheroids. Forskolin supplementation enhanced pluripotency maintenance. The presence of adipogenic and myogenic lineage cells within the 3D spheroids was confirmed, demonstrating their potential as seed cells for cell-cultured meat. Using a small-molecule cocktail 5LRCF (5-Azacytidine, LY411575, RepSox, CHIR99021, and Forskolin), we successfully differentiated TCCF2022 cells into functional myotubes. Additionally, we established a method to induce the differentiation of TCCF2022 cells into adipocytes simultaneously. Thus, the TCCF2022 cell line can be used to improve muscle fiber formation and lipid composition, potentially enhancing the nutritional profile and flavor of cultured fish meat. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

15 pages, 6405 KiB  
Article
Integrative Single-Cell Transcriptomics and Network Modeling Reveal Modular Regulators of Sheep Zygotic Genome Activation
by Xiaopeng Li, Peng Niu, Kai Hu, Xueyan Wang, Fei Huang, Pengyan Song, Qinghua Gao and Di Fang
Biology 2025, 14(6), 676; https://doi.org/10.3390/biology14060676 - 11 Jun 2025
Viewed by 924
Abstract
Zygotic genome activation (ZGA) marks the critical transition from reliance on maternal transcripts to the initiation of embryonic transcription early in development. Despite extensive characterization in model species, the regulatory framework of ZGA in sheep remains poorly defined. Here, we applied single-cell RNA [...] Read more.
Zygotic genome activation (ZGA) marks the critical transition from reliance on maternal transcripts to the initiation of embryonic transcription early in development. Despite extensive characterization in model species, the regulatory framework of ZGA in sheep remains poorly defined. Here, we applied single-cell RNA sequencing (Smart-seq2) to in vivo- and in vitro-derived sheep embryos at the 8-, 16-, and 32-cell stages. Differential expression analysis revealed 114, 1628, and 1465 genes altered in the 8- vs. 16-, 16- vs. 32-, and 8- vs. 32-cell transitions, respectively, with the core pluripotency factors SOX2, NANOG, POU5F1, and KLF4 upregulated during major ZGA. To uncover coordinated regulatory modules, we constructed a weighted gene co-expression network using WGCNA, identifying the MEred module as most tightly correlated with developmental progression (r = 0.48, p = 8.6 × 10−14). The integration of MERed genes into the STRING v11 protein–protein interaction network furnished a high-confidence scaffold for community detection. Louvain partitioning delineated two discrete communities: Community 0 was enriched in ER–Golgi vesicle-mediated transport, transmembrane transport, and cytoskeletal dynamics, suggesting roles in membrane protein processing, secretion, and early signaling; Community 1 was enriched in G2/M cell-cycle transition and RNA splicing/processing, indicating a coordinated network for accurate post-ZGA cell division and transcript maturation. Together, these integrated analyses reveal a modular regulatory architecture underlying sheep ZGA and provide a framework for dissecting early embryonic development in this species. Full article
Show Figures

Figure 1

17 pages, 1052 KiB  
Article
Association of Model-Predicted Epigenetic Age and Female Infertility
by Elena Pozdysheva, Vitaly Korchagin, Tatiana Rumyantseva, Daria Ogneva, Vera Zhivotova, Irina Gaponova, Konstantin Mironov and Vasily Akimkin
Epigenomes 2025, 9(2), 19; https://doi.org/10.3390/epigenomes9020019 - 5 Jun 2025
Viewed by 1058
Abstract
Background: To date, there are no precise clinical and laboratory methods to accurately predict the onset of fertility decline in women, with chronological age being the ultimate predictor. This has led to increased interest in developing methods to determine biological age, as it [...] Read more.
Background: To date, there are no precise clinical and laboratory methods to accurately predict the onset of fertility decline in women, with chronological age being the ultimate predictor. This has led to increased interest in developing methods to determine biological age, as it provides a more accurate understanding of individual age-related physiological changes. Methods: In this study, we developed a model for estimating biological age based on DNA methylation levels in the ELOVL2, TRIM59, C1orf132, FHL2, and KLF14 genes using pyrosequencing. The model was tested in 64 Russian women, aged 25–39 years, to find an association between epigenetic age, infertility, low anti-Müllerian hormone (AMH) levels, and assisted reproductive technology (ART) failure. Results: The predictive performance of the model was evaluated. The mean absolute deviation of the model was 2.8 years; the mean absolute error was 2.6 years (R2 = 0.95). In the studied cohort, 33% of women exhibited epigenetic age acceleration (EAA), while 45% showed epigenetic age deceleration (EAD). All women with an EAA of ≥3 years (n = 6) had a history of infertility. Conclusions: In this study, no statistically significant associations were observed between EAA/EAD and AMH, body mass index, infertility, or ART failure in women. Full article
Show Figures

Figure 1

24 pages, 6213 KiB  
Article
Transmembrane Protease Serine 11B Modulates Lactate Transport Through SLC16A1 in Pancreatic Ductal Adenocarcinoma—A Functional Link to Phenotype Heterogeneity
by Dinara Baiskhanova, Maike Menzel, Claudia Geismann, Christoph Röcken, Eric Beitz, Susanne Sebens, Anna Trauzold and Heiner Schäfer
Int. J. Mol. Sci. 2025, 26(11), 5398; https://doi.org/10.3390/ijms26115398 - 4 Jun 2025
Viewed by 625
Abstract
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells [...] Read more.
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells running the reverse Warburg metabolism. Key drivers of lactate transport are the carrier proteins SLC16A1 (import/export) and SLC16A3 (export). Expression and function of both carriers are controlled by the chaperone Basigin (BSG), which itself is functionally controlled by the transmembrane protease serine 11B (TMPRSS11B). In this study we explored the impact of TMPRSS11B on the phenotype of PDAC cells under reverse Warburg conditions. Amongst a panel of PDAC cell lines, Panc1 and BxPc3 cells were identified to express TMPRSS11B at a high level, whilst other cell lines such as T3M4 did not. ShRNA-mediated TMPRSS11B knock-down in Panc1 and BxPc3 cells enhanced lactate import through SLC16A1, as shown by GFP/iLACCO1 lactate uptake assay, whereas TMPRSS1B overexpression in T3M4 dampened SLC16A1-driven lactate uptake. Moreover, knock-down and overexpression of TMPRSS11B differentially impacted proliferation and chemoresistance under reverse Warburg conditions in Panc1 or BxPc3 and T3M4 cells, respectively, as well as their stemness properties indicated by altered colony formation rates and expression of the stem cell markers Nanog, Sox2, KLF4 and Oct4. These effects of TMPRSS11B depended on both SLC16A1 and BSG as shown by gene silencing. Immunohistochemical analysis revealed a reciprocal expression of TMPRSS11B and BSG together with SLC16A1 in some areas of tumor tissues from PDAC patients. Those regions exhibiting low or no TMPRSS11B expression but concomitant high expression of SLC16A1 and BSG revealed greater amounts of KLF4. In contrast, other tumor areas exhibiting high expression of TMPRSS11B together with BSG and SLC16A1 were largely negative for KLF4 expression. Thus, the differential expression of TMPRSS11B adds to metabolic heterogeneity in PDAC and its absence supports the reverse Warburg metabolism in PDAC cells by the enhancement of BSG-supported lactate uptake through SLC16A1 and subsequent phenotype alterations towards greater stemness. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

Back to TopTop