Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = Jahn-Teller effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2557 KB  
Article
Composite Material Formation Based on Biochar and Nickel (II)-Copper (II) Ferrites
by Nina P. Shabelskaya, Alexandr V. Vyaltsev, Neonilla G. Sundukova, Vera A. Baranova, Sergej I. Sulima, Elena V. Sulima, Yulia A. Gaidukova, Asatullo M. Radzhbov, Elena V. Vasileva and Elena A. Yakovenko
Molecules 2025, 30(19), 3900; https://doi.org/10.3390/molecules30193900 - 26 Sep 2025
Viewed by 373
Abstract
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). [...] Read more.
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). The obtained materials were characterized by X-ray phase analysis, scanning electron microscopy, and FTIR spectroscopy. It is shown that when replacing copper (II) cations with nickel (II) cations, the average parameters and volume of the unit cell gradually decrease, and the cation–anion distances in both the tetrahedral and octahedral spinel grids also decrease with regularity. The oxide materials were found to form a film on the surface of biochar, repeating its porous structure. The obtained materials exhibit high catalytic activity in the methyl orange decomposition reaction under the action of hydrogen peroxide in an acidic medium; the degradation of methyl orange in an aqueous solution occurs 30 min after the start of the reaction. This result may be associated with the formation of the Fenton system during the oxidation–reduction process. A significant increase in the reaction rate in the system containing mixed nickel–copper ferrite as a catalyst may be associated with the formation of a more defective structure due to the Jahn–Teller effect manifestation, which creates additional active centers on the catalyst surface. Full article
Show Figures

Figure 1

17 pages, 5161 KB  
Article
Tunable Emission Properties of Sb3+/Pb2+ Co-Doped Cs7Cd3Br13 for Optical Anti-Counterfeiting Application
by Bingbing Zheng, Shuaigang Ge, Lingli Chen, Yijia Wen, Kaihuang Huang and Bingsuo Zou
Nanomaterials 2025, 15(16), 1238; https://doi.org/10.3390/nano15161238 - 13 Aug 2025
Viewed by 614
Abstract
Cd-based perovskite materials have the advantages of high emission efficiency and tunable emission, as well as broad application prospects in the field of optoelectronics. However, achieving multimode dynamic luminescence under UV light excitation in a single system is a great challenge. Here, we [...] Read more.
Cd-based perovskite materials have the advantages of high emission efficiency and tunable emission, as well as broad application prospects in the field of optoelectronics. However, achieving multimode dynamic luminescence under UV light excitation in a single system is a great challenge. Here, we successfully prepared Sb3+/Pb2+ co-doped Cs7Cd3Br13 crystals by a simple hydrothermal method. Tunable emission from orange to white and then to blue, covering the wavelength range between 370 and 800 nm, was achieved by varying the doping concentration of Pb2+ ions in Cs7Cd3Br13:0.5%Sb3+. Temperature-dependent photoluminescence (PL) spectra and density functional theory (DFT) calculations confirm that the wide-band white-light emission of Cs7Cd3Br13: Sb3+/Pb2+ crystal comes from the first self-trapped exciton (STE1) of undoped Cs7Cd3Br13 intrinsic capture state and the emission of free excitons (FEs) and STE2 induced by the confining effect and the Jahn–Teller effect by Pb2+ incorporation, as well as the Sb triplet self-trapped exciton (STE3). More specifically, the samples with the best co-doped ratio exhibit significant excitation-wavelength-dependent luminescence characteristics and can realize the conversion of the emission color from white and blue to orange. Based on the tunable emission characteristics of three emission colors, the material has good prospects in encryption and anti-counterfeiting applications. This work provides a new strategy for the application of Cd-based halides in the field of anti-counterfeiting. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

17 pages, 3073 KB  
Article
Synthesis, Characterization, and Anticancer Activity of 3-Chlorothiophene-2-carboxylic Acid Transition Metal Complexes
by Baiquan Hu, Qianqian Kang, Xianggao Meng, Hao Yin, Xingzhi Yang, Yanting Yang and Mei Luo
Inorganics 2025, 13(7), 238; https://doi.org/10.3390/inorganics13070238 - 11 Jul 2025
Viewed by 1275
Abstract
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py [...] Read more.
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py = pyridine), [{Ni(L)2(OH2)4}2{Ni(L)(OH2)5}]L•5H2O (3), and [{Co(L)2(OH2)4}2{Co(L)(OH2)5}]L•5H2O (4). All four compounds were identified by elemental analysis and ESI mass spectrometry, and subsequently characterized by IR spectroscopy, UV-visible diffuse reflectance spectroscopy, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography, and cyclic voltammetry. X-ray analyses revealed that complexes 1 and 2 exhibit a centrosymmetric pseudo-octahedral coordination geometry; the copper (II) and cobalt (II) metal ions, respectively, are located at the crystallographic center of inversion. The coordination sphere of the copper (II) complex is axially elongated in accordance with the Jahn–Teller effect. Intriguingly, for charge neutrality, compounds 3 and 4 crystallized as three independent mononuclear octahedrally coordinated metal centers, which are two [ML2(OH2)4] complex molecules and one [ML(OH2)5]+ complex cation (M = NiII and CoII, respectively), with the ligand anion L serving as the counter ion. The anticancer activities of these complexes were systematically assessed on human leukemia K562 cells, lung cancer A549 cells, liver cancer HepG2 cells, breast cancer MDA-MB-231 cells, and colon cancer SW480 cells. Among them, complex 4 shows significant inhibitory effects on leukemia K562 cells and colon cancer SW480 cells. Full article
Show Figures

Graphical abstract

17 pages, 4432 KB  
Review
Suppressing Jahn–Teller Distortion in Manganese Oxides for High-Performance Aqueous Zinc-Ion Batteries
by Jiangfeng Duan, Man Huang, Ming Song, Weijia Zhou and Hua Tan
Materials 2025, 18(12), 2817; https://doi.org/10.3390/ma18122817 - 16 Jun 2025
Cited by 2 | Viewed by 1117
Abstract
Manganese oxides (MnOx) have been confirmed as the most promising candidates for aqueous zinc-ion batteries (AZIBs) due to their cost-effectiveness, high theoretical capacity, high voltage platforms, and environmental friendliness. However, in practical applications, AZIBs are hindered by the Jahn–Teller distortion (JTD) [...] Read more.
Manganese oxides (MnOx) have been confirmed as the most promising candidates for aqueous zinc-ion batteries (AZIBs) due to their cost-effectiveness, high theoretical capacity, high voltage platforms, and environmental friendliness. However, in practical applications, AZIBs are hindered by the Jahn–Teller distortion (JTD) effect, primarily induced by Mn3+ (t2g3eg1) in octahedral coordination, which leads to severe structural deformation, rapid capacity fading, and poor cycling stability. This review systematically outlines the fundamental mechanisms of JTD in MnOx cathodes, including electronic structure changes, lattice distortions, and their side effects on Zn2+ storage performance. Furthermore, we critically discuss advanced strategies to suppress JTD, such as cation/anion doping, interlayer engineering, surface/interface modification, and electrolyte optimization, aimed at enhancing both structural stability and electrochemical performance. Finally, we propose future research directions, such as in situ characterization, machine learning-guided material design, and multifunctional interfacial engineering, to guide the design of high-performance MnOx hosts for next-generation AZIBs. This review may provide a promising guideline for overcoming JTD challenges and advancing MnOx-based energy storage systems. Full article
Show Figures

Figure 1

19 pages, 3611 KB  
Review
Recent Advances in Enhancing Air Stability of Layered Oxide Cathodes for Sodium-Ion Batteries via High-Entropy Strategies
by Zhenyu Cheng, Tao Du, Lei Cao, Yuxuan Liu and Hao Wang
Metals 2025, 15(6), 646; https://doi.org/10.3390/met15060646 - 9 Jun 2025
Viewed by 2383
Abstract
Layered transition metal oxide (LTMO) cathode materials for sodium-ion batteries (SIBs) have attracted extensive attention due to their unique structural stability and excellent electrochemical performance. However, their poor stability in air has significantly impeded their practical application, as exposure to moisture and carbon [...] Read more.
Layered transition metal oxide (LTMO) cathode materials for sodium-ion batteries (SIBs) have attracted extensive attention due to their unique structural stability and excellent electrochemical performance. However, their poor stability in air has significantly impeded their practical application, as exposure to moisture and carbon dioxide can lead to Na+ loss, phase transitions, and decreased electrochemical performance. This paper reviews the application of high-entropy strategies in sodium-ion LTMO cathode materials, focusing on the optimization of air stability and electrochemical performance through approaches including high-entropy cation regulation, P2/O3 dual-phase synergistic structures, and fluorine ion doping. Studies have shown that high-entropy design can effectively inhibit phase transitions, alleviate Jahn–Teller distortion, enhance oxygen framework stability, and markedly enhance the cycle life and rate performance of materials. Furthermore, future research directions are proposed, including the use of advanced characterization techniques to reveal failure mechanisms, the integration of machine learning to optimize material design, and the development of high-performance mixed-phase structures. High-entropy strategies provide new perspectives for the development of SIBs cathode materials with enhanced air stability, potentially promoting the practical application of SIBs in large-scale energy storage systems. Full article
Show Figures

Graphical abstract

12 pages, 2936 KB  
Article
Synthesis of Well-Crystallized Cu-Rich Layered Double Hydroxides and Improved Catalytic Performances for Water–Gas Shift Reaction
by Shicheng Liu, Yinjie Hu, Qian Zhang, Xia Tan, Haonan Cui, Fei Li, Huibin Lei and Ou Zhuo
Catalysts 2025, 15(6), 546; https://doi.org/10.3390/catal15060546 - 30 May 2025
Cited by 1 | Viewed by 873
Abstract
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive [...] Read more.
Cu-based layered double hydroxides (LDH) have been extensively employed as catalyst precursors. However, due to the Jahn–Teller effect of copper ions, it is a challenge to synthesize well-crystallized LDH with a high Cu content, which usually contains considerable CuO impurity. By adding competitive ligands during the coprecipitation process, such as glycine, a well-crystallized Cu-rich LDH with less CuO impurity was successfully synthesized. The Cu-Mg-Al mixed oxides derived from the well-crystallized Cu-rich LDH have relatively high SBET, large pore volume, and well dispersion of Cu nanoparticles. The derived catalyst exhibited unexpectedly high catalytic activity in the water–gas shift (WGS) reaction, and the mass-specific reaction rate was reached as high as 33.5 μmolCO·gcat1·s−1 at 200 °C. The high catalytic activity of this catalyst may originate from the high SBET and well dispersion of Cu particles and metal oxides. Moreover, the derived catalyst also displayed outstanding long-term stability in the WGS reaction, which should benefit from the enhanced metal–support interaction. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

13 pages, 19367 KB  
Article
Enhancing the Structural Stability and Diffusion Kinetics of a Tunnel-Phase Cathode by the Synergistic Effect of Cation-Anion Co-Doping for Advanced Sodium-Ion Batteries
by Wenjing Shi, Xuezeng Duan, Zihan Xiao, Xiaofei Fan, Hao Zhang, Yan Wang, Lingyang Liu, Pengfang Zhang and Hengxiang Li
Molecules 2025, 30(11), 2299; https://doi.org/10.3390/molecules30112299 - 23 May 2025
Cited by 1 | Viewed by 818
Abstract
Tunnel-structured Na0.44MnO2 (NMO) has been extensively studied as a potential cathode for sodium-ion batteries (SIBs) due to its favorable cycling endurance, cost-effectiveness, environmental benignity, and notable air-moisture stability. However, limitations, such as sluggish ion diffusion kinetics, an insufficient Na+ [...] Read more.
Tunnel-structured Na0.44MnO2 (NMO) has been extensively studied as a potential cathode for sodium-ion batteries (SIBs) due to its favorable cycling endurance, cost-effectiveness, environmental benignity, and notable air-moisture stability. However, limitations, such as sluggish ion diffusion kinetics, an insufficient Na+ storage capacity, and an unsatisfactory Jahn–Teller effect, impede its widespread application. To address these problems, this study proposes a co-doping strategy that involves the simultaneous introduction of a cation and an anion. The optimized cathode Na0.44Mn0.99Ni0.01O1.985F0.015 demonstrates remarkable rate capabilities with average discharge capacities of 136.2, 133.0, 129.6, 124.0, 115.9, and 95.8 mAh g−1 under current rates ranging from 0.1 to 5 C. Furthermore, it also exhibits exceptional long-term cyclability, retaining 86.5% and 89.4% capacity retention at 1 and 5 C after 200 and 400 cycles, respectively, accompanied by nearly 100% Coulombic efficiency. A comprehensive structural characterization and experimental analysis reveal that the synergistic incorporation of Ni and F can effectively adjust the lattice parameters and alleviate the Jahn–Teller distortion of the NMO cathode, thereby resulting in enhanced structural integrity, rapid ion transfer dynamics, and excellent sodium storage performance. Consequently, this investigation establishes a significant approach for optimizing tunnel-phase Mn-based cathodes through the synergistic effect of cation and anion co-doping, which promotes the practical implementation of advanced SIBs. Full article
Show Figures

Figure 1

14 pages, 3484 KB  
Article
Ti-Doped, Mn-Based Polyanionic Compounds of Na4Fe1.2Mn1.8(PO4)2P2O7 for Sodium-Ion Battery Cathode
by Hualin Li, Gang Pang, Weilong Zhang, Qingan Zhang, Linrui Hou and Changzhou Yuan
Nanomaterials 2025, 15(8), 581; https://doi.org/10.3390/nano15080581 - 11 Apr 2025
Cited by 2 | Viewed by 1364
Abstract
Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a prospective electrode for sodium-ion batteries (SIBs) because of its structure stability, economic viability and environmental friendliness. Nevertheless, its commercialization is constrained by low operating voltage and [...] Read more.
Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a prospective electrode for sodium-ion batteries (SIBs) because of its structure stability, economic viability and environmental friendliness. Nevertheless, its commercialization is constrained by low operating voltage and limited theoretical capacity, which result in a power density significantly inferior to that of LiFePO4. To address these limitations, in this work, we first designed and synthesized a series of Mn-doped NFPP to enhance its operating voltage, inspired by the successful design of LiFe1-xMnxPO4 cathodes. This approach was implemented to enhance the operating voltage of the material. Subsequently, the optimized Na4Fe1.2Mn1.8(PO4)2P2O7 (1.8Mn-NFMPP) sample was selected for further Ti-doped modification to enhance its cycle durability and rate performance. The final Mn/Ti co-doped Na4Fe1.2Mn1.7Ti0.1(PO4)2P2O7 (0.1Ti-NFMTPP) material exhibited a high operating voltage of ~3.6 V (vs. Na+/Na) in a half cell, with an outstanding reversible capacity of 122.9 mAh g−1 at 0.1 C and remained at 90.6% capacity retention after 100 cycles at 0.5 C. When assembled into a coin-type full cell employing a commercial hard carbon anode, the optimized cathode material exhibited an initial capacity of 101.7 mAh g−1, retaining 86.9% capacity retention over 50 cycles at 0.1 C. These results illustrated that optimal Mn/Ti co-doping is an effective methodology to boost the electrochemical behavior of NFPP materials, achieving mitigation of the Jahn–Teller effect on the Mn3+ and Mn dissolution problem, thereby significantly improving structural stability and cycling performance. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

12 pages, 5695 KB  
Article
An Organic–Inorganic Hybrid Semiconducting Quantum Spin Liquid Candidate: (BEDT-TTF)3[Cu2(μ-C2O4)3·CH3CH2OH·1.2H2O]
by Bin Zhang, Yan Zhang, Dongwei Wang, Zheming Wang, Guangcai Chang, Zengqiang Gao, Yanjun Guo, Fen Liu, Zhijuan Zhao, Xiaoyu Zhang, Baolong Qu, Peng Xu, Jiaou Wang, Fenliang Dong, Tongling Liang, Yang Sun, Deliang Yang, Qiaolian Li, Xiaofei Luo, Rongjuan Feng, Mei Liu and Xueying Zhangadd Show full author list remove Hide full author list
Magnetochemistry 2025, 11(2), 12; https://doi.org/10.3390/magnetochemistry11020012 - 12 Feb 2025
Viewed by 1213
Abstract
The organic–inorganic hybrid (BEDT-TTF)3[Cu2(μ-C2O4)3·CH3CH2OH·1.2H2O] (I) was obtained using the electrocrystallization method. It comprises a θ21-phase organic donor layer and a two-dimensional inorganic antiferromagnetic [...] Read more.
The organic–inorganic hybrid (BEDT-TTF)3[Cu2(μ-C2O4)3·CH3CH2OH·1.2H2O] (I) was obtained using the electrocrystallization method. It comprises a θ21-phase organic donor layer and a two-dimensional inorganic antiferromagnetic honeycomb lattice. Cu(II) is octahedrally coordinated by three bisbidenetate oxalates, exhibiting Jahn–Teller distortion. CH3CH2OH and H2O molecules are located within the cavities of the honeycomb lattice. The total formal charge of the three donor molecules was assigned to be +2 based on the bond lengths in the TTF core, which corresponded to the Raman spectra. It is a semiconductor with σrt = 0.04 S/cm and Eα = 40 meV. No long-range ordering was observed above 2 K from zero-field cooling/field cooling magnetization, as confirmed by specific heat measurements. The spin frustration with f > 10 from the antiferromagnetic copper-oxalate-framework was observed. It is a candidate quantum spin liquid. Full article
Show Figures

Figure 1

15 pages, 1834 KB  
Review
Multiband Superconductivity, Polarons, Jahn-Teller Polarons, Heterogeneity, and High-Temperature Superconductivity
by Annette Bussmann-Holder and Hugo Keller
Condens. Matter 2024, 9(4), 56; https://doi.org/10.3390/condmat9040056 - 19 Dec 2024
Cited by 1 | Viewed by 1563
Abstract
Early on, oxides were ruled out from superconductivity, since they are typically large-band-gap insulators. Nevertheless, a rather small number of them were found to be superconducting, with transition temperatures up to 14 K and a remarkably low carrier density. This was the starting [...] Read more.
Early on, oxides were ruled out from superconductivity, since they are typically large-band-gap insulators. Nevertheless, a rather small number of them were found to be superconducting, with transition temperatures up to 14 K and a remarkably low carrier density. This was the starting point of K. Alex Müller (KAM) becoming interested in superconductivity in oxides. Step by step, he advanced the research on oxides and finally discovered, together with J. Georg Bednorz, high-temperature superconductivity (HTSC) in the perovskite-type compound Ba-La-Cu-O. Even though he was inspired by specific and clear ideas in his search, he added new impact in the understanding of HTSC for many years after receipt of the Nobel prize for this discovery. Full article
(This article belongs to the Special Issue Superstripes Physics, 3rd Edition)
Show Figures

Figure 1

11 pages, 4440 KB  
Article
Effects of Ti4+ Doping on the Structural Stability and Electrochemical Performance of Layered P2-Na0.7MnO2.05 Cathodes for Sodium-Ion Batteries
by Kexin Zheng, Jiawei Wang, Haifeng Wang, Zhengqing Pei, Qian Wang, Xinjie Zhou, Dehua Ma and Ju Lu
Nanomaterials 2024, 14(24), 1989; https://doi.org/10.3390/nano14241989 - 12 Dec 2024
Cited by 2 | Viewed by 1528
Abstract
The P2-Na0.7MnO2.05 cathode material has long been constrained by phase transitions induced by the Jahn–Teller (J–T) effect during charge–discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the [...] Read more.
The P2-Na0.7MnO2.05 cathode material has long been constrained by phase transitions induced by the Jahn–Teller (J–T) effect during charge–discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the precursor Mn3O4 synthesis, followed by calcination to obtain Na0.7TixMn(1−x)O2.05 materials. We investigated the effects of Ti doping on the structure, morphology, Mn3+ concentration, and Na+ diffusion coefficients of Na0.7TixMn(1−x)O2.05. Our findings revealed that the 7% Ti-doped NTMO-007 sample exhibited reduced grain agglomeration and smaller particle sizes compared to the undoped sample, thereby enhancing the electrode–electrolyte contact area and electrochemical activity. Additionally, Ti doping increased the crystal cell volume of Na0.7MnO2.05 and broadened the Na+ transport channels, significantly enhancing the Na+ diffusion coefficient. At a 0.5 C rate, the NTMO-007 sample demonstrated a specific capacity of 143.3 mAh g−1 with an 81.8% capacity retention after 100 cycles, markedly outperforming the undoped NMO sample, which had a capacity retention of only 61.5%. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

15 pages, 6733 KB  
Article
Effects of Cr3+ Doping on Spinel LiMn2O4 Morphology and Electrochemical Performance
by Zhengqing Pei, Jiawei Wang, Haifeng Wang, Kexin Zheng, Qian Wang, Xinjie Zhou, Dehua Ma and Ju Lu
Int. J. Mol. Sci. 2024, 25(24), 13270; https://doi.org/10.3390/ijms252413270 - 10 Dec 2024
Cited by 4 | Viewed by 1732
Abstract
LiMn2O4, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To [...] Read more.
LiMn2O4, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMn2O4, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr3+ into the LiMn2O4 cathode material, successfully synthesizing a series of LiCrxMn2−xO4 (x = 0~0.06). The prepared Cr-doped samples exhibited an excellent spinel structure and a unique truncated octahedral morphology. Additionally, the substitution of Mn3+ in LiMn2O4 by Cr3+, coupled with the significantly higher Cr-O bond energy compared to Mn-O bond energy, enhanced the stability of the crystal structure and inhibited the Jahn–Teller effect. Experimental results demonstrated that the optimized LiCr0.04Mn1.96O4 displayed superior electrochemical performance, with a capacity retention rate of 93.24% after 500 cycles under a 0.5C current density; even at 50 °C, the capacity retention rate remained at 86.46% after 350 cycles under a 0.5C current density. The polyhedral morphology formed by Cr doping in LiMn2O4 offers an effective approach to achieving high-performance LiMn2O4 cathode materials. Full article
(This article belongs to the Special Issue Recent Advances in Electrochemical-Related Materials)
Show Figures

Figure 1

17 pages, 5612 KB  
Article
Pseudo-Jahn–Teller Effect in Natural Compounds and Its Possible Role in Straintronics I: Hypericin and Its Analogs
by Dagmar Štellerová, Vladimír Lukeš and Martin Breza
Molecules 2024, 29(23), 5624; https://doi.org/10.3390/molecules29235624 - 28 Nov 2024
Viewed by 1062
Abstract
The distortions and instability of high-symmetry configurations of polyatomic systems in nondegenerate states are usually ascribed to the pseudo-Jahn–Teller effect (PJTE). The geometries of hypericin, isohypericin, and fringelite D were optimized within various symmetry groups. Group-theoretical treatment and (TD-)DFT calculations were used to [...] Read more.
The distortions and instability of high-symmetry configurations of polyatomic systems in nondegenerate states are usually ascribed to the pseudo-Jahn–Teller effect (PJTE). The geometries of hypericin, isohypericin, and fringelite D were optimized within various symmetry groups. Group-theoretical treatment and (TD-)DFT calculations were used to identify the corresponding electronic states during the symmetry descent. The symmetry descent paths (up to the stable structures without imaginary vibrations) were determined using the corresponding imaginary vibrations as their kernel subgroups starting from the highest possible symmetry group. The vibronic interaction between the ground and excited electronic states relates to an increasing energy difference of both states during the symmetry decrease. This criterion was used to identify possible PJTE. We have shown that the PJTE in these naturally occurring compounds could explain only the symmetry descent paths C2v → C2 and C2v → Cs in hypericin, and the D2h → C2v, D2h → C2v → C2, and D2h → C2h ones in fringelite D. The electric dipole moments of hypericin and its analogs were determined prevailingly by the mutual orientations of the hydroxyl groups. The same held for the energies of frontier orbitals in these systems, but their changes during the symmetry descent were less significant. Full article
Show Figures

Graphical abstract

18 pages, 5118 KB  
Article
Enhanced Performance of Sodium-Ion Battery Cathodes with Ti and V Co-Doped P2-Type Na0.67Fe0.5Mn0.5O2 Materials
by Trapa Banik, Indranil Bhattacharya, Kirankumar Venkatesan Savunthari, Sanjeev Mukerjee, Webster Adepoju and Abiodun Olatunji
Electrochem 2024, 5(4), 437-454; https://doi.org/10.3390/electrochem5040029 - 18 Oct 2024
Cited by 3 | Viewed by 4356
Abstract
Manganese- and iron-rich P2-type Na0.67Fe0.5Mn0.5O2 (NFM) has garnered significant interest as a promising cathode candidate due to the natural abundance of Fe and Mn along with a high [...] Read more.
Manganese- and iron-rich P2-type Na0.67Fe0.5Mn0.5O2 (NFM) has garnered significant interest as a promising cathode candidate due to the natural abundance of Fe and Mn along with a high redox couple of Fe3+/Fe4+ and Mn3+/Mn4+. Despite all these merits, NFM suffers from structural instability during cycling, arising from the destructive Jahn-Teller (JT) distortion effect of Mn3+/Mn4+ during charging and Fe4+/Fe3+ during discharging. In this research, a novel P2-type transition metal-oxide cathode Na0.67Fe0.5−2xMn0.5TixVxO2 was synthesized by doping a tiny fraction of two electrochemically inactive elements, Titanium (Ti) and Vanadium (V), into Mn-rich Na0.67Fe0.5Mn0.5O2 (NFM) that mitigated the JT effect substantially and ameliorated the stability of the SIB during cycling. These exhaustive structural and morphological comparisons provided insights into the effects of V and Ti doping on stabilizing surface structures, reducing Jahn Teller distortion, enhancing stability and capacity retention, and promoting the Na+ carrier transport mechanism. Moreover, the electrochemical analysis, such as the galvanostatic charge/discharge profile, validates the capacity improvement via Ti and V co-doping into NFM cathode. The initial discharge capacity of the 2% Ti/V-doped Na0.67Fe0.48Mn0.5Ti0.01V0.01O2 (2NFMTV) was found to be 187.12 mAh g−1 at a rate of 0.1 C, which was greater than the discharge capacity of 175.15 mAh g−1 observed for pure NFM (Na0.67Mn0.5Fe0.5O2). In contrast, 2NFMTV exhibited a noteworthy capacity retention of 46.1% when evaluated for its original capacity after undergoing 150 cycles at a rate of 0.1 C. This research also established a structural doping approach as a feasible technique for advancing the progress of next-generation Sodium-ion Batteries. Full article
Show Figures

Figure 1

13 pages, 3160 KB  
Article
Crystallite Size Effects on Electrical Properties of Nickel Chromite (NiCr2O4) Spinel Ceramics: A Study of Structural, Magnetic, and Dielectric Transitions
by Nagarjuna Rao Mamidipalli, Papireddy Tiyyagura, Suryadevara Punna Rao, Suresh Babu Kothamasu, Ramyakrishna Pothu, Rajender Boddula and Noora Al-Qahtani
ChemEngineering 2024, 8(5), 100; https://doi.org/10.3390/chemengineering8050100 - 8 Oct 2024
Cited by 7 | Viewed by 2454
Abstract
The effect of sintering temperature on the structural, magnetic, and dielectric properties of NiCr2O4 ceramics was investigated. A powder X-ray analysis indicates that the prepared nanocrystallites effectively inhibit the cooperative Jahn–Teller distortion, thereby stabilizing the high-temperature cubic phase structure with [...] Read more.
The effect of sintering temperature on the structural, magnetic, and dielectric properties of NiCr2O4 ceramics was investigated. A powder X-ray analysis indicates that the prepared nanocrystallites effectively inhibit the cooperative Jahn–Teller distortion, thereby stabilizing the high-temperature cubic phase structure with space group Fd-3m. Multiple transitions are confirmed by temperature-dependent magnetization M(T) data. Moreover, the magnetization value decreases and the Curie temperature increases with a decrease in the crystallite size. The low-temperature-dependent real permittivity (ε′-T) for a NiCr2O4 crystallite size of 78 nm exhibits a broad maximum at 40 K that is independent of frequency. This establishes a correlation between electric ordering and the underlying magnetic structure. The temperature dependency of the dielectric constant at fixed frequencies for both NiCr2O4 crystallite sizes rises with temperature for a certain range of frequencies. A significant improvement is evident: the dielectric constant (ε’) at room temperature reaches approximately 5738 for the sample with 28 nm crystallites, while the 78 nm crystallite sample shows a noticeable drop to ε’~174. The frequency-dependent conductivity curves for both types of NiCr2O4 nanocrystallites have different conductivity values. The lower-crystallite-size sample demonstrates higher conductivity values than the 78 nm crystallite size one. This observation is attributed to the decrease in crystallite size, which increases the number of grain boundaries and, consequently, scatters a higher number of charge carriers. Full article
Show Figures

Figure 1

Back to TopTop