Effects of Ti4+ Doping on the Structural Stability and Electrochemical Performance of Layered P2-Na0.7MnO2.05 Cathodes for Sodium-Ion Batteries
Abstract
1. Introduction
2. Experimental Section
2.1. Materials Synthesis
2.2. Material Characterization
2.3. Electrochemical Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, Q.; Liu, Y.; Jiao, L.; Qu, X.; Chen, J. Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Mater. 2021, 35, 400–430. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, K.; Chen, J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries. Adv. Mater. 2015, 27, 5343–5364. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Ong, S.P.; Chevrier, V.L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680–3688. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, Q.; Zhang, P.; Tian, W.; Dai, K.; Zhang, L.; Mao, J.; Shao, G. Review—Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries. J. Electrochem. Soc. 2021, 168, 050524. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.; Wang, N.; Zhang, Q. Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: Status, challenges and countermeasures. J. Mater. Chem. A 2019, 7, 10138–10158. [Google Scholar] [CrossRef]
- Shinde, G.; Baskar, S.; Nayak, P.D.; Barpanda, P. Sonochemical Synthesis of Na0.7MnO2.05 and Na0.44MnO2 Insertion Materials for Na-Ion Batteries and Na-Ion Capacitors. ECS Meet. Abstr. 2017, 232, 52. [Google Scholar] [CrossRef]
- Sun, T.; Yao, X.; Luo, Y.; Fang, M.; Shui, M.; Shu, J.; Ren, Y. Micron-sized Na0.7MnO2.05 as cathode materials for aqueous rechargeable magnesium-ion batteries. Ionics 2019, 25, 4805–4815. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Sun, K.; Guo, J.; Yuan, K.; Fu, J.; Zhang, T.; Zhang, X.; Long, H.; Zhang, Z.; et al. Manganese-Based Materials for Rechargeable Batteries beyond Lithium-Ion. Adv. Energy Mater. 2021, 11, 2100867. [Google Scholar] [CrossRef]
- Mahamad Yusoff, N.F.; Idris, N.H.; Noerochim, L. Review on recent progress in Manganese-based anode materials for sodium-ion batteries. Int. J. Energy Res. 2022, 46, 667–683. [Google Scholar] [CrossRef]
- Xu, L.; Ran, Q.; Li, L.; Hu, Q.; Cai, G.; Liu, X. A multiphase coupling strategy to structurally stable manganese-based oxides cathode for high electrochemical performance sodium ion batteries. Electrochim. Acta 2023, 467, 143085. [Google Scholar] [CrossRef]
- Guo, S.; Yu, H.; Jian, Z.; Liu, P.; Zhu, Y.; Guo, X.; Chen, M.; Ishida, M.; Zhou, H. A High-Capacity, Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries. ChemSusChem 2014, 7, 2115–2119. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Langrock, A.; Fan, X.; Liang, Y.; Wang, C. P2-type transition metal oxides for high performance Na-ion battery cathodes. J. Mater. Chem. A 2017, 5, 18214–18220. [Google Scholar] [CrossRef]
- Bai, X.; Iadecola, A.; Tarascon, J.-M.; Rozier, P. Decoupling the effect of vacancies and electropositive cations on the anionic redox processes in Na based P2-type layered oxides. Energy Storage Mater. 2020, 31, 146–155. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, X.; Zhan, J.; Wang, X.; Tu, J. A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical carbon nanofibre anode for enhanced sodium ion batteries. J. Mater. Chem. A 2016, 4, 11207–11213. [Google Scholar] [CrossRef]
- Liang, Y.; Lai, W.; Miao, Z.; Chou, S. Nanocomposite Materials for the Sodium–Ion Battery: A Review. Small 2018, 14, 1702514. [Google Scholar] [CrossRef]
- Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”. Chem. Rec. 2018, 18, 459–479. [Google Scholar] [CrossRef]
- Skundin, A.M.; Kulova, T.L.; Yaroslavtsev, A.B. Sodium-Ion Batteries (a Review). Russ. J. Electrochem. 2018, 54, 113–152. [Google Scholar] [CrossRef]
- Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.S.; et al. Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition. Joule 2019, 3, 612. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Yang, Q.; Hu, B.; Geng, F.; Zhao, C.; Lin, Y.; Hu, B. Cu-Doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies. ACS Appl. Mater. Interfaces 2020, 12, 34848–34857. [Google Scholar] [CrossRef]
- Zhang, Y.; Pei, Y.; Liu, W.; Zhang, S.; Xie, J.; Xia, J.; Nie, S.; Liu, L.; Wang, X. AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem. Eng. J. 2020, 382, 122697. [Google Scholar] [CrossRef]
- Lu, D.; Yao, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Wu, J.; Tu, J. Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 15630–15637. [Google Scholar] [CrossRef]
- Darbar, D.; Muralidharan, N.; Hermann, R.P.; Nanda, J.; Bhattacharya, I. Evaluation of electrochemical performance and redox activity of Fe in Ti doped layered P2-Na0.67Mn0.5Fe0.5O2 cathode for sodium ion batteries. Electrochim. Acta 2021, 380, 138156. [Google Scholar] [CrossRef]
- Tao, S.; Zhou, W.; Wu, D.; Wang, Z.; Qian, B.; Chu, W.; Marcelli, A.; Song, L. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries. J. Mater. Sci. Technol. 2021; 74, 230–236. [Google Scholar] [CrossRef]
- Hou, Y.; Tang, H.; Li, B.; Chang, K.; Chang, Z.; Yuan, X.-Z.; Wang, H. Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Mater. Chem. Phys. 2016, 171, 137–144. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, G.; Yao, W. High stability Na0.7MnO2.05 cathode for sodium ion batteries. Mater. Chem. Phys. 2023, 296, 127307. [Google Scholar] [CrossRef]
- Manzi, J.; Paolone, A.; Palumbo, O.; Corona, D.; Massaro, A.; Cavaliere, R.; Muñoz-García, A.B.; Trequattrini, F.; Pavone, M.; Brutti, S. Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study. Energies 2021, 14, 1230. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Teng, Y.-X.; Su, G.-Q.; Bao, S.; Lu, J.-L. A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries. J. Colloid Interface Sci. 2022, 608, 3013–3021. [Google Scholar] [CrossRef]
- Gu, F.; Yao, X.; Sun, T.; Fang, M.; Shui, M.; Shu, J.; Ren, Y. Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries. Appl. Phys. A, 2020; 126, 658. [Google Scholar]
- Zhong, X.-B.; He, C.; Gao, F.; Tian, Z.-Q.; Li, J.-F. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries. J. Energy Chem. 2021, 53, 323–328. [Google Scholar] [CrossRef]
- Li, W.; Yao, Z.; Zhang, S.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chem. Eng. J. 2021, 421, 127788. [Google Scholar] [CrossRef]
- Kang, W.; Ma, P.; Liu, Z.; Wang, Y.; Wang, X.; Chen, H.; He, T.; Luo, W.; Sun, D. Tunable Electrochemical Activity of P2–Na0.6Mn0.7Ni0.3O2–xFx Microspheres as High-Rate Cathodes for High-Performance Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 15333–15343. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Silván, B.; Choi, Y.S.; Celorrio, V.; Seymour, V.R.; Cibin, G.; Griffin, J.M.; Scanlon, D.O.; Tapia-Ruiz, N. Na2.4Al0.4Mn2.6O7 anionic redox cathode material for sodium-ion batteries—A combined experimental and theoretical approach to elucidate its charge storage mechanism. J. Mater. Chem. A 2022, 10, 7341–7356. [Google Scholar] [CrossRef]
Samples | a(b) (Å) | c (Å) | V (Å) | R-Pattern | Rwp | Chi2 |
---|---|---|---|---|---|---|
NMO | 2.871 | 11.148 | V = 79.574 | 9.56% | 11.63% | 2.01 |
NTMO-007 | 2.893 | 11.155 | V = 80.292 | 8.86% | 10.43% | 1.83 |
Samples | DNa+ | RSEI (Ω) | Rct (Ω) | RSEI + Rct (Ω) |
---|---|---|---|---|
NMO | 1.094E−10 | 175.1 | 654.7 | 829.8 |
NTMO-007 | 1.322E−10 | 53.6 | 366.2 | 419.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Wang, J.; Wang, H.; Pei, Z.; Wang, Q.; Zhou, X.; Ma, D.; Lu, J. Effects of Ti4+ Doping on the Structural Stability and Electrochemical Performance of Layered P2-Na0.7MnO2.05 Cathodes for Sodium-Ion Batteries. Nanomaterials 2024, 14, 1989. https://doi.org/10.3390/nano14241989
Zheng K, Wang J, Wang H, Pei Z, Wang Q, Zhou X, Ma D, Lu J. Effects of Ti4+ Doping on the Structural Stability and Electrochemical Performance of Layered P2-Na0.7MnO2.05 Cathodes for Sodium-Ion Batteries. Nanomaterials. 2024; 14(24):1989. https://doi.org/10.3390/nano14241989
Chicago/Turabian StyleZheng, Kexin, Jiawei Wang, Haifeng Wang, Zhengqing Pei, Qian Wang, Xinjie Zhou, Dehua Ma, and Ju Lu. 2024. "Effects of Ti4+ Doping on the Structural Stability and Electrochemical Performance of Layered P2-Na0.7MnO2.05 Cathodes for Sodium-Ion Batteries" Nanomaterials 14, no. 24: 1989. https://doi.org/10.3390/nano14241989
APA StyleZheng, K., Wang, J., Wang, H., Pei, Z., Wang, Q., Zhou, X., Ma, D., & Lu, J. (2024). Effects of Ti4+ Doping on the Structural Stability and Electrochemical Performance of Layered P2-Na0.7MnO2.05 Cathodes for Sodium-Ion Batteries. Nanomaterials, 14(24), 1989. https://doi.org/10.3390/nano14241989