Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = Indo-Gangetic Plain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6387 KiB  
Article
Evolution of a Potentially Dangerous Glacial Lake on the Kanchenjunga Glacier, Nepal, Predictive Flood Models, and Prospective Community Response
by Alton C. Byers, Sonam Rinzin, Elizabeth Byers and Sonam Wangchuk
Water 2025, 17(10), 1457; https://doi.org/10.3390/w17101457 - 12 May 2025
Viewed by 2270
Abstract
During a research expedition to the Kanchenjunga Conservation Area (KCA), eastern Nepal, in April–June 2024, local concern was expressed about the rapid development of meltwater ponds upon the terminus of the Kanchenjunga glacier since 2020, especially in terms of the possible formation of [...] Read more.
During a research expedition to the Kanchenjunga Conservation Area (KCA), eastern Nepal, in April–June 2024, local concern was expressed about the rapid development of meltwater ponds upon the terminus of the Kanchenjunga glacier since 2020, especially in terms of the possible formation of a large and potentially dangerous glacial lake. Our resultant study of the issue included informal interviews with local informants, comparison of time series satellite composite images acquired by Sentinel-2 Multispectral Instrument, and modeling of different lake development, outburst flood scenarios, and prospective downstream impacts. Assuming that the future glacial lake will be formed by the merging of present-day supraglacial ponds, filling the low-gradient area beneath the present-day glacier terminal complex, we estimated the potential volume of a Kanchenjunga proglacial lake to be 33 × 106 m3. Potential mass movement-triggered outburst floods would travel downstream distances of almost 120 km even under the small magnitude scenario, and under the worst-case scenario would reach the Indo-Gangetic Plain and cross the border into India, exposing up to 90 buildings and 44 bridges. In response, we suggest that the lower Kanchenjunga glacier region be regularly monitored by both local communities and Kathmandu-based research entities over the next decade. The development of user-friendly early warning systems, hazard mapping and zoning programs, cryospheric hazards awareness building programs, and construction of locally appropriate flood mitigation measures are recommended. Finally, the continued development and refinement of the models presented here could provide governments and remote communities with a set of inexpensive and reliable tools capable of providing the basic information needed for communities to make informed decisions regarding hazard mitigation, adaptive, and/or preventive measures related to changing glaciers. Full article
(This article belongs to the Special Issue Study of Hydrological Mechanisms: Floods and Landslides)
Show Figures

Figure 1

46 pages, 15851 KiB  
Article
Emerging Human Fascioliasis in India: Review of Case Reports, Climate Change Impact, and Geo-Historical Correlation Defining Areas and Seasons of High Infection Risk
by Santiago Mas-Coma, Pablo F. Cuervo, Purna Bahadur Chetri, Timir Tripathi, Albis Francesco Gabrielli and M. Dolores Bargues
Trop. Med. Infect. Dis. 2025, 10(5), 123; https://doi.org/10.3390/tropicalmed10050123 - 2 May 2025
Cited by 1 | Viewed by 2271
Abstract
The trematodes Fasciola hepatica and F. gigantica are transmitted by lymnaeid snails and cause fascioliasis in livestock and humans. Human infection is emerging in southern and southeastern Asia. In India, the number of case reports has increased since 1993. This multidisciplinary study analyzes [...] Read more.
The trematodes Fasciola hepatica and F. gigantica are transmitted by lymnaeid snails and cause fascioliasis in livestock and humans. Human infection is emerging in southern and southeastern Asia. In India, the number of case reports has increased since 1993. This multidisciplinary study analyzes the epidemiological scenario of human infection. The study reviews the total of 55 fascioliasis patients, their characteristics, and geographical distribution. Causes underlying this emergence are assessed by analyzing (i) the climate change suffered by India based on 40-year-data from meteorological stations, and (ii) the geographical fascioliasis hotspots according to archeological–historical records about thousands of years of pack animal movements. The review suggests frequent misdiagnosis of the wide lowland-distributed F. gigantica with F. hepatica and emphasizes the need to obtain anamnesic information about the locality of residence and the infection source. Prevalence appears to be higher in females and in the 30–40-year age group. The time elapsed between symptom onset and diagnosis varied from 10 days to 5 years (mean 9.2 months). Infection was diagnosed by egg finding (in 12 cases), adult finding (28), serology (3), and clinics and image techniques (12). Climate diagrams and the Wb-bs forecast index show higher temperatures favoring the warm condition-preferring main snail vector Radix luteola and a precipitation increase due to fewer rainy days but more days of extreme rainfall, leading to increasing surface water availability and favoring fascioliasis transmission. Climate trends indicate a risk of future increasing fascioliasis emergence, including a seasonal infection risk from June–July to October–November. Geographical zones of high human infection risk defined by archeological–historical analyses concern: (i) the Indo-Gangetic Plains and corridors used by the old Grand Trunk Road and Daksinapatha Road, (ii) northern mountainous areas by connections with the Silk Road and Tea-Horse Road, and (iii) the hinterlands of western and eastern seaport cities involved in the past Maritime Silk Road. Routes and nodes are illustrated, all transhumant–nomadic–pastoralist groups are detailed, and livestock prevalences per state are given. A baseline defining areas and seasons of high infection risk is established for the first time in India. This is henceforth expected to be helpful for physicians, prevention measures, control initiatives, and recommendations for health administration officers. Full article
Show Figures

Figure 1

27 pages, 5599 KiB  
Article
Temporal Dynamics and Long-Term Trends in Aerosol Optical Properties over Two Sites of Indo Gangetic Plains (IGP): Insights from AERONET Observations
by Sahil Wadhwa, Abul Amir Khan, Amrit Kumar and Prakhar Jindal
Atmosphere 2025, 16(3), 321; https://doi.org/10.3390/atmos16030321 - 11 Mar 2025
Cited by 1 | Viewed by 881
Abstract
This study presents the longest time series of aerosol optical properties and Precipitable Water Vapor (PW) from two AERONET sites in the Indo-Gangetic Plains (IGP). Analyzing 22 years of data (2001–2022) from Kanpur and 16 years (2007–2023) from Gandhi College, the study focuses [...] Read more.
This study presents the longest time series of aerosol optical properties and Precipitable Water Vapor (PW) from two AERONET sites in the Indo-Gangetic Plains (IGP). Analyzing 22 years of data (2001–2022) from Kanpur and 16 years (2007–2023) from Gandhi College, the study focuses on Aerosol Optical Depth (AOD), Ångström Exponent (α), Single Scattering Albedo (SSA), and Precipitable Water Vapor (PW). Significant variability in aerosol properties is observed across monthly, seasonal, and annual scales. The highest mean AOD500 values, coupled with higher α440–870 during post-monsoon and winter, indicate the dominance of fine-mode aerosols. A decrease in SSA with wavelength during these seasons further highlights the absorbing nature of these fine-mode aerosols, driven by fossil fuels and biomass burning. In contrast, summer and pre-monsoon have relatively lower mean AOD500, lowest α440–870, and increased SSA with wavelength, suggesting the dominance of coarse-mode scattering dust aerosols. PW exhibits a seasonal cycle, reaching its peak during the monsoon due to moisture transport from the Arabian Sea and Bay of Bengal, then decreasing post-monsoon as drier conditions prevail. Long-term annual trends reveal increasing aerosol concentrations, with AOD500 rising by 18% at Kanpur and 29% at Gandhi College, suggesting faster aerosol loading at the latter. Sub-period analysis indicates a slowdown in AOD500 increase during 2012–2023 at Kanpur, indicating potential stabilization post-industrialization, while Gandhi College’s more pronounced AOD500 and α440–870 increase underscores the growing impact of fine aerosols in rural IGP areas. Kanpur shows a sustained SSA increase, though at a slower rate in recent years, indicating dominant scattering aerosols. In contrast, Gandhi College has transitioned from moderate SSA increases to declines at longer wavelengths, suggesting enhanced fine-mode absorbing aerosols. At Gandhi College, the decline in PW reduces atmospheric moisture, limiting wet scavenging and likely contributing to the rise in fine-mode aerosols, especially during the monsoon and post-monsoon seasons. Our findings highlight the evolving aerosol sources in the IGP, with Kanpur stabilizing and rural areas like Gandhi College seeing continued increases in pollution. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

16 pages, 3393 KiB  
Article
A Conceptual Framework for Sustainable Governance of Self-Recruiting Small Indigenous Fishes in the Lower Gangetic Floodplain Wetlands of Eastern India
by Aparna Roy, Basanta Kumar Das, Sanjeet Debnath, Pranaya Kumar Parida, Gunjan Karnatak, Simanku Borah, Arun Pandit, Archan Kanti Das, Birendra Kumar Bhattacharya, Shreya Bhattacharya, Ganesh Chandra, Kausik Mondal, Sangeeta Chakraborty and Purna Chandra
Sustainability 2025, 17(5), 2226; https://doi.org/10.3390/su17052226 - 4 Mar 2025
Viewed by 827
Abstract
This study examined the wetland ecology, institutional frameworks, and governance mechanisms for managing self-recruiting small indigenous fishes (SIFs) across four wetlands in the lower Gangetic plain, a region bridging the Himalayan and Indo-Burma biodiversity hotspots. Using a mixed-method approach, data were gathered through [...] Read more.
This study examined the wetland ecology, institutional frameworks, and governance mechanisms for managing self-recruiting small indigenous fishes (SIFs) across four wetlands in the lower Gangetic plain, a region bridging the Himalayan and Indo-Burma biodiversity hotspots. Using a mixed-method approach, data were gathered through semi-structured interviews with 100 respondents from the fisher community, focus group discussions, unpublished records, and direct observations. The findings revealed a lack of systematic institutional mechanisms in three wetlands, possibly due to their small size, which fostered informal regulations among community members. The Chamardaha (35.813) wetland received a low score in an Ecosystem Health Index (EHI; range: 0–100) and the others, viz., Beledanga (53.813), Kumil (45.237), and Panchita (54.989), received a medium score. A wide range of significant (p < 0.05) effect sizes (β = −0.20 to 0.65) was found for the different governance parameters on sustainability and average per capita income of fisher society. Our investigation showed that 90% to 76% of the harvested SIFs were sold and the rest were consumed within the fisher community to meet part of their nutritional needs. According to the fishers’ perception, a reduction of more than 50% in the availability of the SIF population was observed compared to its previous levels. The proposed governance model emphasizes women’s roles in the fisher community and aims to improve economic outcomes, nutritional security, biodiversity conservation, and ecological services. This is the first study to document SIF utilization patterns and their link to local governance in the lower Gangetic ecoregion’s inland open waters. The findings are expected to advance wetland fisheries governance research. Full article
Show Figures

Figure 1

14 pages, 4382 KiB  
Article
Investigations on Stubble-Burning Aerosols over a Rural Location Using Ground-Based, Model, and Spaceborne Data
by Katta Vijayakumar, Panuganti China Sattilingam Devara and Saurabh Yadav
Atmosphere 2024, 15(11), 1383; https://doi.org/10.3390/atmos15111383 - 17 Nov 2024
Cited by 1 | Viewed by 1261
Abstract
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during [...] Read more.
Agriculture crop residue burning has become a major environmental problem facing the Indo-Gangetic plain, as well as contributing to global warming. This paper reports the results of a comprehensive study, examining the variations in aerosol optical, microphysical, and radiative properties that occur during biomass-burning events at Amity University Haryana (AUH), at a rural station in Gurugram (Latitude: 28.31° N, Longitude: 76.90° E, 285 m AMSL), employing ground-based observations of AERONET and Aethalometer, as well as satellite and model simulations during 7–16 November 2021. The smoke emissions during the burning events enhanced the aerosol optical depth (AOD) and increased the Angstrom exponent (AE), suggesting the dominance of fine-mode aerosols. A smoke event that affected the study region on 11 November 2021 is simulated using the regional NAAPS model to assess the role of smoke in regional aerosol loading that caused an atmospheric forcing of 230.4 W/m2. The higher values of BC (black carbon) and BB (biomass burning), and lower values of AAE (absorption Angstrom exponent) are also observed during the peak intensity of the smoke-event period. A notable layer of smoke has been observed, extending from the surface up to an altitude of approximately 3 km. In addition, the observations gathered from CALIPSO regarding the vertical profiles of aerosols show a qualitative agreement with the values obtained from AERONET observations. Further, the smoke plumes that arose due to transport of a wide-spread agricultural crop residue burning are observed nationwide, as shown by MODIS imagery, and HYSPLIT back trajectories. Thus, the present study highlights that the smoke aerosol emissions during crop residue burning occasions play a critical role in the local/regional aerosol microphysical and radiation properties, and hence in the climate variability. Full article
Show Figures

Figure 1

29 pages, 9703 KiB  
Article
Bibliometric Trends and Insights into the Potential of Maize (Zea mays) under the Framework of Conservation Agriculture
by Smruti Ranjan Padhan, Sushmita Saini, Shankar Lal Jat, Sanjay Singh Rathore, Mahesh Kumar Gathala, Radheshyam, Soumya Ranjan Padhan, Salah El-Hendawy and Mohamed A. Mattar
Sustainability 2024, 16(19), 8670; https://doi.org/10.3390/su16198670 - 8 Oct 2024
Cited by 1 | Viewed by 2302
Abstract
In spite of the detrimental effects of climate change and decreasing resource efficiency, maize farming is essential to the world’s food and nutritional security. With regard to sustainable maize farming in this environment, conservation agriculture (CA) offers a framework that holds promise in [...] Read more.
In spite of the detrimental effects of climate change and decreasing resource efficiency, maize farming is essential to the world’s food and nutritional security. With regard to sustainable maize farming in this environment, conservation agriculture (CA) offers a framework that holds promise in terms of low soil disturbance, perennial soil cover, and sustainable crop rotation. In order to acquire more profound information on the research advancements and publication patterns related to maize under CA scenarios, a bibliometric analysis was conducted. This involved utilizing René Descartes’s Discourse Framework to extract and screen 2587 documents spanning the years 2001 to 2023 from the Dimensions.ai database. The mapping showed that different stakeholders were becoming more interested in maize research under various CA pathways, with a greater emphasis on reaching the second sustainable development target, or “zero hunger”. The most influential journals were “Soil and Tillage Research” and “Field Crops Research”, with 131 and 85 papers with 6861 and 6186 citations, respectively. The performance analysis found “Christian L. Thierfelder” and “Mangi Lal Jat” as the eminent researchers in the areas of maize research under CA. Thus, the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Agricultural Research Institute (IARI) were identified as the important institutions in conducting research pertaining to maize under CA systems, while the United States, India, and Mexico emerged as prominent countries with notable collaboration efforts for imparting research under the given scenarios. Three thematic clusters delineating keywords from three distinct sections—key drivers, objectives, and methodology—were identified through co-word analysis using word clouds, tree maps, and thematic networking of the keywords from the abstract and titles of screened publications. These thematic clusters highlighted the growing emphasis on region-specific studies under CA, particularly in sub-Saharan Africa and the Indo-Gangetic plain, to enhance the resilience of the agri-food system. Therefore, mapping maize’s potentialities within the CA framework has revealed the field’s dynamic nature and offers insightful information to researchers and policymakers that could help them plan future studies and cooperative initiatives aimed at boosting the productivity and sustainability of maize-based systems under the CA framework. Full article
(This article belongs to the Special Issue Land Management and Sustainable Agricultural Production: 2nd Edition)
Show Figures

Figure 1

17 pages, 2237 KiB  
Article
Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions
by Abu Taher Mohammad Anwarul Islam Mondol, Md. Akhter Hossain Chowdhury, Sharif Ahmed and Md Khairul Alam
Nitrogen 2024, 5(3), 746-762; https://doi.org/10.3390/nitrogen5030049 - 23 Aug 2024
Cited by 2 | Viewed by 1463
Abstract
Determining nutrient-release patterns of organic manures can give an estimate of the potential amount of nutrients that a given material can contribute to crops along with chemical fertiliser. Nutrients released from organic manure depend on several factors, and temperature is one of them. [...] Read more.
Determining nutrient-release patterns of organic manures can give an estimate of the potential amount of nutrients that a given material can contribute to crops along with chemical fertiliser. Nutrients released from organic manure depend on several factors, and temperature is one of them. To evaluate how different types of conventional organic manures release nitrogen (N) under varying temperature conditions, an incubation study was conducted at the Bangladesh Agricultural Research Institute. Six organic manures—poultry manure (PM), vermicompost (VC), bio-slurry (BS), cowdung (CD), water-hyacinth compost (WHC), and rice straw compost (RSC)—were evaluated at three temperature regimes (15, 25, and 35 °C) to study the dynamics of N incubated for 330 days. The N release was significantly influenced by the interaction of organic manures and temperature regimes. Poultry manure-treated soil incubated at 35 °C had the highest mineralisation of all parameters than other manures. The mineralisation of N followed the order: PM > VC > BS > CD > WHC > RSC > control and 35 °C > 25 °C > 15 °C. Across different temperatures, the mineralisation rate of PM was 15–55% higher than that of other manures. At 35 °C, the mineralisation rate was 10% and 20% higher compared to 25 °C and 15 °C, respectively. The first-order kinetic models predicted the organic N release from manures satisfactorily. The findings of the present study enrich the understanding of N-release patterns under different temperature regimes that prevail in different crop growing seasons in Indo-Gangetic Plains, providing valuable data for researchers and policymakers interested in sustainable integrated nutrient management practices. Full article
Show Figures

Figure 1

15 pages, 3032 KiB  
Article
Estimation of Particulate Matter (PM10) Over Middle Indo-Gangetic Plain (Patna) of India: Seasonal Variation and Source Apportionment
by Ningombam Linthoingambi Devi, Ishwar Chandra Yadav and Amrendra Kumar
Atmosphere 2024, 15(8), 878; https://doi.org/10.3390/atmos15080878 - 23 Jul 2024
Viewed by 1473
Abstract
Despite extensive research on particulate matter (PM) pollution in India’s Indo-Gangetic Plain (IGP), source apportionment remains challenging. This study investigates the effect of particulate matter (PM10)-associated water soluble inorganic ions (WSIIs) on ambient air concentration across the middle IGP from January [...] Read more.
Despite extensive research on particulate matter (PM) pollution in India’s Indo-Gangetic Plain (IGP), source apportionment remains challenging. This study investigates the effect of particulate matter (PM10)-associated water soluble inorganic ions (WSIIs) on ambient air concentration across the middle IGP from January to December 2018. Moreover, the seasonal fluctuation and chemical characterization of PM10 were assessed for the year 2018. The results revealed a high concentration of PM10 (156 µg/m3), exceeding the WHO and National Ambient Air Quality Standard (NAAQS) limits. The highest PM10 levels were observed during autumn, winter, summer, and the rainy season. The study identified SO42− and NH4+ as the most common WSIIs, constituting 46% and 23% of the total WSIIs. Source apportionment analysis indicated that street dust, biomass burning, and vehicle and industrial emissions together with secondary formation significantly contributed to IGP’s PM pollution. Additionally, the investigation of air mass back trajectory suggests that air quality in IGP is largely influenced by eastern and western Maritime air masses originated from the Arabian Sea, the Bay of Bengal, Gujarat, Afghanistan, Pakistan, and Bangladesh. Full article
(This article belongs to the Special Issue Biomass Combustion and Emission Analysis)
Show Figures

Figure 1

24 pages, 1236 KiB  
Review
A Comprehensive Review of Surface Ozone Variations in Several Indian Hotspots
by K. A. Keerthi Lakshmi, T. Nishanth, M. K. Satheesh Kumar and K. T. Valsaraj
Atmosphere 2024, 15(7), 852; https://doi.org/10.3390/atmos15070852 - 19 Jul 2024
Cited by 5 | Viewed by 3250
Abstract
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately [...] Read more.
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately influence the lifespan of various gases in the atmosphere. The elevated surface O3 levels resulting from anthropogenic activities have detrimental effects on both human health and agricultural productivity. This paper provides a comprehensive analysis of the variations in surface O3 levels across various regions in the Indian subcontinent, focusing on both spatial and temporal changes. The study is based on an in-depth review of literature spanning the last thirty years in India. Based on the findings of the latest study, the spatial distribution of surface O3 indicates a rise of approximately 50–70 ppbv during the summer and pre-monsoon periods in the northern region and Indo-Gangetic Plain. Moreover, elevated levels of surface O3 (40–70 ppbv) are observed during the pre-monsoon/summer season in the western, southern, and peninsular Indian regions. The investigation also underscores the ground-based observations of diurnal and seasonal alterations in surface O3 levels at two separate sites (rural and urban) in Kannur district, located in southern India, over a duration of nine years starting from January 2016. The O3 concentration exhibits an increasing trend of 7.91% (rural site) and 5.41% (urban site), ascribed to the rise in vehicular and industrial operations. This review also presents a succinct summary of O3 fluctuations during solar eclipses and nocturnal firework displays in the subcontinent. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

20 pages, 2905 KiB  
Article
The Impact of Integrated Nutrient Management on Trifolium alexandrinum Varietal Performance in the Indo-Gangetic Plains: A Comparative Yield and Economic Analysis
by Phool Singh Hindoriya, Rakesh Kumar, Rajesh Kumar Meena, Hardev Ram, Ashwani Kumar, Suryakanta Kashyap, Bisworanjita Biswal, Kanika Bhakuni, Prasanna S. Pyati, Kamal Garg, Simran Jasht, Ghous Ali, Birbal and Subhradip Bhattacharjee
Agronomy 2024, 14(2), 339; https://doi.org/10.3390/agronomy14020339 - 7 Feb 2024
Cited by 3 | Viewed by 1848
Abstract
The importance of selecting an appropriate berseem variety and implementing effective nutrient management practices is crucial for maximizing both the production and economic potential of forage crops. This was clearly demonstrated in a field experiment conducted during the rabi seasons of 2019–2020 and [...] Read more.
The importance of selecting an appropriate berseem variety and implementing effective nutrient management practices is crucial for maximizing both the production and economic potential of forage crops. This was clearly demonstrated in a field experiment conducted during the rabi seasons of 2019–2020 and 2020–2021. The experimental setup was a factorial randomized block design incorporating five berseem varieties (Mescavi, HB-1, HB-2, BL-10, and BL-42) and five integrated nutrient management practices: 100% recommended dose of fertilizers (RDF) or NM-1, 75% RDF + plant growth-promoting rhizobacteria (PGPR) or NM-2, 75% RDF + municipal solid waste compost (MSWC) or NM-3, 75% RDF + farmyard manure (FYM) + PGPR or NM-4, and 50% RDF + MSWC + PGPR or NM-5. The objective of the experiment was to evaluate the physio-morphological responses, biomass yield, and economic efficiencies of different berseem varieties under various nutrient management practices. The experimental results highlighted the superior performance of the BL-42 variety in terms of growth and yield attributes compared to the other tested berseem varieties. Specifically, BL-42 showed an enhancement in total green fodder yield by 17.10%, 26.60%, 37.75%, and 28.04% over the varieties BL-10, HB-2, HB-1, and Mescavi, respectively. Moreover, the application of the 75% RDF + FYM + PGPR treatment (NM-4) significantly boosted the total green fodder yield by 13.08%, 14.29%, 34.48%, and 39.02% over the 75% RDF + MSWC, 100% RDF, 75% RDF + PGPR, and 50% RDF + MSWC + PGPR treatments, respectively. In terms of economic returns, BL-42 achieved a significantly higher gross return (GR) and net return (NR) of 194,989 ₹/ha and 145,142 ₹/ha, respectively, compared to the GR and NR of BL-10 (166,512 and 116,665 ₹/ha, respectively). Similarly, the nutrient management practice of 75% RDF + FYM + PGPR recorded the highest GR and NR (191,638 and 137,346 ₹/ha, respectively) compared to the 100% RDF treatment (167,593 and 120,716 ₹/ha, respectively). These findings underscore the critical role of variety selection and tailored nutrient management in optimizing both the yield and economic gains in forage crop cultivation. The significant differences in production and returns highlight the potential of targeted agronomic strategies to enhance the profitability and sustainability of forage farming. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

14 pages, 2174 KiB  
Article
Physical Conditions That Limit Chickpea Root Growth and Emergence in Heavy-Textured Soil
by Wendy H. Vance, Richard W. Bell and Chris Johansen
Seeds 2024, 3(1), 26-39; https://doi.org/10.3390/seeds3010003 - 30 Dec 2023
Cited by 1 | Viewed by 1434
Abstract
The tillage method determines several soil physical parameters that affect the emergence of post-rice chickpea (Cicer arietinum L.) in the Indo-Gangetic Plain of South Asia. Mechanised row-sowing with minimum soil disturbance and crop residue retention in medium-to-heavy-textured soils will alter the seedbed [...] Read more.
The tillage method determines several soil physical parameters that affect the emergence of post-rice chickpea (Cicer arietinum L.) in the Indo-Gangetic Plain of South Asia. Mechanised row-sowing with minimum soil disturbance and crop residue retention in medium-to-heavy-textured soils will alter the seedbed when compared to that prepared after traditional full tillage and broadcast sowing. Whilst minimum soil disturbance and timely sowing may alleviate the soil water constraint to crop establishment, other soil physical properties such as soil strength, bulk density, and aggregate size may still inhibit seedling emergence and root elongation. This study’s objective was to determine the limitations to chickpea crop establishment with increasing bulk density and soil strength, and different aggregate sizes below and above the seed. In two growth cabinet studies, chickpea seed was sown in clay soil with (i) a bulk density range of 1.3–1.9 Mg m−3 (Experiment 1) and (ii) the combination of bulk densities (1.3 and 1.8 Mg m−3) and aggregate sizes (<2 mm and >4 mm) above and below the seed (Experiment 2). Root length was significantly reduced with increasing bulk density (>1.4 Mg m−3), and soil strength impeded early root growth at >1 MPa. Where main root growth was impeded due to high bulk density and soil strength, a greater proportion of total root growth was associated with the elongation of lateral roots. The present study suggests that the soil above the seed needs to be loosely compacted (<1.3 Mg m−3) for seedling emergence to occur. Further research is needed to determine the size of the soil aggregates, which optimise germination and emergence. We conclude that soil strength values typical of field conditions in the Indo-Gangetic Plain at sowing will impede the root growth of chickpea seedlings. This effect can be minimised by changing tillage operations to produce seedbed conditions that are within the limiting thresholds of bulk density and soil strength. Full article
Show Figures

Figure 1

5 pages, 3161 KiB  
Proceeding Paper
Mineralogical Characterization of PM10 over the Central Himalayan Region
by Sakshi Gupta, Priyanka Srivastava, Manish Naja, Nikki Choudhary and Sudhir Kumar Sharma
Environ. Sci. Proc. 2023, 27(1), 10; https://doi.org/10.3390/ecas2023-15923 - 8 Nov 2023
Viewed by 801
Abstract
The air quality of the Himalayan region of India is deteriorating due to the increasing load of particulate matter that is emitted from various local and regional sources, as well as to the transit of dust-related pollutants from the Indo-Gangetic Plain (IGP) and [...] Read more.
The air quality of the Himalayan region of India is deteriorating due to the increasing load of particulate matter that is emitted from various local and regional sources, as well as to the transit of dust-related pollutants from the Indo-Gangetic Plain (IGP) and surrounding areas. In this study, the mineralogical characteristics of coarse mode particulate matter (PM10) was analyzed using the X-ray diffraction (XRD) technique from January to December 2019 over Nainital (29.39° N, 79.45° E; altitude: 1958 m above mean sea level), a central Himalayan region of India. XRD analysis of PM10 samples showed the presence of clay minerals, crystalline silicate minerals, carbonate minerals, and asbestiform minerals. It was shown that quartz minerals with significant levels of crystallinity were present in all the samples. Other minerals that are contributing to the soil dust were also observed in the analysis (CaFe2O4, CaCO3, CaMg(CO3)2, calcium ammonium silicate hydrate (C-A-S-H), gypsum, kaolinite, illite, augite, and montmorillonite). The minerals ammonium sulphate, hematite, and magnetite were also found in the samples and are suggested to be from biogenic and anthropogenic activities, including biomass burning, fuel combustion, vehicle exhaust, construction activities, etc. This study indicated that the majority of the minerals in PM10 that were present in this Himalayan region are from soil/crustal dust. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

7 pages, 2053 KiB  
Proceeding Paper
Effects of Atmospheric Aerosol Types on Ultraviolet Flux at Different Stations in the Indo-Gangetic Plain
by Ankita Mall and Sachchidanand Singh
Environ. Sci. Proc. 2023, 27(1), 33; https://doi.org/10.3390/ecas2023-15118 - 14 Oct 2023
Viewed by 653
Abstract
Atmospheric aerosols play a crucial role in the scattering and absorption of solar radiation, directly influencing the UV flux reaching the Earth’s surface. This study investigates the impact of different atmospheric aerosol types on the ultraviolet (UV) flux at four stations over the [...] Read more.
Atmospheric aerosols play a crucial role in the scattering and absorption of solar radiation, directly influencing the UV flux reaching the Earth’s surface. This study investigates the impact of different atmospheric aerosol types on the ultraviolet (UV) flux at four stations over the Indo-Gangetic plain (IGP). For this study, high-resolution 1° × 1° UVA and UVB data were obtained from Clouds and the Earth’s Radiant Energy System (CERES). Various aerosol types present in the atmosphere were categorized based upon their optical properties and their quantitative influence on UVA and UVB flux was examined. Ground-level aerosol products were obtained from the NASA-based Aerosol Robotic Network (AERONET) at four stations in the IGP. Based on the optical properties of aerosols (fine mode fraction, single scattering albedo, aerosol optical depth and angstrom exponent), four distinct atmospheric aerosol types were inferred, namely dust-dominant (DT), polluted-continental-dominant (PCD), black-carbon-dominant (BCD), and organic-carbon-dominant (OCD). It is observed that the AOD of different aerosol types when separated do not seem to have made significant effects on UVA/B radiation (except at Kanpur), possibly due to the statistically smaller data set. For the entire combined AOD, the effects on UVA/B became quite significant at all the stations, which shows that a unit rise in AOD leads to a reduction of 5–7 Wm−2 in UVA and 0.14–0.23 Wm−2 in UVB. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

14 pages, 16024 KiB  
Article
Influence of Surface Methane on Tropospheric Ozone Concentrations and Cereal Yield in Asia
by Kenichi Tatsumi
Agronomy 2023, 13(10), 2586; https://doi.org/10.3390/agronomy13102586 - 9 Oct 2023
Cited by 2 | Viewed by 1879
Abstract
Methane (CH4) emanating from terrestrial sources serves as a precursor for the genesis of tropospheric ozone (O3), a pernicious atmospheric contaminant that adversely modulates the physiological mechanisms of agricultural crops. Despite the acknowledged role of CH4 in amplifying [...] Read more.
Methane (CH4) emanating from terrestrial sources serves as a precursor for the genesis of tropospheric ozone (O3), a pernicious atmospheric contaminant that adversely modulates the physiological mechanisms of agricultural crops. Despite the acknowledged role of CH4 in amplifying O3 concentrations, the extant literature offers limited quantitative evaluations concerning the repercussions of CH4-mediated O3 on cereal yields. Employing the GEOS-Chem atmospheric chemistry model, the present investigation elucidates the ramifications of a 50% diminution in anthropogenic CH4 concentrations on the yield losses of maize, soybean, and wheat across Asia for the fiscal year 2010. The findings unveil pronounced yield detriments attributable to O3-induced phytotoxicity, with the Indo-Gangetic Plain and the North China Plain manifesting the most substantial yield impairments among the crops examined. A halving of anthropogenic CH4 effluents could ameliorate considerable losses in cereal production across these agriculturally pivotal regions. CH4-facilitated O3 exerts a pernicious influence on cereal yields; nevertheless, targeted mitigation of CH4 effluents, particularly in the vicinity of the North China Plain, holds the potential to substantially attenuate O3 contamination, thereby catalyzing an enhancement in regional cereal production. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

22 pages, 15145 KiB  
Article
Surface Radiative Forcing as a Climate-Change Indicator in North India due to the Combined Effects of Dust and Biomass Burning
by Umesh Chandra Dumka, Panagiotis G. Kosmopoulos, Effrosyni Baxevanaki, Dimitris G. Kaskaoutis, Muhammad Nurul Huda, Md Firoz Khan, Muhammad Bilal, Balram Ambade, Sujan Khanal and Pavel Munshi
Fire 2023, 6(9), 365; https://doi.org/10.3390/fire6090365 - 19 Sep 2023
Cited by 4 | Viewed by 3332
Abstract
This study estimates the radiative forcing by biomass burning and dust aerosols over the Indian subcontinent, with emphasis on the Indo-Gangetic Plains (IGP) during the period from January 2021 to April 2021, based on multiple satellite and reanalysis datasets. In this respect, we [...] Read more.
This study estimates the radiative forcing by biomass burning and dust aerosols over the Indian subcontinent, with emphasis on the Indo-Gangetic Plains (IGP) during the period from January 2021 to April 2021, based on multiple satellite and reanalysis datasets. In this respect, we used retrievals from the Moderate Resolution Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) system, as well as reanalysis data from the Goddard Earth Observing System, version 5 (GEOS-5), the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), the Copernicus Atmosphere Monitoring Service (CAMS), and ERA-Interim. According to the MERRA-2 and the CAMS, the highest black carbon (BC) concentrations in January 2021 were 7–8 µg m−3, which were significantly lower than measurements performed in main cities along the IGP, such as Patiala, Delhi, and Kanpur. The meteorological data analysis accompanied by the CALIPSO lidar measurements showed that the vertical distribution of total attenuated backscatter (TAB) could reach altitudes of up to ~4–5 km and could be transported over the central Himalayan region. The spatial-averaged daily aerosol radiative forcing (ARF) values over the Indian subcontinent from January 2021 to April 2021 were found to range from −51.40 to −6.08 W m−2 (mean of −22.02 ± 9.19 W m−2), while on a monthly basis, the ARF values varied widely, from −146.24 to −1.63 W m−2 (mean of −45.56 ± 22.85 W m−2) over different parts of the study region. Furthermore, the spatial-averaged daily BC radiative forcing ranged from −2.23 to −0.35 (−1.01 ± 0.40 W m−2), while it varied from −15.29 to −0.31 W m−2 (−2.46 ± 2.32 W m−2) over different regions of southern Asia, indicating a rather small contribution to the total aerosol radiative effect and a large presence of highly scattering aerosols. Our findings highlight the importance of growing biomass burning, in light of recent climate change and the rapid decline in air quality over North India and the Indian Ocean. Full article
(This article belongs to the Special Issue Advances in Forest Fire Behaviour Modelling Using Remote Sensing)
Show Figures

Figure 1

Back to TopTop